WAVELET-BASED APPROACH FOR STRUCTURAL DAMAGE DETECTION

By Z. Hou,' M. Noori,” and R. St. Amand’

ABSTRACT: A wavelet-based approach is proposed for structural damage detection and health monitoring.
Characteristics of representative vibration signals under the wavelet transformation are examined. The method-
ology is then applied to simulation data generated from a simple structural model subjected to a harmonic
excitation. The model consists of multiple breakable springs, some of which may suffer irreversible damage
when the response exceeds a threshold value or the number of cycles of motion is accumulated beyond their
fatigue life. In cases of either abrupt or accumulative damages, occurrence of damage and the moment when it
occurs can be clearly determined in the details of the wavelet decomposition of these data. Similar results are
observed for the real acceleration data of the seismic response recorded on the roof of a building during the
1971 San Fernando earthquake. Effects of noise intensity and damage severity are investigated and presented
by a detectability map. Results show the great promise of the wavelet approach for damage detection and

structural health monitoring.

INTRODUCTION

Damages are often observed in many engineering systems
during their service life such as those in critical flight com-
ponents in a helicopter, including cracks in a drive shaft
(Champagne et al. 1998) and spalling of sun gear of a main
rotor transmission (Samuel et al. 1998). Those damages may
be caused by various factors such as excessive response, ac-
cumulative crack growth, and impact by a foreign object. Fu-
ture intelligent structures demand high system performance,
structural safety and integrity, and low maintenance cost. To
meet the challenge, structural health monitoring (SHM) has
emerged as a reliable, efficient, and economical approach to
monitor system performance, detect damages if they occur,
assess/diagnose the structural health condition, and make cor-
responding maintenance decisions,

An ideal SHM system typically consists of two major com-
ponents: a built-in network of sensors for collecting response
measurements, and a data analysis algorithm/software for in-
terpretation of the measurements in terms of the physical con-
dition of the structures. Recent flourishing developments in the
area may be attributed to two factors: (1) innovative concepts
such as structural controls and intelligent structures: and (2)
advanced sensing techniques. The former requires an on-line
health monitoring system to measure and diagnose the system
performance data in a real-time manner. If a system fault or
damage is detected, or the system performance becomes un-
satisfactory, an appropriate control action can then be taken.
The latter, such as development of the embedded distributed
piezoelectric sensor arrays (Blanas et al. 1997) and embedded
fiber optic sensors (Kim et al. 1993) in composite structures,
may provide rich system performance data and make the on-
line monitoring much more feasible. For recent advances in
SHM, see Chang (1997).

A comprehensive literature review of damage detection and
health monitoring methods for structural and mechanical sys-
tems was provided by Doebling et al. (1996). Their review
focused on methods based on vibration measurements and de-
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tection based on changes in vibration characteristics such as
natural frequencies, modal shapes, and modal damping ratios.
Intuitively, changes in these characteristics reflect variations in
some physical parameters and working conditions of the sys-
tem and indicate certain damages such as those caused by
failure of joints and columns in a structure. Representative
methods include “‘classical™ system identification of natural
frequencies and modal shapes; neural network approaches for
predicting system performance by training (Wu et al. 1992;
Tsou and Shen 1994); fuzzy logic and probability-based esti-
mation to consider uncertainties (Vanik and Beck 1997; Es-
saway et al. 1998); and methods of localized flexibility for
determination of damage location (Reigh and Park 1997).

This paper addresses wavelet analysis and its applications
for structural damage detection. Wavelet analysis may be
viewed as an extension of the traditional Fourier transform
with adjustable window location and size. The merits of wave-
let analysis lie in its ability to examine local data with a “zoom
lens having an adjustable focus™ to provide multiple levels of
details and approximations of the original signal. Therefore,
transient behavior of the data can be retained. Recent devel-
opments in mathematical theory of wavelets and their appli-
cations may be found in Chui (1992), Sone and Yamamoto
(1997), and Benedetto and Frazier (1993).

Wavelet analysis has recently emerged as a promising tool
for SHM and damage detection. Cumulative damage of a
building with bilinear restoring force subjected to a real earth-
quake ground motion was estimated in terms of the accumu-
lated ductility ratio, which is related to the number of spikes
in the wavelet results (Masuda et al. 1995; Sone et al. 1995).
The wavelet approach for on-line detection of an abrupt stiff-
ness loss was studied and the results were compared with other
approaches such as a neural network based on-line approxi-
mation technique and the empirical mode decomposition
method (Demetriou and Hou 1999; Hou and Noori 1999; Vin-
cent et al. 1999). Faults in gear systems were detected using
wavelet approaches and some results were verified by an in-
spection (Wang and McFadden 1995; Staszewski and Tomlin-
son 1997; Ferlez and Lang 1998; Samuel et al. 1998). The
operating condition for a silicon-wafer slicer cutting process
was monitored and a maintenance decision of whether to
sharpen the cutting blade could be made based on the wavelet
analysis (Jiang et al. 1997). Effects of noise contamination and
damage severity on damage detection were discussed (Al-
Khalidy et al. 1997a,b; Hou and Noori 1999). Most recent
studies include Gurley and Kareem (1999) and Yamamoto et
al. (unpublished manuscript, 1999). The latter used a vibratory
gyroscope sensor to measure the jerk of a structure response,
and the wavelet results were used to detect initiation and
growth of a crack in an underground pipe.



This paper is an extended version of the writers’ previous
paper (Hou and Noori 1999). In the following sections, a brief
background of wavelet analysis is presented and characteristics
of representative vibration signals under the wavelet transform
are illustrated. The methodology is then applied to simulation
data generated from a simple structural model subjected to a
harmonic excitation. The model consists of multiple breakable
springs, some of which may suffer irreversible damage when
the response exceeds a threshold value or the number of cycles
of motion is accumulated beyond their fatigue life. In cases of
either abrupt or accumulative damages, occurrence of damage
and the moment when the damage occurs can be clearly de-
termined in the details of the wavelet decomposition of these
data. Similar results are observed for the real acceleration data
of the seismic response recorded on the roof of a building
during the 1971 San Fernando earthquake. Effects of noise
intensity and damage severity are investigated and presented
by a detectability map.

BACKGROUND OF WAVELET ANALYSIS

This section presents a brief background on wavelet analysis
utilized in this paper. General overview of wavelet analysis
may be found in Chui (1992), Daubechies et al. (1992), and
Sone and Yamamoto (1997).

Using a selected analyzing or mother wavelet function ¥(7),
the continuous wavelet transform of a signal f{7) is defined as
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where a and b = dilation and translation parameters, respec-
tively. Both are real numbers and ¢ must be positive. The bar
over W(¢) indicates its complex conjugate. The mother wavelet
should satisfy an admissibility condition to ensure existence
of the inverse wavelet transform such as
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where Fy(w) denotes the Fourier transform of yi(r). The signal
J(#) may be recovered or reconstructed by an inverse wavelet
transform of (Wf)(a, b) as defined by
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A wavelet family associated with the mother wavelet W(7)
is generated by two operations: dilation and translation. The
translation parameter, b, indicates the location of the moving
wavelet window in the wavelet transform. Shifting the wavelet
window along the time axis implies examining the signal in
the neighborhood of the current window location. Therefore,
information in the time domain will still remain, in contrast to
the Fourier transform, where the time domain information be-
comes almost invisible after the integration over the entire
time domain. The dilation parameter, a, indicates the width of
the wavelet window. A smaller value of a implies a higher-
resolution filter, i.e., the signal is examined through a narrower
wavelet window in a smaller scale.

In practical signal processing a discrete version of wavelet
transform is often employed by discretizing the dilation pa-
rameter a and the translation parameter b. In general, the pro-
cedure becomes much more efficient if dyadic values of @ and
b are used, i.e.,

a=2; b=2%k jkEZ (4)

where Z = set of positive integers. For some special choices
of Ui(7), the corresponding discretized wavelets {is; ,} where

W, () =27V (2 — k) (5)

constitute an orthonormal basis for L*(R). Using the ortho-
normal basis, the wavelet expansion of a function f(#) and the
coefficients of the wavelet expansion are defined as
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In the discrete wavelet analysis, a signal can be represented
by its approximations and details. The detail at level j is de-
fined as

D=, a0 )
ez
and the approximation at level .J is defined as
4= D, ©)
It becomes obvious that
A=A, + D, (10)
and
f(:)=A,,+ZDj (11)

Egs. (10) and (11) provide a tree structure of a signal and
also a reconstruction procedure of the original signal. By se-
lecting different dyadic scales, a signal can be broken down
into many low-resolution components, referred to as the wave-
let decomposition tree. The wavelet tree structure with details
and approximations at various levels may reveal valuable in-
formation of the signal characteristics that may not be clearly
seen in the original data or the results from other approaches.
A down-sampling technique (Strang and Nguyen 1996) can be
used to efficiently reduce the data size in the tree and the
Mallat algorithm (Mallat 1988), a fast wavelet transform pro-
cedure, can be used to greatly reduce the computational efforts
involved. The analysis may be modified to the wavelet packet
analysis for the purpose of multiresolution analysis, which pro-
vides an alternative tree structure for the original data. Higher
dimensional versions can also be easily extended. For details,
see Chui (1992).

SOME RESULTS FOR REPRESENTATIVE VIBRATION
SIGNALS

This section presents results of wavelet analysis for some
representative signals in vibration to bring insights into char-
acteristics of vibration signals related to damage detection. The
Daubechies wavelet DB4 was used in both continuous and
discrete wavelet transforms.

Fig. 1 illustrates a unit-step signal, as shown in Fig. 1(a),
and the results from its continuous and discrete wavelet trans-
forms. Fig. 1(b) is the contour plot of the wavelet coefficient
in the time-scale plane. Lighter shading in the plot indicates a
higher wavelet coefficient value. The fringe pattern near the
450th time step implies existence of a singularity in the local
time. The singularity is also indicated by a spike near that time
step in Fig. 1(c). Considering that structural damage may be
represented by an abrupt stiffness loss, the sensitivity of wave-
let results to a singularity can be effectively used to detect
possible structural damage using measured acceleration re-
sponse data.

Fig. 2 presents the results of wavelet analysis for a sinu-
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FIG. 1. Unit Step Signal and Results from Its Continuous and Discrete Wavelet Transforms: (a) Unit-Step Signal; (b) Its Continuous
Wavelet Coefficient; (c) Details at Level 1 from Its Discrete Wavelet Transform
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FIG. 2. Sinusoidal Signal with Sweeping Frequency and Its Continuous Wavelet Coefficients: (a) Sweeping Signal; (b) Its Continuous
Wavelet Transform
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FIG. 3. Wavelet Coefficients of Localized Signal and Its Derivatives: (a) Original Signal; (b) Wavelet Coefficient of Signal; (c) Wavelet
Coefficients of First-Order Derivative of Signal
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FIG. 4. Free-Vibration Signal and Its Continuous Wavelet Coefficient: (a) Original Signal; (b) Continuous Wavelet Coefficient

soidal signal with sweeping frequency. The results clearly
show an increase in the transient frequency of the signal with
time as indicated by a decreasing width of the fringe pattern
in the contour plot of the wavelet coefficient, as shown in Fig.
2(b). The change in width of the fringe pattern implies that
the dominant frequency in the signal increases with the time.
The results bring an insight into detecting evolutionary or ac-
cumulative system damage caused by many factors such as
mechanical fatigue and chemical corrosion. In this case, struc-
tural stiffness degradation may be indicated by increasing
fringe width of the wavelet results with time for a vibration
measurement from the structure.

Fig. 3 plots a localized and smooth signal as well as the
wavelet coefficients of the signal itself and its first-order de-
rivative. It is observed that the corresponding wavelet coeffi-
cients are also localized. The wavelet coefficients of higher-
order derivatives exhibit a similar behavior. The plot may
bring some insights to identify location or region of a damage,
if occurred.

Fig. 4 demonstrates the continuous wavelet coefficient for
a tfree-vibration signal containing two sinusoidal components
with higher and lower frequencies that can be easily identified
from the plot of the continuous wavelet coefficient in Fig. 3(b).
In any time interval two frequencies are observed. It should
be noted that the higher frequency can only be seen in small
scale, i.e., lower portion of the plot, and vice versa for the
lower frequency.

DAMAGE DETECTION USING SIMULATION DATA FOR
SIMPLE STRUCTURAL MODEL

To demonstrate an application of the wavelet analysis for
structural damage detection, a set of simulation data from a
simple structural model are utilized. The structure is modeled
as a single-degree-of-freedom (SDOF) mass-damper-spring
system with multiple paralleled springs, as shown in Fig. 5.
Each spring in the system is preassigned a threshold value,
and a spring will break if the structural response exceeds its
corresponding threshold value. In the case of accumulated
damages, breakage of a spring is governed by the allowable
number of cycles of the response based on fatigue testing. The
springs are used to model stiffness of structural members such
as columns, beams, and joints. Therefore, a broken spring may
imply an occurrence of structural damage.

The governing differential equation of motion of the system
in Fig. 5 is given by

d’ d
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where m, ¢, and k = system mass, viscous damping coefficient,
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FIG. 5. Simple Structural Model with Multiple Paralleled
Breakable Springs

and stiffness, respectively; x(f) = displacement response; and
f(#) = external excitation. For the sake of simplicity, f(7) is
assumed to be a harmonic. The system stiffness A(f) can be
expressed by

k() =, ki(®) (13)
=1

where k,(7) represents stiffness of the ith spring in the system

at time . These springs are breakable due to different types

of failure mechanism. For examples, if breakage of a spring

is due to an excessive response, k;(f) can be defined as

k'l]?
k,(f) = {0‘

where k,, and x* = initial stiffness and the threshold value of
the ith spring, respectively, and both are positive constants. If
a spring is broken because of fatigue, &,(f) may be determined

by
. kma

if abs(x(r')) = x* W' = ¢

4
otherwise (14)

iFN(tY < NEV! =1¢
otherwise

(15)

where N(7) = total number of cycles of the response in the
time interval [0, 7] and N* = allowable number of cycles for
the ith spring based on its fatigue testing. It is obvious that
the system is nonlinear in general due to possible breakage of
springs.

Fig. 6 plots the results for the above structural model to a
harmonic excitation for the case where the damage is caused
by an excessive response. For the sake of simplicity, only three
springs were used for illustration. An analytical solution does
not exist for nonlinear equation (12) with zero initial condi-
tions due to the nonlinearity caused by possible breakage of
springs. Therefore, the structural response was numerically
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FIG. 8. Wavelet Analysis Results for Real Earthquake Response Data Recorded at Roof of Bank of California during 1971 San Fer-

nando Earthquake

calculated by the fourth-order Runge-Kutta integration
scheme. For the purpose of comparison, the transient stiffness
history of the system was traced to see whether and when the
springs break. While the stiffness history in Fig. 6(c) clearly
indicated breakage of two springs, which results in stiffness

degradation or loss at two different moments, the acceleration
response curve apparently did not show signs of structural
damage. However, results from wavelet analysis for the ac-
celeration response data, as shown in Fig. 6(b), clearly show
two spikes in the level 1 details of its wavelet decomposition,



which indicate occurrence of structural damages. Level j de-
tails are defined in (8). Compared with the stiffness history
curve in Fig. 6(c), these two spikes accurately indicate the
moments when the structural damage occurred. It should be
noted that two spikes at the beginning and the end in the de-
tails curve are caused by truncation of the response data and
should therefore be ignored.

Fig. 7 presents similar results for the case where the break-
age of springs in the system is governed by their fatigue be-
havior, i.e., the total number of cycles of the system response
N(#). While there is not any sign in the acceleration response,
as shown in Fig. 7(a), to indicate the structural damage, mul-
tiple spikes in the level 1 details of the acceleration signal in
Fig. 7(b) imply progressive damage occurred. Again, the oc-
currences of damage are confirmed by the transient stiffness
plot in Fig. 7(c).

DAMAGE DETECTION USING RECORDED
EARTHQUAKE RESPONSE DATA

This section presents an example of application of the wave-
let analysis for real earthquake response data recorded at the
roof of the Bank of California building located at 15250 Ven-
tura Boulevard in the city of Sherman Oaks, Calif., during the
1971 San Fernando earthquake. Its distance to the epicenter
of the earthquake is approximately 14 mi (22.53 km). The
building is a 12-story reinforced concrete moment-resisting
structure. Plan dimension of the floors is 60 X 161 ft (18.29
X 48.77 m), except for the first story, which is 90 X 161 ft
(27.43 X 49.07 m). The building stands 159 ft (48.46 m)
above the street level. During the San Fernando event, this
structure suffered both structural and nonstructural damages.
The structural damage consists mainly of cracks and spalling
of columns and girder stubs.

Fig 8 illustrates the original acceleration response data re-
corded at the 7th floor of the building and preliminary results
from the wavelet analysis of the data. Characteristics of the
spikes in the level 1 details of the DB4 wavelet decomposition
seem in agreement with the field observation in the sense that
the observed cracks and spalling of columns and stubs might
occur subsequently during the earthquake event. The results
show the great promise of wavelet approach for on-line SHM
and postquake damage assessment. However, further experi-
mental laboratory studies and field inspections on damaged
structures are needed to justify the results and bring this ap-
proach into practical applications.

EFFECTS OF NOISE INTENSITY AND DAMAGE
SEVERITY

To apply the wavelet approach to on-line health monitoring
and damage detection many practical issues need to be ad-
dressed. For example, a recorded signal may be contaminated
by noise due to various reasons. Also, the wavelet approach
might be sensitive to the level of structural damage or stiffness
loss. An attempt was made to investigate effects of the noise
intensity and the damage level on detection of the structural
damage using the wavelet approach. The results are presented
in terms of a detectability map in Fig. 9.

The results in Fig. 9 were obtained by applying the wavelet
approach to simulation data with added random noise and var-
ious levels of stiffness loss. The same structure system in Fig.
5 was used in this study. The noise was generated using a
noise generator in MATLAB. Its intensity may be adjusted.
For a given pair of noise intensity and damage level, wavelet
analysis was employed for the response data to see if the dam-
age could be detected based some preset criteria. The results
were marked on a two-dimensional map with one axis repre-
senting the damage level and the other representing the noise

intensity. A dark shaded cell indicates that damage is definitely
detectable and a blank one indicates the opposite situation, i.e.,
strong noise and a small amount of damage make the damage
detection impossible. A gray cell represents a questionable re-
sult based on the present criteria. Sometimes, a false detection
might occur; if so, it is represented by a gray cell with the
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rectangular pattern. The results in Fig. 9 verify an intuitive
experience that damage is more detectable for weaker noise
and greater stiffness loss. While results based on both level 1
and level 2 details in the wavelet decomposition illustrate sim-
ilar characteristics, damage seems more identifiable based on
the level-1 details, as observed in Fig. 9(b). The detectability
map provides a quantitative relationship between the noise in-
tensity and the damage level for the damage detection.

CONCLUSIONS

This paper presents a wavelet-based approach for SHM and
damage detection and demonstrates its applications using both
numerical simulation data from a simple structural model with
breakage springs and actual recorded data of the building re-
sponse during an earthquake event. It shows that structural
damage or a change in system stiffness may be detected by
spikes in the details of the wavelet decomposition of the re-
sponse data, and the locations of these spikes may accurately
indicate the moments when the structural damage occurred. A
detectability map is proposed to study the effects of noise con-
tamination and damage severity on damage detection using the
wavelet approach. It is a general conclusion that the damage
is more detectable for a weaker noise and severer damage. The
approach may be implemented both on-line and off-line, and
therefore shows great promise for on-line health monitoring,
integration with structural control, and postevent damage as-
sessment.
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