
Wavelet-based Burst Event Detection and
Localization in Water Distribution Systems

The MIT Faculty has made this article openly available. Please share 
how this access benefits you. Your story matters.

Citation Srirangarajan, Seshan, Michael Allen, Ami Preis, Mudasser Iqbal,
Hock Beng Lim, and Andrew J. Whittle. “Wavelet-Based Burst Event
Detection and Localization in Water Distribution Systems.” Journal
of Signal Processing Systems 72, no. 1 (September 25, 2012): 1–16.

As Published http://dx.doi.org/10.1007/s11265-012-0690-6

Publisher Springer-Verlag

Version Author's final manuscript

Citable link http://hdl.handle.net/1721.1/89664

Terms of Use Creative Commons Attribution-Noncommercial-Share Alike

Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/89664
http://creativecommons.org/licenses/by-nc-sa/4.0/


Journal of Signal Processing Systems manuscript No.

(will be inserted by the editor)

Wavelet-Based Burst Event Detection and Localization in

Water Distribution Systems

Seshan Srirangarajan · Michael Allen ·
Ami Preis · Mudasser Iqbal · Hock Beng Lim ·
Andrew J. Whittle

Received: date / Accepted: date

Abstract In this paper we present techniques for detecting and locating transient pipe burst

events in water distribution systems. The proposed method uses multiscale wavelet analysis

of high rate pressure data recorded to detect transient events. Both wavelet coefficients and

Lipschitz exponents provide additional information about the nature of the signal feature

detected and can be used for feature classification. A local search method is proposed to

estimate accurately the arrival time of the pressure transient associated with a pipe burst

event. We also propose a graph-based localization algorithm which uses the arrival times of

the pressure transient at different measurement points within the water distribution system

to determine the actual location (or source) of the pipe burst. The detection and localization

performance of these algorithms is validated through leak-off experiments performed on the

WaterWiSe@SG wireless sensor network test bed, deployed on the drinking water distribu-

tion system in Singapore. Based on these experiments, we also present a systematic analysis

of the sources of localization error.

Keywords Multiscale wavelet analysis · transient detection · pipe burst · burst localization

1 Introduction

Urban utilities such as drinking water distribution systems (WDSs) are critical infrastruc-

tures that increasingly large numbers of residents rely on daily. As populations in cities grow,

the demand on these critical infrastructures also grows and the need for real-time monitoring

and maintenance becomes vital to ensure efficient, reliable operation and timely response to
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infrastructure failure. Wireless sensing technology has advanced to the point that the deploy-

ment of dense networks of low-cost devices for real-time infrastructure monitoring is now

feasible. When combined with appropriate data processing techniques, the increased den-

sity and availability of these measurements enables improved response, management and

prediction of infrastructure failures.

For water utility operators, the ability to detect and localize pipe bursts and leaks quickly

is important. Sudden pipe bursts can occur in high-pressure water transmission mains and

distribution pipelines. Bursts can be very expensive due to the outage time while the dam-

aged pipe is repaired, the cost of repair, and damage to surrounding property and facilities.

As a result, it is advantageous to minimize the detection and location time after the burst

event occurs. Since the pipes in a water distribution network are pressurized, many burst

events can be detected as transients against the background pressure levels in the WDS.

In this paper we present a technique for detecting and localizing events in a WDS based

on pressure traces gathered by a dense wireless sensor network (WSN). Our event detection

technique uses wavelet-based multiscale analysis of a pressure signal to detect transients.

Due to the impulsive nature of noise present in the pressure transients, the first step in this

analysis is to apply wavelet de-noising. We then obtain wavelet decomposition of the de-

noised signal. The wavelet coefficients are used to identify features at a range of scales. We

then apply temporal consistency rule across scales to differentiate between coherent signal

features and noise. The next step uses the wavelet coefficients and the Lipschitz exponent

to obtain additional information about the nature of the signal which is used for feature

classification. If a burst transient event is detected, the multiscale analysis is combined with a

focusing algorithm to estimate accurately the arrival time of the burst transient. The focusing

algorithm determines the arrival time of the pressure transient at the measurement points

starting from a rough estimate.

For localization, we present a graph-based search algorithm which uses the arrival times

of the transient at the measurement points to localize the event. This search algorithm is split

into a coarse global search and a fine local search.

Our contributions are as follows:

1. The identification and application of appropriate event detection techniques to high-rate

pressure data;

2. The design and implementation of novel event detection and localization algorithms and

integration into a dataflow for on-line operation;

3. The evaluation of the proposed event detection and localization algorithms on realistic

data traces gathered from in-situ experimentation;

4. The systematic analysis of sources of error in the results.

The rest of this paper is organized as follows: Section 2 gives more detail on pipe bursts

and existing event detection/localization techniques, with specific reference to water distri-

bution systems; Section 3 presents our wavelet-based event detection scheme and Section 4

presents our graph-based localization algorithm. Section 5 presents evaluation of the detec-

tion and localization techniques, including performance and error source analysis. Finally,

Sections 7 and 8 draw conclusions and identify areas for future work.

2 Background

Pipe breaks and bursts occur in pressurized water pipes over time due to the cumulative

effects of corrosion, structural fatigue due to fluctuations of fluid pressure or environmental
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factors causing movements in the supporting soil mass. As pipes age, they become increas-

ingly susceptible to bursts and leaks [9]. Pipe burst events result in a sudden change in the

flow through the pipe producing a pressure transient which propagates along the pipeline.

This pressure pulse travels in both directions away from the burst origin at the speed of

sound in water (wave speed of the pipe). The pulse is reflected by pipe junctions and end-

points in the physical network, and its speed is altered by the pipe material and diameter as

it travels through the network. The transient is also attenuated by friction in the pipes, caus-

ing dispersion that reduces the slope or steepness of the transient wavefront. The pressure

transient, when detected at a number of measurement points can provide information on the

location of the burst (see Figure 4 for an indicative set of pressure traces).

The burst (and subsequent leak) also create distinct acoustic emissions, changing the

background acoustic signature of the pipe [1]. There is significant literature and established

practice for determining accurately the location of existing leaks using the cross correlation

of ground-level (microphone) or insertion-based acoustic measurements (hydrophone) [6,

2]. However, in order to detect and localize instantaneous burst events (and hence give a

starting point to accurately locate the leak), it is advantageous to use pressure measurements.

This is because pressure transients are less readily attenuated and the pressure signature is

relatively unaffected by background noise (e.g., traffic) than acoustic emissions, increasing

the distance over which they can be reliably detected.

Event detection in general is an elaborately studied research area [4]; specifically in

the context of a WDS, Misiunas et al. propose a method for detecting the pressure transient

associated with a burst event using the cumulative sum (CUSUM) change detection test [10].

In situations where the measurement data contains a high level of noise, they propose a noise

pre-filtering using an adaptive Recursive Least Squares (RLS) filter.

A common way to detect a transient in additive noise is to filter the signal, then compare

the output to a threshold, and declare each threshold crossing as an arrival of a transient. In

addition, since in most real world signals, singularities do not occur at a single resolution,

multiscale analysis is required. Multiscale analysis is directly related to wavelet analysis. In

wavelet analysis, a one dimensional signal is mapped into a time-scale representation using a

bank of bandpass filters. Wavelet analysis for singularity or transient detection has been used

with many types of time-series data such as seismograms [15] or pulmonary microvascular

pressure signals [7]. Wavelet analysis has also been proposed to detect transients in pressure

signals for leak detection and location in water pipelines [13].

In the case of an ideal step edge, the position of the transition corresponds to the ex-

tremum of the response of the bandpass filter to the signal. This extremum propagates when

the scale (frequency) parameter is changed. Such techniques perform well when dealing

with isolated singularities. However, in the case of a noisy singularity, as generally encoun-

tered in most physical phenomena, the singularity can be detected only over a limited range

of scale. In the case of two noisy close singularities for example, the simple scale by scale

analysis will detect many wrong positions at fine scales corresponding to a response both to

the noise input and to the singularities to be detected. At a coarser scale, only one event at

an inaccurate position will be detected due to the blurring effect. This explains the need for

an algorithm that extracts relations between features at different levels of scale and uses this

to perform transient event detection.

Techniques for detecting and locating pipe bursts in WDS have also been studied in the

literature, although most of these techniques consider single pipelines and have not been

applied to network systems [12,11]. Methods have been proposed for burst (or leak) local-

ization. However very few have been proposed in the context of a large network. In addi-

tion, most have been validated using simulated data [11], in controlled laboratory environ-
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ments [13,10], or in transmission pipelines which are immune from pressure variations due

to demand fluctuations [9]. To our knowledge this is the first instance of event detection and

localization algorithms being validated on a real urban-area WDS.

Misiunas proposed a search-based burst localization technique [9]. In this technique, the

search is first performed globally over all nodes in the network. In the (optional) second step,

additional nodes are placed along each of the pipes, if the burst is inferred to have occurred

along the pipe, and the global search procedure is repeated. The objective function in the

search procedure consists of two parts: one based on the arrival times of the transients and

the other based on the wave transmission coefficients. In the second step, for each pair of

adjacent nodes, one additional node is placed along the connecting pipe. Since both steps of

this algorithm perform a global search, a high density of nodes in the network is required to

achieve good localization accuracy.

3 Wavelet-based Event Detection

In a WDS, typical events of interest to detect include leaks, pipe bursts and planned system

operations (such as valve closures). Most of these events can be detected as transients in

pressure within the WDS. Slow leaks, valve and other maintenance operations typically

result in transients that can be detected over a time scale of minutes or hours. Conversely,

pipe burst events result in a sudden change in the flow through the pipe, producing a pressure

transient which must be detected over time scale from milliseconds to seconds. In this paper,

we assume that pressure has been sampled at 250 Hz in order to adequately capture the

transients at all time scales. Appropriate down-sampling is applied for longer time-scale

transients.

Figure 1 shows an outline of the proposed wavelet analysis based event detection scheme.

The data acquired by the pressure sensors can contain impulsive noise as well as signatures

due to operational events, so the first step in the wavelet analysis is to preprocess the raw

pressure signal. We apply wavelet de-noising to the 250 Hz raw pressure signal. This de-

noised pressure signal is used for detecting burst transients. In addition, the de-noised pres-

sure signal is low-pass filtered (for anti-aliasing) and downsampled to 1/30 Hz for detecting

slow transients (such as slow leaks and valve operations).

The pressure signal is then decomposed into approximation and detail coefficients. In

the first few decomposition levels, extremes of the details are both due to noise and sig-

nal features. As the scale increases, noise extremes decay while extremes of the noise-free

signal remain. A 4-level decomposition was found to be a good fit for the pressure data be-

ing analyzed. Noise at each level is estimated based on the standard deviation of the detail

coefficients and is used as threshold for the detail coefficients. The clipped details and ap-

proximation coefficients are used to reconstruct the de-noised signal. The de-noised signal

is decomposed into 4 levels for further analysis.

In the next step, we identify signal features by considering the detail coefficients at lev-

els 3 and 4 (d3 and d4), since the extremes of the details up to level 2 were found to be

the result of both noise and signal features. It has been shown that the detail coefficients

associated with signal features are retained or enhanced over scales while those due to noise

decay rapidly with scale [8]. The signal features are identified by looking at groups of detail

coefficients with significant amplitude. The amplitude of the most significant coefficient in

each group and the corresponding time index are recorded. Among these groups we com-

pare the magnitude of the significant coefficients across scales. If the coefficient magnitudes

are retained or enhanced as we move to higher levels, the feature (or group) is identified
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Fig. 1 Wavelet-based event detection scheme.

as a possible signal feature. Figure 2 illustrates the wavelet analysis for a typical pressure

transient signature due to an emulated burst event.

We next check the temporal consistency of each of the identified features across scales.

However, since the signal is down-sampled as we go higher in the decomposition levels, a

signal feature (such as a burst transient) which is represented by m samples at level (N −1)
detail, would be represented by only around m/2 samples at level N. Thus, the temporal

spread of a feature (∆ t) across N levels of scale must satisfy the following condition:

∆ t ≤ 2N ·Ts (1)

where Ts is the sampling period. This allows us to distinguish useful signal transitions from

noise.

The wavelet coefficients provide additional information about the identified signal fea-

tures which can be used for feature classification. It is well known that the local singularity

of a signal can be described with the Lipschitz exponents [8]. The Lipschitz exponent (α)

of a signal feature, around time ts f , can be approximated as [5]:

α = log2 M j+1 − log2 M j (2)
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Fig. 2 Multiscale wavelet analysis: Identifying signal features.

where M j = |Wj

[

pd(ts f )
]

| is the local wavelet transform modulus maxima of the de-noised

pressure signal pd around time ts f at scale 2 j. In addition, the sign of the extremum values of

the detail coefficients indicate whether the edge is ascending or descending. When observed

at the measurement points, a burst event produces a negative pressure drop, followed by

reflections of the original transient from pipe junctions and endpoints, eventually returning

to the baseline pressure in the pipe. The magnitude and temporal spacing of the negative

detail coefficients, representing the gradual rise in pressure as it returns to the baseline,

allow us to identify burst transients.

Detecting the transient at a number of measurement points can provide enough infor-

mation to determine the location of the burst. In order to localize the burst event, we must

accurately estimate the arrival time of the burst transient at each of the measurement points.

It is shown, in Figure 2, that extremum of the detail coefficients at level 4 determines the

approximate position of the transient. We then start from this level and move to lower levels

to improve the arrival time estimate of the transient since its position is affected after each

low pass filtering operation. The initial coarse time estimate is used to perform detection

at the lower scale level (or finer resolution) in a thin region around the previous position,

giving the most accurate estimate of the arrival time.

4 Graph-based Search Algorithm for Burst Localization

When we have several arrival time estimates of the same burst event, the observations can

be fused to provide an estimate of the burst location within a search space. Since the burst

location is constrained, i.e. it must lie somewhere on a pipe within the boundaries of the

pipe network, we must first define an appropriate representation for the network in order to

define the search space. The following definitions allow us to model the pipe network as a

graph (refer to Figure 3 for a visualization):

– Nodes: pipe junctions, endpoints and measurement points (or deployed pressure sensor

locations),

– Edges: pipe sections which connect the nodes,
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– Edge weights: travel time (τp) for the edge (or pipe section), τp = Lp/Cp where Lp is

the length of the pipe section and Cp is the wave speed.

Using the graph model, we propose to determine the burst location using the difference

in the arrival times of the burst transient at the measurement points in the WDS. In order

to localize a burst event using this approach, the burst transient has to be detected at two or

more measurement points. We assume that the measurement points are time synchronized

and gather time tagged data.

We formulate the problem as follows: the burst event occurs at time tB which is not

known a priori. If the burst transient is detected at nodes j and k at times t j and tk, respec-

tively, the travel times from the burst location to the measurement points t j − tB and tk − tB
cannot be determined. However, since the measurements are time synchronized, the differ-

ence between the arrival times t j − tk is known. It is likely that this difference is unique for

bursts occurring at different points in the network. Assuming the pipe parameters and wave

speeds are known, it is possible to calculate the shortest travel time between any two nodes

in the system, for example using Dijkstra’s algorithm [3]. Let τ jk represent the travel time

from node j to k. If the burst occurs at node i, where i = 1, . . . ,N (N = number of nodes in

the network) then:

(t j − tk)− (τi j − τik) = 0. (3)

However, due to timing, measurement and other errors, the left-hand side of (3) will never

be zero. Thus, to identify the burst location, a search algorithm is proposed. The search is

divided into two steps:

– Step 1: Search for the node nearest to the burst location

In this step, we assume that the burst event occurred at one of the nodes in the network.

Based on (3), for each node i in the network we compute a score (or error metric) si

given by:

si = ∑
j,k∈SB

j ̸=k

|(t j − tk)− (τi j − τik)| (4)

where SB is the set of measurement points (or sensors) that detected the burst transient.

Smaller residual value si indicates higher probability that the burst occurred at node

i. Thus, the node with the minimum score is selected as the node nearest to the burst

location, which we denote as node nB.

– Step 2: Search for the burst location along pipe sections connected to the nearest node

In this step, a new set of virtual nodes is placed along the pipe sections (i.e., along

the edges in the graph model) connected to the node nB determined from Step 1. This

amounts to a local search around the node estimated to be closest to the burst location.

The new nodes are placed using a distance step-size which is dependent on the time

resolution of the pressure data (i.e., sampling period Ts) and wave speed in the pipe

section. The shortest travel times from the new set of nodes to the measurement points

are recalculated and used to compute the scores (4). Finally, the node with the minimum

score is chosen as the most probable burst location.

The first step of the search algorithm for burst localization described above performs a coarse

global search over all nodes in the network. The second step performs a local search around

the nearest node estimate to determine the most probable burst location along the pipe sec-

tion.
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(a) Pipe network layout for a portion of the WDS.
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(b) Corresponding graph model for
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Fig. 3 Pipe network layout and the equivalent graph model for a portion of the WDS. M1, M2 and M3 are

the three measurement points (sensors) and B is actual location of the burst events. The expected travel paths

from B to the three measurement points are shown in solid lines. The dashed path indicates a possible second

path from B to M3.

5 Experimentation and Results

The performance of the proposed event detection and localization algorithms is verified

through leak-off experiments performed on the WaterWiSe@SG test bed deployed on the

water distribution system in Singapore [14,1]. The test bed consists of wireless sensors

measuring hydraulic and water quality parameters in real-time. Pressure measurements are

recorded at a sampling frequency of 250 Hz, and the wireless sensors are synchronized

to a common time frame using the Pulse Per Second (PPS) feature of their on-board GPS

modules.

The bursts were emulated using a 2-inch diameter solenoid valve with a nominal opening

time of 0.1 sec. A globe valve was used to control the discharge rate. Fire hydrant plugs were

used as connection points for the burst emulation equipment. The part of the distribution

network where the bursts were created consist of 500 mm steel and 300 mm ductile iron

pipes with estimated wave speeds of 1030.3 m/s and 1088.7 m/s, respectively (wave speed

estimation is discussed further in Section 6.2). The pipe network layout for the test bed

and the equivalent graph model are shown in Figure 3, covering an area of around 1 km2.

The bursts were created at location B. Three of the measurement points (or pressure sensors)

M1, M2 and M3, part of the WaterWiSe@SG test bed, were within range to be able to detect

the burst transients. Nine burst events were created during the evening from 20:00 to 22:00

hours. The discharge rate was 9 L/s for events 1-4, 7 L/s for event 5 and 5 L/s for events 6-9.

5.1 Detection Performance

The pressure data from the 2 hour experimentation period was analyzed using the multiscale

wavelet algorithm, implemented in Matlab. A typical pressure transient signature at the three

measurement points from one of the emulated burst events is shown in Figure 4. As a point

of comparison to existing approaches, we also implemented the CUSUM change detection

test [10]. It was noted by the authors that the CUSUM technique is susceptible to false pos-

itives, caused by non-burst pressure transients such as pump shutdowns, valve operations or
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Fig. 4 Pressure transient signature at the three measurement points from one of the emulated burst events.

Measurement True False Missed

point detections detections events

Multiscale

wavelet

analysis

M1 9 1 0

M2 9 0 0

M3 9 0 0

CUSUM

change

detection test

M1 9 18 0

M2 9 8 0

M3 9 12 0

Table 1 Burst event detection results.

sudden increases in demand. This is because the CUSUM test detects burst transients based

only on the rate of change criterion and does not attempt to classify the transient signatures.

The threshold h and drift ν parameters, of the CUSUM test were tuned such that all the

emulated bursts were detected. The detection results, for the 2 hour period with 9 control

events, using the above two methods are shown in Table 1. The detection performance is

judged based on the following three metrics:

– True detections: Emulated burst events that were detected correctly.

– False detections: Detected transient events that were not part of the emulated burst

events.

– Missed events: Emulated burst events that could not be detected.

The wavelet-based algorithm was able to detect all the 9 events at M1, M2 and M3, how-

ever there was one false detection at M1. The feature classification step using the wavelet

coefficients and the Lipschitz exponents allows us to distinguish bursts from other transient

events.
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Burst event
Arrival time difference (in sec)

Localization error (in m)

tM2 − tM1 tM3 − tM1 tM3 − tM2

1 0.22569 0.50659 0.28090 48.94

2 0.23283 0.58026 0.34743 46.36

3 0.23760 0.62510 0.38750 43.79

4 0.30847 0.50630 0.19783 10.30

5 0.25034 0.51397 0.26363 36.06

6 0.32349 0.58760 0.26411 2.72

7 0.19798 0.46865 0.27067 61.82

8 0.26800 0.67075 0.40275 28.33

9 0.20791 0.54931 0.34140 59.24

Expected time

differences 0.32255 0.53128 0.20873

Table 2 Burst localization results.

5.2 Localization Performance

After a burst transient is detected, the extremum of the detail coefficients is tracked across

levels to estimate the arrival time of the transient. The arrival times from the three measure-

ment points are provided to the burst localization algorithm. The approximate graph model

for the localization algorithm consists of 8 nodes: 3 measurement points and 5 main pipe

junctions, shown in Figure 3(b). In addition, the distances between adjoining nodes and wave

speed estimates for the different pipe sections are known. The localization results are shown

in Table 2. The expected arrival time differences for (M1,M2) and (M1,M3) are 0.32255 sec

and 0.53128 sec, respectively. The average localization error, based on these experiments, is

37.5 m. Although this is not accurate enough to determine the exact location of the burst, it

can help identify the section of the pipe that has to be isolated. A pipe section of this length

can be inspected for leaks in a small amount of time using established leak-detection tech-

niques such as acoustic correlators. The location time will be significantly reduced using the

proposed techniques when compared to current practice.

6 Localization Error Analysis

In this section we discuss some of the sources of error in burst localization and attempt to

quantify their impact on the localization result.

6.1 Time Synchronization

Time synchronization is very important for relating events observed in the data gathered

across a sensor network. The time synchronization accuracy that is required in a sensing

system depends on data usage. In this case, accurate time synchronization is vital to cor-

relate pressure transients in order to localize a leak or burst event. Since the wave speed

propagation carrying a pressure transient in a pipe is in the region of 1000 m/s, every mil-

lisecond of accuracy is important. We examine the Network Time Protocol (NTP) logs to
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Fig. 5 Comparative local clock offset values when PPS/GPS is used and when only Internet NTP servers are

used, both taken from the same node, over a six-day period. Note that the offset values, and hence clock error,

are two orders of magnitude higher when only Internet accessible NTP servers are used.

quantify the stability of the PPS method and relate this to the potential localization error.

NTP changes the local clock time to best match the reference time, so a stable clock will

see small adjustments, whereas a highly variable reference clock will see large adjustments,

potentially making the local clock unstable for fine grained measurements. Figure 5 shows

the stability of local clock changes when PPS GPS data is provided to NTP (top plot), and

when the only reference time source is an Internet-based NTP server (bottom plot). The

x-axis is time, and the y-axis represents the amount by which NTP has changed its local

clock to best match the reference clock. Both sets of data were taken under normal node

operation over a six day period. We see that under normal operation (with the PPS input),

the clock changes made by NTP are within ±1 ms. In comparison, the Internet reference

timings arrive over a highly variable network connection (in terms of latency) to reach the

node. The clock changes made by NTP reflect this, being around ±130 ms, or two orders of

magnitude larger than when using PPS.

Since the main motivation for time synchronization in this case is for event detection and

localization, it follows that errors in timing observed by NTP affect the accuracy bounds of

localization. Using the wave speed estimates, we can estimate the relative impact of the

clock offsets on distance estimation and therefore the localization results. Table 3 shows

the error that could be induced using the PPS signal from a GPS module to synchronize a

node’s local clock. We see that if the local clock is offset from the reference time by ±1 ms,

this translates to a worst-case uncertainty of 1.09 m. This is acceptable given the inter-node

distances along pipelines are of the order of 500 m (thus 1.09 m error is just 0.2% of the

inter-node distance).
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Pipe

diameter

Pipe

material

Estimated

wave

speed

Distance estimation error

PPS/NTP NTP server

(± 1 ms) (± 130 ms)

500 mm Steel 1030.3 m/s 1.03 m 133.94 m

300 mm Ductile iron 1088.7 m/s 1.09 m 141.53 m

Table 3 Worst-case error induced in distance estimation by using the PPS GPS signal for on-node clock

synchronization.
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Fig. 6 Wave speed estimates as a function of the distance of the measurement point from the burst location.

6.2 Wave Speed Estimation

The wave speed in a pipe depends on parameters such as the pipe dimensions (diameter

and thickness), pipe material and properties of the fluid flowing through the pipe (water

with entrained air). We performed a separate set of emulated burst experiments which were

used for estimating wave speeds in the pipe sections. In these experiments, burst events

were emulated at various locations within the test bed. In addition to the burst emulation

equipment, a mobile sensor node (recording pressure data) was also attached to the fire

hydrants at each of these locations. This sensor node allows us to record the time at which

the burst transient originated from the source. We then use the time at which the transient is

detected at the other measurement point(s) along the same pipe section to compute the wave

speed estimate for that pipe section.

The results from these experiments are shown in Figure 6, where we plot the wave

speed estimates for both the 300 mm ductile iron and 500 mm steel pipes as a function of

the distance of the measurement point from the burst location. It is seen that most wave

speed estimates are in the region of 1000 m/s for both pipe types. We use the mean value

of these estimates as the wave speeds for the localization experiments (reported earlier in

Section 5).
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Fig. 7 Localization error as a function of the wave speeds.

Next, assuming that the wave speed estimates obtained using the above method are ac-

curate, we attempt to relate error in wave speed estimation to the localization error. Any

error in wave speeds, other parameters being constant, would translate to an error in the

expected arrival time differences which can be assumed to be linearly related to the local-

ization error. This linear relationship between the localization error and the error in arrival

time differences (rms error) is empirically obtained using an l1-norm fit for the localization

results presented in Table 2. Thus, the effect of wave speed estimation error on localization

is shown in Figure 7. It can be seen that even a 10% error in wave speed estimation can

severely degrade the localization performance.

6.3 Arrival Time Estimation

The burst arrival time estimation is challenging due to two effects: (i) interfering transients

and (ii) attenuation of the pressure transient as it propagates along the pipes causing disper-

sion. During our experiments, the burst transient appeared to take two paths to reach M3

which interfere with each other. The two paths from B to M3 are shown on the network

layout in Figure 3(a). This is also illustrated in Figure 8 with the detail coefficients regis-

tering the two transient arrivals. The time difference between the two transient arrivals is

around 0.4 s which matches well with the difference in the two path lengths of around 500

m. Thus, in cases where two arrivals were detected, the first arrival time was used for the

burst localization. The arrival time estimation problem is also exacerbated by the fact that a

burst-induced transient is attenuated by friction in the pipes, causing dispersion that reduces

the slope or steepness of the transient as it propagates.
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6.4 Sensor Locations and Inter-node Distance Measurement

The inter-node distances and locations of the measurement points were obtained via survey-

ing techniques such as GPS. Typical standalone GPS survey units can result in positioning

errors of around ±5 m.

6.5 Sensitivity Analysis

In the preceding sub-sections we identified the sources of localization error and quantified

the effect of each parameter (to an extent independently) on the localization performance.

We next attempt to visualize the sensitivity of the localization result to variation in the wave

speed and arrival time estimates. We perform Monte Carlo simulations assuming worst case

errors of ±100 ms in arrival time estimation and ±100 m/s in wave speed estimation. The lo-

calization result from each simulation is mapped to the nearest junction or vertex in the pipe

network model and at the end of all the simulation runs a probability map of the localization

result is generated providing a confidence measure for the results. The result from 675 such

simulation runs is shown in Figure 9. It can be seen that the probable burst locations are

within 100 m of the actual burst location and the most probable burst location is around 56

m from the actual burst location. Thus, the localization results are within acceptable error

limits even with large estimation errors.

7 Future Work

The algorithms and results presented here are based on two sets of experiments where the

bursts were emulated above ground using a solenoid-activated valve. The results indicate

that the proposed techniques hold promise. The next program of tests will include more

realistic emulation of underground pipe bursts and comparison of acoustic and pressure

transient detection methods. The long-term goal is to establish limits on detection capabil-

ities relating to the burst size and distance from the source of the burst. In addition, we are

also working on extending the wavelet-based event detection scheme and graph-based lo-

calization algorithm to some of the slow transient events such as slow leaks, valve and other

maintenance operations.

8 Conclusion

The wavelet-based burst event detection and graph-based localization technique presented

in this paper shows promise for continuous monitoring of transient events in a water dis-

tribution network. The technique is based on real-time continuous monitoring of pressure

and can minimize the detection and localization time of these events. The technique was

verified using the WaterWiSe@SG test bed deployed on the water distribution network in

Singapore. The technique was shown to be robust to impulsive noise and able to distinguish

burst transients from other operational events. Only three measurement points are sufficient

to uniquely determine the location of the burst. A systematic study of the sources of local-

ization error was also presented.
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Fig. 9 Localization result as a probability map providing a confidence measure. Probable burst locations are

indicated by circles around the system nodes and the color of these circles gives the confidence measure (or

probability) of that being the burst location.
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