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Abstract

Low radio frequency solar observations using the Murchison Widefield Array have recently revealed the presence
of numerous weakshort-livednarrowband emission features, even during moderately quiet solar conditions. These
nonthermal features occur at rates of many thousands per hour in the 30.72MHz observing bandwidth, and
hencenecessarily require an automated approach for their detection and characterization. Here, we employ
continuous wavelet transform using a mother Ricker wavelet for feature detection from the dynamic spectrum. We
establish the efficacy of this approach and present the first statistically robust characterization of the properties of
these features. In particular, we examine distributions of their peak flux densities, spectral spans, temporal spans,
and peak frequencies. We can reliably detect features weaker than 1 SFU, making them, to the best of our
knowledge, the weakest bursts reported in literature. The distribution of their peak flux densities follows a power
law with an index of −2.23 in the 12–155 SFU range, implying that they can provide an energetically significant
contribution to coronal and chromospheric heating. These features typically last for 1–2 s and possess bandwidths
of about 4–5MHz. Their occurrence rate remains fairly flat in the 140–210MHz frequency range. At the time
resolution of the data, they appear as stationary bursts, exhibiting no perceptible frequency drift. These features
also appear to ride on a broadband background continuum, hinting at the likelihood of them being weak type-I
bursts.

Key words: Sun: corona – Sun: radio radiation

1. Introduction

The new-generation radio arrays are revealing apreviously
unappreciated variety and complexity in nonthermal solar

emission features at low radio frequencies (Oberoi et al. 2011;

Morosan et al. 2015; Tun Beltran et al. 2015). The observations

from the Murchison Widefield Array (MWA) revealnumerous

short-lived narrowband emission features, even during what are

conventionally regarded as moderate and quiet solar condi-

tions. In terms of morphology in the MWA dynamic spectra

(DS), these nonthermal features appear like miniature versions

of solar type-III bursts, with spectral and temporal spans of

about a few MHz and onesecond, respectively. Earlier radio

imaging studies (Oberoi et al. 2011) of such features have
found their brightness temperatures to be similar to those
expected for type-III bursts, implying a coherent emission
mechanism behind their production. The seemingly ubiquitous
presence of these features raises the possibility that they might
correspond to the observational signatures of nanoflares.
Characterized by energies in the range of 1024–1027 erg,
nanoflares were hypothesized by Parker (1988) as a plausible
solution to the coronal heating problem. At high frequencies
(EUV and X-ray), the observable electromagnetic signature
arises from thermal emission as a result oflocal heating of the
plasma to very high temperatures by nanoflares. At low radio
frequencies, the emission associated with these energetic
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electrons arises from coherent plasma emission mechanisms,
thus, allowing even a low-energy event to give rise to a much
larger observational signature. This advantage makes low radio
frequencies the band of choice for investigating signatures of
weak coronal energy release events. In order to contribute
effectively to coronal and chromospheric heating, the power-
law (dN d µ a) index, α, of flare energies ( ) must
satisfy the condition that α�−2 (Hudson 1991).

Some of the known classes of solar bursts do satisfy the
α�−2 requirement. Mercier & Trottet (1997) report an
α≈−3 over a peak flux density range of 20–3000 SFU
(1 SFU=104 Jy) for type-I bursts. Type-I bursts, also referred
to as radio noise storms, generally consist of short-lived
(1 s)narrowband (10MHz) bursts that usually last for
extended periods and are accompanied by an enhanced
broadband continuum emission. Spectral and imaging observa-
tions of radio noise storms, performed by Gergely & Kundu
(1975) and Duncan (1981), reveal strong similarities between
Type-I and decametric type-III sources. On the basis of a
survey of 10,000 type-III bursts observed using the Nançay
Radioheliograph, Saint-Hilaire et al. (2013) report a power law
with α≈−1.7 for the distribution of peak flux densities (in
range 102–104 SFU) of type-III bursts. However, unlike these
type-III bursts and the type-I bursts investigated by Mercier &
Trottet (1997), the small-scale features observed in the MWA
DS are weaker with typical fluxes of about 1–100 SFU.

As the presence of such weak features in the MWA solar
data has been established (Oberoi et al. 2011) only compara-
tively recently, their detailed observational characteristics in
terms of distributions of their spectral and temporal widths,
energy content, and slopes in the frequency-time plane are yet
to be determined. Such a statistical characterization of the
properties of these features would be the first step toward
understanding them and evaluating their contribution toward
solar coronal heating. However, their high occurrence rate of
thousands of features per hour in the 30.72MHz bandwidth
MWA DS necessitates an automated approach for their
detection and subsequent parameter extraction from the DS.
Here we present a wavelet-based automated technique for
robust detection and characterization of these weak features
under conditions of quiet to moderate solar activity. Although
the current implementation is tuned for the MWA DS, the
technique itself is more general and can be applied to DS from
other instruments. As new state-of-the-art observational facil-
ities flood the community with unprecedented large volumes of
high-quality data, the need for automated data mining and
analysis techniques of the sort presented here is only expected
to grow more acute.

Section 2 of this paper describes the observational
capabilities of the MWA and the data selected for subsequent
analysis. Section 3 details the wavelet-based approach for
automated feature detection. A statistical analysis of the
properties of these features is presented in Section 4. The
physical significance of the results obtained is discussed in
Section 5. Finally, a summary of the results obtained and the
conclusions from our study are presented in Section 6 of this
article.

2. Observations and Preprocessing

The MWA is a low-frequency radio interferometer opera-
tional in the frequency range from 80 to 300MHz. It is a
precursor to SKA-Low and is located in the radio-quiet

environment of the Murchison Radio Observatory in Western
Australia. The MWA consists of 2048 dual-polarization dipoles
arranged as 128 tiles, wherein each tile is a 4×4 array of
dipoles. For details of the technical design of the MWA, we
refer readers to Lonsdale et al. (2009) and Tingay et al. (2013).
The science goals of the MWA are described in Bowman et al.
(2013).
The data analyzed in this work were collected using the

MWA on 2014 August 31, between 00:32:00 UT and 06:56:00
UT as part of the solar observing proposal G0002. According
to the SWPC event list and the NOAA/USAF Active Region
Summary (http://www.solarmonitor.org) for this day, this
observing period was marked by medium levels of solar
activity with occurrence of one B-class flare (B8.9 at 03:51:00
UT) and two C-class flares (C1.3 at 01:51:00 UT and C3.4 at
05:37:00 UT, both from the active region with NOAA number
12149). A type-III solar radio burst was also reported to occur
at 01:25:00 UT on this day.
The data were taken in a loop cycling from 79.36 to

232.96MHz in fivesteps of 30.72 MHz, spending 4 minutes
at each frequency band. The entire 30.72MHz bandwidth in
each data set is comprised of 24 coarse spectral channels,
each 1.28MHz wide. Each coarse spectral channel is further
composed of 32 fine spectral channels with a resolution of
40 kHz each. The time resolution of the data collected is 0.5 s.
The MWA interferometric data above 100MHz areflux
calibrated according to the prescription developed by Oberoi
et al. (2017). This flux-calibration technique provides estimates
of the solar flux densities and brightness temperatures by
accounting for known contributions from the sky, the receiver,
and ground pickup noise to the system temperature. The
receiver temperatures and ground pickup temperatures are
obtained from a mix of laboratory and field measurements.
Estimates of the sky temperature are obtained using the Haslam
et al. (1982) 408MHz all-sky map, scaled with a spectral index
of 2.55 (Guzmán et al. 2011), as a sky model. The need to keep
the Sun unresolved for application of this flux-calibration
technique constrains us to using only short baselines. This
non-imaging study uses data from one such short baseline of
physical length 23.7 m between tiles labeled “Tile011MWA”
and “Tile021MWA.” The outputs from the flux-calibration
technique described in Oberoi et al. (2017) form the inputs for
our study. Here, we present the analysis for data collected in
the XX polarization alone, that for the YY polarization is
analogous.

3. Method

Figure 1 depicts a sample raw MWA DS of normalized
cross-correlations on the left and its flux-calibration version on
the right. The features of interest in this work appear as short-
livednarrowband vertical streaks against a broadband back-
ground continuum.

3.1. Removal of Instrumental Artifacts

The horizontal features are instrumental artifacts that aredue
to the poor instrumental response at the edges of coarse spectral
channels and need to be removed. These artifacts are corrected
for by performing linear interpolation across the systematics-
affected channels. As the coarse channel edges at the very start
and end of the observing band cannot be corrected by
interpolation, these are simply discarded. Recording glitches
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sometimes affect the beginning and end of data recording. To

avoid contamination from such issues, we routinely discard the

first six and the last nine time slices of data as well.
Although the MWA is located in a region with very little

radio frequency interference (RFI), radio waves reflected from

aircraft can occasionally interfere with the radio signals picked

up by a tile and therebycorrupt the data collected. Manual RFI-

flagging followed by linear interpolation across RFI-affected

segments of the DS is carried out to ensure an RFI-free DS for

efficient feature detection. The left panel of Figure 2 displays

an instrumental artifact-free version of the DS shown in

Figure 1.

3.2. Background Continuum Subtraction

The solar radiation can be thought of as a superposition of

sporadic nonthermal radio features with a spectrally varying

broadband background continuum. Spectral variations in the

background flux density can often distort the spectral profiles

of features in the DS. Toimproveour efficiency at picking up

small-scale features from the DS, it isthereforenecessary to

distinguishspectral flux density variations arising from these
features from the variationsassociated with the background.
As the day of our observations was characterized by medium

levels of solar activity, it seems reasonable to expect that the
thermal quiet-Sun emission forms the dominant component of
the background continuum emission in our data. We find
the temporal variation of the background flux density to be
negligible over the duration of individual observing scans of
four minutes each. This allows us to then ignore the time
dependence of the background flux density and treat it as as a
function of frequency alone. As the flux densities of the
weakest radio bursts detected in our data sets are only a few
percent of the background flux, an accurate and robust means
of determining and subtracting out the spectral variation of the
background component is required.
In this work, the Gaussian Mixtures Model (GMM) routine

provided by Scikit-Learn (Pedregosa et al. 2012) is applied
toestimatethe background flux density S B,( ) as a function of
frequency. As the background is expected to vary smoothly, the
DS is divided into contiguous groups of fourfine spectral
channels each. The data in each of these groups arethen
decomposed as a sum of Gaussians using the GMM routine. As

Figure 1. Left: sample MWA DS of normalized cross-correlations. Right: flux-calibrated version of the same DS.

Figure 2. Left: version of the flux-calibrated DS free of instrumental artifacts. Right: background-subtracted version of the same DS. Features of interest can be easily
identified in this processed DS. We note that these features also overlap in many instances. One feature that appears to be relatively isolated from the others is marked
by a red circle in the right panel.
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there exists no unique way of representing a given function as a
sum of Gaussians, the Bayesian information criterion (Burnham
& Anderson 2002) has been employed to determine the optimum
number of Gaussians required to fit the data. Since the thermal
quiet-Sun component forms the baseline emission level on top of
which nonthermal radio emission is detected, it is reasonable to
assume that the Gaussian corresponding to this background
continuum must be the one with the lowest mean and the highest
weight. For every group of fine spectral channels, the value of
the mean of this Gaussian is noted as the background flux
density (SGMM (ν)) at the respective frequency and is shown by
the red circles in thetop sub-panels in Figure 3. Strongfrequent
radio bursts that outshine the background component in a DS
degrade the ability of theGMM to determine a value of the
background flux at each observing frequency. Our observations
were taken on a day with moderate solar activity, allowing for
the use of theGMM to determine the background flux density at
several frequencies in most data sets.

A degree-4 polynomial is then used to fit the large-scale
smooth spectral trend in the background flux density and is
subtracted from the DS. The right panel in Figure 2 depicts the
DS obtained after background removal from the DS depicted in

the left panel. The suitability of a degree-4 polynomial fit to the
background can be quantified by estimating the residual
percentage between SGMM n( ) and the flux densities (Sfit (ν))
predicted from the best-fit polynomial at the same frequency.
The residual percentage is given by

S S

S
Residual% 100%. 1

GMM fit

GMM

n
n n
n

=
-

´( )
( ) ( )

( )
( )

Figure 3 depicts the degree-4 polynomial fits to the estimated

background fluxes for a few of the DS used in our study. A

degree-4 polynomial is adequate to describe the spectral

variation observed in the background flux to within a mean

absolute error of 3%–4%.

3.3. Wavelet-based Feature Detection

Continuous wavelet transform (CWT) provides a natural
way of obtaining a time-frequency representation of a non-
stationary signal through the use of a wavepacket with finite
oscillation, i.e., a wavelet. In this work, our signal is the 2D
MWA DS containing the features of interest. The efficiency of
CWT at reliable detection of features from the DS depends

Figure 3. Degree-4 polynomial fits to the spectral trend in the background continuum and the residuals to the fits. The fourpanels correspondto fourdifferent data
sets with frequency ranges of(a) 110.34–140.54 MHz, (b) 141.06–171.26 MHz, (c) 171.78–201.98 MHz, and (d) 202.5–232.7 MHz. The top sub-panel shows the
polynomial fit, and the bottom sub-panel shows the departure of the best fit from the data in percentage units.
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upon our choice of the 2D mother wavelet and is maximized
for a mother wavelet thatclosely matches the shape of the
spectral and temporal profiles of these features.

3.3.1. Choice of Mother Wavelet

From the right panel in Figure 2, it can be seen that
whilefeatures exist that appear isolated in the DS, several
features in the DS appear to bebunched together. Figure 4
depicts the spectral and temporal profiles of one seemingly
isolated feature indicated by a red circle in the background-
subtracted DS depicted in Figure 2. A close look at such
isolated features in the DS reveals a characteristic smooth
unimodal nature to their temporal and spectral profiles.
Assuming that each atomic feature in a DS possesses unimodal
spectral and temporal profiles, any multi-modal spectral or
temporal distribution of flux densities observed can be
interpreted as a superposition of contributions from constituent
unimodal distributions. This allows for a 2D Ricker wavelet to
be employed as a suitable mother wavelet for CWT. Measured
in pixel units, the features of interest usually have axial ratios
of about 10–50. To best match features of this nature, we use a
variable separable version of a 2D Ricker (also called the
Mexican hat) wavelet with analytical form

R t t e e,
4

3
1 1 22 2t2

2

2

2n
p

n= - -- - n( ) (( ) )(( ) ) ( )

as the mother wavelet. From this mother wavelet, scaled

wavelets are constructed according to the definition given by

Antoine et al. (2004) as follows:

R t
s s

R
t

s s
,

1
, . 3s s

t

t

t

, , ,t t
n

t n t
=

- -
t t

n

n

n
n n

⎛

⎝
⎜

⎞

⎠
⎟( ) ( )

The peak of a 2D scaled Ricker wavelet is located at

(t, ν)=(τt, τν). The scales sν and st correspond to half the

support of its positive lobe along the frequency and time

directions, respectively. Using the scaled 2D Ricker wavelets,

wavelet coefficients of the DS are then computed according to

the following definition:

s s DS t R t dtd, , , , , . 4t t

t

s s

,
, , ,t t

g t t n n n=n n
n

t tn n∬( ) ( ) ( ) ( )

For ease of notation, let us denote the wavelet coefficients
s s, , ,t tg t tn n( ) by the symbol s s t, , ,tg nn( ). For a given feature

peaked at (t, ν) in the DS, γ(st, sν, t, ν) ismaximized when sν
and st matchthe spectral and temporal extents of the feature,
respectively. Thus, the 2D Ricker wavelet acts as a peak and
support detection filter. This then enables us to determine the
peak flux densities as well as the temporal and spectral extents
of features in the DS.

3.3.2. Construction of a Composite Matrix

Because the 2D CWT introduces two additional degrees of
freedom through transformation from a 2D DS space to a 4D
wavelet-coefficient space, a large number of wavelet coeffi-
cients computed for a given DS carry redundant information.
The non-orthogonality of a set of scaled Ricker wavelets
further preserves this redundancy. This aspect can then be
exploited to reconstruct the DS using a basis different from the
set of scaled wavelets. Torrence & Compo (1998) give an
explicit expression for 1D signal reconstruction from the
wavelet coefficients using a basis of δ-functions. Extending this
formula to the 2D CWT used here, a composite matrix, A(t, ν),
of wavelet coefficients that exactly reconstructs the DS, barring
a constant normalization factor, is given by

A t
s s t

s s
,

, , ,
. 5

s s

t

t0 0t

å ån
g n

= n

n> >n

( )
( )

( )

As the wavelet coefficients are nothing but a convolution of the

DS with the scaled wavelets, it is expected that A(t, ν) should

be a smooth reconstruction of the DS. Local maxima in A(t, ν)

then correspond to peaks of features in the actual DS. However,

there are two issues with using A(t, ν) for feature identification.

At small scales, our measurements are dominated by noise. As

Equation (5) involves a sum over all values of sν and st, it also

tries to incorporate the measurement noise in A(t, ν).

Furthermore, bunching of features that leads to overlapping

spectral and temporal profiles of adjacent features in the DS can

Figure 4. Left: spectral profile of the feature marked by a red circle in the background-subtracted DS depicted in Figure 2. Note that two other weaker features are
present at the upper and lower frequency ends in the time slice corresponding to the peak of this feature. Right: temporal profile of the same feature. The red circles in
the left andright panels of this figure mark the location of the feature peak, as shown in the right panel of Figure 2, along the frequency and time axes, respectively.
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hinder the ability of the CWT to resolve two closely spaced

features from one another at highvalues of sν and st. It is

therfore necessary to work with an intermediate range of scales

toconstructa composite matrix,M(t, ν), that captures details of

the features of interest while itavoidsbeing influenced by the

inherent measurement noise at small scales and bunching of

features at large scales. M(t, ν) is thereforeconstructed using

the following expression:

M t
s s t

s s
,

, , ,
. 6

s s

s

s s

s

t

t
t t

t

, lower

,upper

,lower

,upper

å ån
g n

= n

n= =n n

n

( )
( )

( )

In the time domain, the features of interest are already present

at the resolution of the data, forcing us to set st,lower to 0.5 s.

Careful visual inspection of a large number of DS revealed that

afew features with bandwidths less than 0.5 MHz exist,

leading us to a choice of 0.5 MHz for s ,lowern . Again, guided

by careful visual inspection of several DS, we set s 3 st,upper =
and s 5 MHz,upper =n in order to provide both the ability to

detect atomic features present within a bunch of features and

the capability to identify relatively long-lived or broadband

features. The values chosen for st,upper and s ,uppern in fact enable

us to reliably reconstruct features with spectral and temporal

extents as large as 26.04MHz and 15 s, respectively. M(t, ν) is

then computed using the choices of scales mentioned above.

Local maxima picked up from M(t, ν) correspond to locations

of the peak flux densities of different features contained in the

DS. Figure 5 illustrates the ability of theCWT to distinguish

between closely spaced features despite overlaps in their flux

density profiles along the frequency and time axes.
Panel (a) in Figure 5 depicts a comparison between a spectral

slice taken from both the DS and M(t, ν) at the same time. The
locations of thepeaks of features in the M(t, ν) spectral profile
closely agree with their corresponding peaks in the DS. For a
given feature, we find that its spectral extent is matched well by
the distance between the two local minima in the M(t, ν)
spectral slice that straddle its peak. We use the distance

between these local extrema as the spectral extent of the
feature. The lower extremum is then taken to be the start
frequency (νstart) of the feature. The temporal extent and start
time (tstart) of a feature are similarly estimated. In order to
obtain estimates of a quantity similar to the half-power width of
a feature, we define the spectral and temporal widths of a
feature respectively as

t

0.5 Spectral extent of feature

0.5 Temporal extent of feature.

nD = ´
D = ´

For the purpose of quantifying any symmetry present in the

spectral profile of a feature with apeak at frequency ν, we

define its spectral symmetry parameter as follows:

2
. 7

startc
n n

n
=

-
Dn ( )

The value of this parameter lies in the range from 0 to 1. A

spectral symmetry parameter value of 0.5 for a feature

represents a perfectly symmetric frequency profile, while

departures from 0.5 indicate skewnessin the spectral profile.

The temporal symmetry parameter (χt) of a feature is similarly

defined.

3.4. Correction of Peaks Detected

As seen from panel (a) in Figure 5, peaks of features picked
up from M(t, ν) do not always coincide with their counterparts
in the DS. However, since M(t, ν) peaks lie close to their
corresponding DS peaks, this discrepancy is easily corrected
forby first growing a region around an M(t, ν) peak and
thenidentifying the DS peak within this region. The admissi-
bility criterion used to grow a region S starting from an M(t, ν)
peak is that the wavelet coefficient of the neighboring pixel
under consideration is within a minimum threshold (T)

percentage of the peak wavelet coefficient. The region-growing
algorithm terminates when no more pixels on the boundary of S
satisfy this criterion. Since M(t, ν) is only an approximation to
the actual DS, the temporal and spectral profiles of a feature in

Figure 5. (a) Spectral profile taken from both the DS (blue) and M(t, ν) (green) at the same time. Thethree local maxima in the M(t, ν) profile indicatethe ability of
theCWT to successfully detect the three features seen in the DS profile. The locations of the local minima of M(t, ν) enable us to distinguish individual features from
one another despite overlaps in their spectral profiles in the DS. (b) Panel illustrating ability of M(t, ν) to reproduce temporal widths of features reliablywhile
providing the resolution necessaryto distinguish between features located close together. The multiple peaks in M(t, ν), one corresponding to each local maximum in
the DS, clearly demonstratethe ability of M(t, ν) to detect these features.
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the DS are reproduced exactly only within a small neighbor-

hood around its M(t, ν) peak. Hence, a value of T as high as

95% has been chosen to ensure that all pixels contained in the
region S around the peak of a feature actually belong to this

feature. For the features detected from all DS used in this work,

M(t, ν) peaks show average offsets of 0.16 s and 0.57MHz

from their corresponding DS peaks. After peak correction, the
peak flux density of a feature is obtained from the flux density

at the location of its peak in the background-subtracted DS.

3.5. Elimination of False Detections

Since M(t, ν) only approximates the DS, it is possible for it
to contain some spurious peaks thatdo not correspond to real

features in the DS. Only a peak in M(t, ν) witha corresponding
peak in the DS is regarded to be a real feature. In order to weed

out false peaks, the root mean square flux density (σ) is
estimated across quiet patches in the DS as a function of

frequency. A signal-to-noise ratio (S/N) for every peak is then

defined as the ratio of the peak flux density to the root mean

square background noise at the frequency corresponding to the
location of the peak. The spectral and temporal profiles of all

peaks detected in M(t, ν) were visually examined using figures

similar to Figure 5 to check for a corresponding peak in the DS.

We find false detections to constitute about 24% of the total
number of peaks detected in M(t, ν), all of which have peak

flux densities, S 5F, s< . In all, about 26% of our detections

lie below the 5σ threshold. In order to eliminate all false

positives, we reject all peaks with S 5F, s< .
Figure 6 depicts the locations of the peaks of all features

detected using this automated wavelet-based approach. In order
to estimate the efficiency of this approach at picking up features

reliably from the DS, eightlaypersons were presented with

plots of different background-subtracted DS similar to Figure 6

and requested to estimate the false-positive and false-negative
rates. According to their estimates, the CWT pipeline

successfully picks up features from the DS with a zero false-

positive rate, but with a false-negative rate of about 4%–6%. A

total of 14,177 features were detected from 67 background-
subtracted DS used for this work.

4. Results

The wavelet-based analysis, yielding a large number of
features, allows us to build statistically stable distributions
of their properties—their peak flux densities and morphology in
the DS. The following sub-sections present the distributions
of various quantities of physical interest for these features.

4.1. Peak Flux Densities of Features

Figure 7 shows the histogram of thepeak flux densities
(S F, ) of thefeatures. While this histogram extends upto
nearly 307 SFU at its upper end, it touches peak flux densities
as low as 0.6 SFU at its lower end. This makes the detected
small-scale features about 1.6 times weaker than the type-I
bursts studied by Ramesh et al. (2013) and henceplaces them
among the weakest reported bursts in literature. A least-squares
power-law dN dS SF F, ,µ a

 ( ) fit to this histogram yields a
power-law index α=−2.23 over the 12–155 SFU range. The
flux range for this power-law fit overlaps with that of the
power-law fits to the flux density profile reportedin Mercier &
Trottet (1997). The upper end of this flux range approaches
the lower end of the flux range for the power-law fits by

Figure 6. Peaks of features detected from the background-subtracted DS depicted in Figure 2 are depicted as green circles. The left andright panels differ only in the
color bar range. While the left panel illustrates the ability of the CWT algorithm to pick up bright features, the right panel shows the ability of the CWT code to pick up
relatively weaker features as well.

Figure 7. Histogram of peak flux densities on a log–log scale.
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Saint-Hilaire et al. (2013). The value of α obtained here is
intermediate between the corresponding values obtained by
Saint-Hilaire et al. (2013) (α≈−1.66 to−1.8) and Mercier &
Trottet (1997) (α≈−2.9 to−3.6). Iwai et al. (2014), in their
observational studies of type-I bursts, also report a power-law
index of −2.9 to−3.3. The value of α obtained here is also
much lower than the power-law index of −3.5 predicted for the
low-energy part of the statistical flare spectrum by Vlahos et al.
(1995). However, it agrees well with the the power-law
indicesα≈−2.5 obtained by Mugundhan et al. (2016) and
α≈−2.2 to−2.7 obtained by Ramesh et al. (2013) in separate
studies of type-I bursts observed using the Gauribidanur Radio
Observatory.

We note that the residuals to the power-law fit in Figure 7 are
non-Gaussian, implying the inadequacy of the power-law
model to fit these data. The uncertainty in the best-fit power-
law slope is, however, only about 1%, implying that it still
provides a reasonable, if sub-optimal, description of the
distribution. While a higher order polynomial in log–log space
would provide a better fit, we have chosen to use a power-law
model as it renders itself to an interesting physical interpreta-
tion from a coronal heating perspective (Section 5.1) and
provides a point of comparison with earlier literature in the
field. We note that the distribution of peak flux densities
depicted in Figure 7 suffers from incompleteness at low flux
densities and limited statistics at high flux densities. We have,
hencechosen to fit the power law to an intermediate range of
flux densities where the obtained histogram is expected to
resemble the true distribution. Although the numerical value of
the power-law index depends on the exact choice of endpoints
chosen for the power-law fit, the index is found to be
lowerthan −2 regardlessof this choice in the flux density
range ∼10–160 SFU, where we expect the distribution to be
complete.

Figure 8 shows a 2Dhistogram of the distributions of the
peak flux densities and the peak frequencies (ν) of the features.
While the peak flux densities of a majority of features appear to
be independent of ν, a sub-population of them seem to show a
frequency-dependent variation in the peak flux density. For this
sub-population, the peak flux density appears to increase with ν
from 100 to 150MHz, remains nearly constant with ν between
150 and 200MHz, and then declines for ν�200MHz.

4.2. Spectral and Temporal Widths

Figure 9 depicts histograms of the spectral and temporal
widths of features. Both Δν and Δt follow smoothunimodal
distributions. The Δν distribution peaks at about 4–5MHz,
well above the 40 kHz frequency resolution of our data. On the
other hand, the peak in the Δt distribution lies at 1–2 s, quite
close to the 0.5 s temporal resolution of these data. Figure 9(c)
further shows that the distributions of Δν and Δt arrange
themselves in a single well-formed cluster peaking at about
4–5MHz and 1–2 s. While the bandwidths of these features are
two orders of magnitude smaller than the bandwidthfor type-
III bursts, they are comparable to the typical frequency span,
Δν10MHz (Mercier & Trottet 1997), reported for type-I
bursts.
The left panel of Figure 10 shows a 2Dhistogram of the

distributions of Δν and the peak frequency (ν). The prominent
peak and valley-like structures are artifacts arising from the
limited bandwidth of theobservations. While valleys occur at
the edges of the observing bandwidth, peaks occur at its center.
There seems to be a hint of a trend for a small increase in Δν
with increase in ν (≈0.02MHz increase in Δν per unit increase
in ν). The original data set has an equal number of observations
at each of the observing bands. The algorithm used to
determine the background continuum is designed for periods
of medium or low levels of solar activity and henceworked
effectively for most of the data. However, it was not suitable
for about 24.3% of the data thatwere characterized by high
solar activity (typically periods immediately following occur-
rences of B- and C-class flares) and hencewerediscarded from
this analysis. This effectively leads to different observing
durations for different observing bands and is reflected in the
left panel of Figure 10. In order to arrive at the true spectral
distribution of features, the feature occurrence rate per unit
bandwidth is computed as a function of frequency. As shown in
the right panel of Figure 10, the spectral distribution of features
appears to remain flat in the frequency range from 140 to
210MHz and declines at lower frequencies. Below 140MHz,
the galactic background temperature rises sharply, while the
intrinsic solar emission becomes weaker (Oberoi et al. 2017).
This leads to a drop in the S/N of our detections at these
frequencies, and they areconsequentlyunderrepresented in the
spectral distribution. The true spectral distribution of feature
occurrences is expected to be flatter than the distribtuionshown
in the right panel of Figure 10.

4.3. Spectral and Temporal Profiles

An interesting finding about the nature of the spectral and
temporal profiles of the features of interest is obtained through
the histograms of χν and χt (defined in Section 3.3.2) shown in
Figure 11. While features largely appear to possess symmetric
frequency profiles, their temporal profiles display no inherent
symmetry. The peaks at the extremes of the χν and χt

histogram range arise as a resultof features with peaks located
close to the edges of the DS.

4.4. Background Flux Densities at Peak Frequencies

Figure 12 shows a 2Dhistogram of the background flux density
as a function of frequency. The background-continuum emission
shows the expected monotonic increase with frequency that isdue
to the broadband thermal radiation from the 106 K coronal plasma.
RSTN (http://www.sws.bom.gov.au/World_Data_Centre) solar

Figure 8. Two-dimensional histogram depicting distributions of peak flux
densities and peak frequencies. The color axis is in log10 units.
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flux measurements estimate the median flux density on the day of
our observations to be 20 SFU at 245MHz. We also note that
over the course of these observations, the spectrally smooth
background flux density is observed to vary by a rather large
amount.

5. Discussion

5.1. Feature Energies

After estimatingthe peak flux, bandwidth, and duration of
each feature detected in the DS, estimates of their energy can
be obtained if the solid angle into which emission is radiated
is known. Assuming isotropic emission for these features,
W D tS4 F

2
,p n= D D  gives the total energy radiated for a

feature when observed from a distance D=1 au. As this
definition of W uses only the peak flux density of a feature
without accounting for any reduction in flux density within its
shape and assumes isotropic emission, it overestimates the
actual energy of a feature. We note that while most earlier
works use constant bandwidths and durations to estimate the
energy radiated, we use the spectral and temporal spans
corresponding to individual features for this purpose. The

histogram of thetotal feature energies is shown in Figure 14.
The typical energies of these features lie in the range of
1015–1018 erg. These features are thereforeweaker than both
the type-III bursts (W≈ 1018–1023 erg) investigated by Saint-
Hilaire et al. (2013) and thetype-I bursts (W≈ 1021 erg)
studied by Mercier & Trottet (1997).The best-fit power-law to
the tail of the histogram in Figure 13 yields a power-law index
of −1.98. Hudson (1991) has shown that for weak flare
emissions to play a significant in coronal and chromospheric
heating, the power-law distribution describing their occurrence
must have anindex α�−2. Within the uncertainty of the fit,
the features studied here meet this criterionand hence can be
expected to play an interesting role in coronal heating.
Subramanian & Becker (2004) haveestimated the ratio of the
radiative power output from noise storm continua to the total
power input provided to the accelerated nonthermal electrons
producing these bursts to be about 10−10–10−6. Using this
efficiency estimate, the typical energies of the nonthermal
electrons producing the features of interest lie in the range
from 1021–1028 erg. This agrees well with the estimate of
1023–1026 erg obtained by Subramanian & Becker (2004) for
the energy transferred to the nonthermal electron population

Figure 9. (a) Histogram of spectral widths, Δν. (b) Histogram of temporal widths, Δt. (c) Two-dimensional histogram showing the distributions of Δν and Δt. The
color axis is in log10 units.
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that cause noise storm continua. This hints at a possible
correlation between the properties of these features with that of
type-I bursts. On the basis of observational studies, Ramesh et al.
(2013) also report nonthermal electron energies of about 1020 erg
for radio noise storm bursts.

5.2. Comparison with type-I Bursts

Our statistical analysis shows that the features of interest
appear to ride on a broadband background continuum. These
findings closely agree with observations of type-I bursts present
against a continuum emission, giving rise to the speculation
that these features might be weak type-I bursts. These results
would then support the theory proposed by Benz & Wentzel
(1981) and Spicer et al. (1982), whichdescribes type-I bursts
as observational signatures of scattered small-scale energy
release events in the solar corona. The very electrons
accelerated in such small magnetic reconnection events might
give rise to the broadband background continuum (Benz &
Wentzel 1981). Investigations of type-I bursts in the
160–320MHz frequency band by De Groot et al. (1976)
suggest an average frequency drift rate of −10MHz s−1 for
type-I bursts. The small-scale features detected in the MWA
DS appear as vertical streaks with no perceptible frequency
drift. However, they might possess small frequency drifts
thatcannot be measured at the time resolution of the
MWA data.

Figure 14 shows a 2Dhistogram of their peak flux densities
and the background flux density at their peak frequency. The
dashed and solid black lines in Figure 14depict trends in the
first quartile andthird quartile, respectively, in the distribution
of peak flux densities as a function of the background flux
density. The 25th percentile of the distribution of peak fluxes
increases from 0.76 SFU at a background flux of 2 SFU to
10.18 SFU at 38 SFU background flux. Similarly, the 75th
percentile increases from 1.59 SFU to 44.39 SFU over the same
range of background flux densities. This demonstrates a
tendency for an increase in feature peak flux density with an
increase in background flux density. Note that we are limited
by statistics at background flux estimates greater than 38 SFU.

As shown in Figure 12, the background flux density at any
frequency varies by a factor of ∼2. Such large variations are

seen over timescales as short as 30 minutes and are not likely to
reflect changes in thermal emission from the 106 K coronal
plasma. The observed increase in the peak flux of the features
with increase in background flux density suggests thepossi-
bility that this enhanced background continuum could arise
froma superposition of a large number of features thatremain
unresolved at the time resolution of these data. Observations of
such small-scale features with finer time resolution are required
to understand them better.

5.3. Comparison with type-III Bursts

Gergely & Kundu (1975) and Duncan (1981) find close
similarities between sources of type-I bursts and that of
decametric type-III bursts. Benz & Wentzel (1981) claim that
electrons accelerated at magnetic reconnection sites, if trapped
along closed field lines, produce type-I bursts and their associated
continuum. If untrapped, these electrons propagate along open
field lines and produce type-III storm bursts. Assuming a type-III-
like emission mechanism for the small-scale features observed in
the MWA data, we arrive at a one-to-one correspondence
between their peak frequencies and the electron densities at their
heights of production in the solar corona. We assume a
4×Newkirk (1961) density profile in the solar corona in order
to translate from electron densities (Li et al. 2009) into heights (h)
in the solar corona. Having computed νstart, Δν and Δt for every
feature, we can also determine a height band (Δh) and a
propagation speed (v=Δh/Δt)for every feature. Assuming
emission at the local plasma frequency, we find that the features
of interest mostly possess propagation speeds of about
(0.01–0.04)c and arise in the solar corona from within a narrow
band h R0.01 0.03D » ( – ) centered at h R0.20 0.50» ( – )
above the photosphere. The typical electron speeds drop steadily
with frequency, decreasing from (0.02–0.07)c at 120MHz to
(0.01–0.03)c at 220 MHz. These valuesaremuch lower than the
speed of 0.33c reported for type-III bursts in the lower corona,
however. As we are unable to discern any spectral drift in these
features from the data, the speeds determined here are lower
limits to their true speeds.
The growth and decay timescales of type-III bursts provide

interesting diagnostics for the physical processes involved in
their production (Reid & Ratcliffe 2014). For the small-scale

Figure 10. Left: two-dimensionalhistogram showing the distribution of peak frequencies, ν, and spectral spans, Δν. The color axis is in log10 units. Right: histogram
of feature occurrence rate per unit bandwidth.
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features observed in the MWA DS, the mean and median

values of the growth and decay timescales (∼ 1.5 s) are not

found to be significantly different, although we note that they

are likely temporally undersampled by the time resolution of
these data.

6. Summary, Conclusion, and Future Work

We have carried out the first detailed statistical characteriza-
tion of the small-scale features observed in the MWA solar DS.
Owing to their large event rates, it is very hard or impractical to
manually attempt to analyze their properties. A robust,
automated technique is thereforenecessarily required for our
purpose. We have developed a suitable wavelet-based approach
to identify, extract, and characterize these features. Individual
features in the DS possess unimodal spectral and temporal
profiles, and a 2D Ricker wavelet is very effective in locating
and characterizing them. A total of 14,177 features have been
picked up from all DS used in this work. Although our current
implementation is adapted for the MWA data, it is quite general
and can be applied to DS from other telescopes as well.
The CWT algorithm enables us to reliably detect and

characterize features with peak flux densities as low as
0.6 SFU, which form the weakest solar radio bursts reported

Figure 11. Left: histogram of thespectral symmetry parameter. Right: histogram of thetemporal symmetry parameter on a semi-log scale.

Figure 12. Two-dimensional histogram showing distributions of the back-
ground flux densities at the locations of peaks in the DS and the corresponding
peak frequencies. The color axis is in log10 units.

Figure 13. Histogram of total energies.

Figure 14. Two-dimensional histogram of the peak flux densities of features
against the background flux density at their peak frequency. The color axis is in
log10 units. The dashed and solid black lines representthe first and third
quartile, respectively, in the distribution of peak flux densities within a
background flux density bin.
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to date in theliterature. The distribution of their peak flux
densities is fit wellby a power law with index −2.23 over the
12–155 SFU flux range. We estimate the total radiated energy
of these features to be in the range of 1015–1018 erg. Hence,
they are much weaker than the widely studied solar type-I and
type-III bursts. Their energy distribution is fitwell by a power
law with index −1.98. Within the uncertainty of this fit, this
suggests that they could contribute in an energetically
significant manner to coronal heating.

We find these features to be quite short-lived and narrowband,
with typical durations of 1–2 s and bandwidths of 4–5MHz,
respectively. Interestingly, while their temporal profiles display
no structural symmetry, their spectral profiles are largely
symmetric about the peak frequency. The distribution of their
occurrence rate remains nearly flat in the 140–210MHz
frequency range. Quite analogous to type-I bursts, they are also
found to reside on an enhanced background continuum. We
speculate that these features might correspond to weak type-I
bursts. Since type-I bursts and decametric type-III bursts show
close associations (Gergely & Kundu 1975; Duncan 1981), it is
possible that some of these features could be weak type-III bursts
as well.

Sensitive high-time resolution observations aimed at search-
ing for a frequency drift and a harmonic counterpart for these
features would hopefully provide us with crucial information
for understanding them better. Imaging studies to determine
their distribution on the solar surface and investigate any
correlations with other solar features will further help explore
their contributions to coronal heating. We also hope that this
detailed and statistically robust characterization of nonthermal
emission features will engender interest in the theory and
simulation community to understand them better.
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