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Wavelet-based Compression of Power Disturbances
using The Minimum Description Length Criterion

Effrina Yanti Hamid, IRedy Mardiana, and Zen-Iclliro Kawasaki, Member, L?3EE

Abstract—This paper introduces ai compression technique
for power disturbance data via discrete wavelet transform
(DWT) and wavelet packet transform, (WPT’). The data
compression leads to a potential application for remote
power protection and power quality monitoring. The com-
pression technique is performed through signal decompo-
sition up to a certain level, thresholding of wavelet coef-
ficients, and signal reconstruction. The choice of which
wavelet to use for the compression i~jof critical importance,
because the wavelet affects reconstructed signal quality and
the design of the system as a whole. The Minimum De-
scription Length (MDL) criterion is proposed for the selec-
tion of an appropriate wavelet filter, This criterion permits
to select not only the suitable wavelet filter but also the
best number of wavelet retained cclefficients for signal re-
construction. The experimental study has been carried out
for a single-phase to ground fault event, and the data com-
pression results of using the suitable wavelet filter show that
the compression ratios are less than 1:1.70and are reduced
to more than a half of that value by implementing an addi-
tional lossless coding,

Index Terms —Data compression, power disturbances,
wave lets, wavelet packets.

I. INTRODUCTION

T HE transients due to ground faults, load stitchings,
and other disturbances may cover a broad frequency

spectrum in the order of KHz to MHz. A single captured
event recorded for several seconds using monitoring instru-
ments can produce megabytes of data. As a result, the
volume of the generated and maintained data increase sig-
nificantly, which lead to a high cost in storing and trans-
mitting such data, Therefore, it is necessary to develop an
effective compression technique which has capability to re-
duce the volume of data necessary for storing and to speed
up the transmitted data for remote monitoring [1], [2], [3].

Wavelet and wavelet packet transforms have recently
emerged as powerful tools for a broacl range of applica-
tions, signal compression in particular [2], [3], [4], [5]. The
wavelet transform has good localization in both frequency
and time domains, having fine frequency resolution and
coarse time resolutions at lower frequency, and coarse fre-
quency resolution and fine time resolution at higher fre-
quency. It makes the wavelet transform suitable for time-
frequency analysis. In data compression, the wavelet trans-
form is usecl to exploit the redundancy in the signal. The
performance of a wavelet transform for data compression
lies in its ability in concentrating a large percentage of to-
tal signal energy in a few coefficients [61. After the original
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signal is transformed into the wavelet coefficients, many co-
efficients are so small so that these coefficients can be omit-
ted without losing significant information after the signal
is reconstructed.

During the last three years, power disturbance data com-
pression using wavelet and wavelet packet transforms have
been proposed [2], [3]. The choice of which wavelet to use
in compression system plays an important role, because

the wavelet affects reconstructed signal quality and the de-
sign of the system as a whole. Compared with the actual
compression performance of several different wavelets, the
previous authors [2], [3] choose only a specific wavelet fil-
ter. Improper choice of filter can produce distortions in
the reconstructed signal and can cause not optimum com-
pression ratio. An algorithm to optimize the efficiency of
compression in the wavelet domain called the Minimum
Description Length (MDL) has been proposed by Saito [7].
The MDL criterion aims to gain the compromise between
the number of retained wavelet coefficients and the error of
signal reconstruction. The algorithm permits one to select
the suitable wavelet filter and the best number of wavelet
retained coefficients of a signal.

In this paper, we propose a data compression method
based on wavelet and wavelet packet for power system dis-
turbances. The method includes the selection of wavelet
filter using the MDL criterion to optimize the compression
technique. We evaluate several wavelet filters and com-
pare their performances, Although there are many types
of wavelet filters, we restrict ourselves to the Daubechies,
Coiflets and Symlets families with a certain level of decom-
position, In addition the results from this wavelet-based
compression method are then combined with a lossless cod-
ing e.g. Huffman, Lempel-Ziv-Welch (LZW), or Lempel-
Ziv-Haruyasu (LZH) to get more effective compression [3].

II. WAVELET TRANFORMS

A. Discrete Wavelet Transform

The wavelet transform of a discrete input data sequence

.f = {~~} = {fO, fl, .... .fN-1}, where ~ is the length can
be presented in a vector matrix form as

a=wf (1)

where CYcent ains N wavelet coefficients, and W (N x N)
is an orthogonal matrix consisting of row basis vectors.
The basis vector are specified by a set of numbers, called
wavelet and scaling filter coefficients.

Once a specific wavelet has been chosen, we can use its
coefficients to define two filters, the low-pass filter and the
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Fig. 1. Decomposition of a“ up to level m using DWT.

high-pass filter. Both types of filters use the same set of
wavelet filter coefficients, but with alternating signs and in
reversed order, meaning this pair of filters is the quadrature
mirror filters (QMF). The low-pass and high-pass filters are
also called the scaling and the wavelet filters, respectively,
These filters are used to construct the filter matrices, de-
notecl as G and H.

To decompose (or analyze) the signal, Mallat [8] intro-
duced a recursive algorithm which is known as pyramid
algorithm. This algorithm offers the hierarchical, multires-
olut ion of the signal. In this algorithm the set of N input
data is passed through the low-pass and high-pass filters,
Each OUtpLlt of the filter consists of N/2 wavelet coeffi-
cients. The output from low-pass filter is the approxima-
tion coefficients (al = {a:, a;, ..., a~,2_1 }) at the first level

of resolution. The output from high-pass filter is the de-
tail coefficients (dl = {d~, d;, .... d~,2_ ~}) at the first level

of resolution. The approximation coefficient al, can now
be used as the data input for another pair of wavelet fil-
ters (identical with the first pair), generating sets of length
N/4 of approximation (a 2 = {a~,a~, .... a~i4_l}) and de-

tails coefficients (da = {d;, d;, ..., d~,4_ ~}) at the second
level of resolution. The process is continued until a desired
level of resolution. Since the original input data vector, ~,
is the approximation at the lowest resolution (level O), i.e.:
a“ = f = {fo,.fl ,..., fml }, then the DWT algorithm can
be presented by the following recursive formula

a ‘n = Gain-l ~7xd d~ = ~am–l (2)

where m denotes the resolution level and m = 1, 2,,..,
Iogz N. Figure 1 shows this decomposition process.

The different resolution for each level is related to the
sampling interval. For level m the sampling interval equals
2’n. As the sampling interval increases, resolution de-
creases and each approximation contains gradually less in-
formation. The difference in information between the ap-
proximations at level m and level m – 1 is contained in the
detail at level m.

It is possible to use the approximation and detail coef-
ficients to reconstruct (or synthesize) the original signal.
The reconstruction process uses the recursion algorithm in
reverse with conjugates of G and H. For the ort honormal

basis the conjugates of G and H equal to the transposed

matrices G~ and HT, respectively. Thus, the reconstruc-
tion formula is as follows

a ‘-1 = GTam + HTdm. (3)

In general noise suppression is implemented before the sig-
nal is reconstructed. This means that the wavelet coeffi-
cients d?n and/or am whose absolute value is less than a
predefine threshold is set, for example, to zero, and then
Eq, (3) is applied.

B. Wavelet Packet Transjorm

B. 1 Theory

Wavelet packet transform is a direct expansion of the
structure of the DWT tree algorithm to a full binary tree.
In the pyramid algorithm the detail branches are not used
for further calculations, only the approximations at each
level of resolution are treated to yield approximation and
detail obtained at higher level, For the wavelet packet,
both the detail and approximation coefficients at level m
are further decomposed into level m -t 1. The main ad-
vantage of the WPT is better signal representation. The
search for the best representation of the signal by any sub-
tree of the WPT is called the best-basis selection. Wavelet
packet decomposition is shown in Fig. 2, in a tree struc-
ture to indicate the decomposition processes. The detail
and approximation coefficients in each level for each tree
(or subspace) are derived in similar manner to those of
DWT using Eq.(2).

level O I a“ original
y“ ~

level 1

level 2

level m

I a’ d’ I
‘y

1 az d’ a2 d’ I

am d“ am d“’ am d“ a“ d“

Fig. 2. Wavelet packet decomposition of Go viewed as a binary tree.

B.2 Best-Basis Selection

The overcomplete representation of signal by the WPT
allows us to choose the appropriate representation of the
signal.To findthebest.basisor theWaveletcoefficientsof

the best-tree, one first computes its complete detail and
approximation (wavelet ) coefficientsup to a desired level.
Then, it is very natural to use the entropy as a measure
of efficiency of the basis. Here the entropy of a signal
x ={zn}= {Zcl,zl, ..., xIV- 1} is defined as

N-1
H(a) = - ~ pA12bgl%12, (4)

n

0-7803-7031-7/01/$10.00 (C) 2001 IEEE

0-7803-7173-9/01/$10.00 © 2001 IEEE 1773



which is known as the non-normalized Shannon entropy [9].

The best-basis is the basis giving the minimum entropy or
maximum information for its distribution of coefficients [6],

[9].
The wavelet packet may be efficiently searched for the

best-basis. Each tree in the binary tree as shown in Fig. 2
represents a subspace, consisting of the detail or approx-
imation coefficients, of the original signal. Each parent
subspace is the orthogonal sum of its two children’s sub-
spaces. The search for the best-basis involves computing
entropy using Eq. (4) for each subspace, then performing
a comparison between the entropy of parent subspace and
that of its two children’s subspaces. If the parent has a
smaller entropy, its two children are omitted from the tree.
On the other hand, if the parent has a larger entropy, its
two children are kept from the tree. This process is re-
peated until the original signal at the top level is reached,

III. MINIMUM DESCRIPTION LENGTH CRITERION

The Minimum Description Length (MDL) criterion is
an interesting approach to simultaneous noise suppression
and signal compression. It is free from any parameter set-
ting sLIch as threshold selection, which can be particularly
useful for real data where the noise level is difficult to es-
timate. The MDL selects the “best” wavelet filter and the
“best” number of wavelet coefficients to be retained for the
signal reconstruction [7].

The MDL criterion has the following algorithm. Let LIS
consider a discrete model

f=x+n

where the vector f represent the noisy observed data, vec-
tor z is the unknown true signal to be estimated, and vec-
tor n is noise. First, pick the index (k, n) from the MDL
function defined as

lMDL(k, n) = min
{

;klog N + : log Ilan – an(~)[lz
}

(5)

O<k<N; l<n<i14

where 6. = TV. f denotes the vector of the decomposi-
(~) =tion coefficients of ~ via the wavelet filter n, and an

e(~) & = e(~) (Wn~) denotes the vector that contains k

nonzero elements, ancl ~ fk) is a hard- thresholding opera-
tion which keeps the k largest elements of &n in absolute
value intact and set all other elements to zero. The N and
M denote respectively the length of the signal and the to-

‘~) havet al number of wavelet filters used. The & and an
to be normalized by IItin II, so that the magnitude of each

coefficient in & and C#) is strictly less than one. Note
that IIxII is defined as (~~-1 lx~12)l/2. The MDL func-
tion is expressed as the sum of two conflicting terms. The
first term represents the penalty function, linearly increas-
ing with the number of the retained wavelet coefficients
k, whereas the second term describes the logarithmic of

(~) We see that theresidual energy between Cin and an .
log(residual energy) always decreases as k increases (see

also Fig. 4 later). Number of coefficients k, for which the
MDL function reaches its minimum, is considered as the
optimal one. With this criterion one can optimize the

choice of wavelet filter as well. It should be noted that
each wavelet filter has different characteristics. A wavelet
filter, which is optimal for a given signal, is not necessarily
the best for another type of signal.

Second, reconstruct the estimated true signal z through
the following equation

which is

s

~ = W:a(v
n? (6)

exactly the same process as in Eq. (3).
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Fig. 3. Fault record from a single-phase to ground of three-phase
power system. Data no. 1, 2 and 3 are the voltage of phaee a, phase b
and phase c, respectively, and the data 4, 5 and 6 are for the current
of phase a, phase b and phase c, respectively. The fault occurred at
116 ms on phase a.

IV. EXPERIMENTAL STUDY

A. Power Disturbance Data

The experimental study has been carried out for a single-
phase to grouncl fault event, and six power disturbance
data have been recordecl. The data were obtained from a
power system hardware simulator owned by Kansai Elec-
tric Power Company (KEPCO), Japan. The performances
of DWT and WPT compression are evaluated using these
power disturbance data. Figure 3 shows these original sig-
nals. The length of each signal is N = 8000 samples for
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800 ms. Each sample requires 12 bytes (magnitude only),
so that each signal has a size of 96,~00 bytes.

.B. Library of Wavelet Filters

Ten wavelets from the Daubechies family (with 2,4,6,8,
10, 12, 14, 16, 18, and 20 filter coefficients), five wavelets
from Coiflets (with 2, 4, 6, 8, and 10 filter coefficients),
and seven wavelets from Symlets (with 4, 6, 8, 10, 12, 14
filter coefficients) are used for the data compression. This
corresponds to Al = 22. The coefficients of each wavelet
iilter can be found in [9].

10. Performance Evaluation

To evaluate the compression performance, two perfor-

mance indexes are employed. The first one is the compres-
sion ratio (CR), i.e., the ratio of the size of the compressed

iile over the size of the original file, defined as

CR(%) = bytes of the compressed signal

bytes of the original signal
x 100(7)

The second one is the percentage of mean square error,
defined as

where $ and x = {zn} = {ZO, TI, . . . . XN _ 1 } are noisy ob-
served (or original) signal and reconstructed signal, respec-
tively.

V. RESULTS

We compare the performance of 22 wavelet filters for
the compression. All signals are decomposed via the DWT
and WPT with those filters up to fourth level of resolution
(m = 4). For the case of the WPT, the decomposition
is performed following the best-basis selection with mini-
mum entropy criterion. The wavelet coefficients from the
clecomposition is sorted according to their absolute ampli-
tude. The optimal number of retained coefficients k can
be calculated based on the MDL criterion.

To simplify the explanation we will give attention on
the signal of data no. 2, and we apply the WPT with the
Daubechies 5 (Db5) filter. First the data is decomposed up
to a predefined level using Eq. (2). The entropy of each sub-
space is then calculated using Eq. (4) to find the best-basis.
(Ince the best-basis is found the MDL function is applied to
compute the number of wavelet ret ained coefficients k. The
result of the MDL function and its components is shown
in Fig. 4. The function reaches the minimum at k = 595.
This means the minimum number of coefficients required
for the signal reconstruction with the smallest distortion is
595. The process above is repeated until the last wavelet
filter in the library (n = 22), and then, the appropriate
filter can be chosen.

We have applied the MDL criterion to all data to se-
lect the suitable filter, and the results are tabulated in
Table I and Table II for the DWT and WPT, respectively.

12
I

10 -

8 -
. minimum term 1

96 - MD L=6705

g4 : k=595
& (term 1 + term 2)

d

-2 - term 2

-’~
o 1000 2000 3000 4000 5000 6000 7000 8000

Retained Coefficient (k)

Fig. 4. The MDL function and its components for the WPT coeffi-
cients of data no. 2 with Db5 filter.

Both tables show the number of retained coefficients k,
the MSE and the minimum value of the MDL function for
all wavelet filters. From this point, we can chose the ap-
propriate filter for each corresponding data based on the
minimum MDL value, and the results for the first two fil-
ters having smallest MDL are tabulated in Table III. We
can see that the appropriate filter for a given signal may
different for another type of signal. However, in practice
it is highly preferable to use only one “best)’ filter for all
signals. From the table the Symlets 7 and Symlets 8 filters
seem to be the candidates for the best filter. We simply
select the Symlets 7 filter for the compression of all power
disturbance data analyzed here.

Using the MDL we can compute the number of wavelet
coefficients to be stored as the compressed data. Here the
compressed data contains both magnitude and position of
the coefficients. We allocate 12 bytes for the magnitude
and 5 bytes for its position. The signal reconstruction of

this compressed data is done using Eq. (6). Figure 5 shows
an example of the reconstructed signal and its residual er-
ror for data no. 2 using the selected filter. In addition, more
effective compression can be performed by implementing
an additional lossless coding (e.g. Huffman, LZW, or LZH)
to the results of the DWT and WPT compression. Since
the coding has lossless properties, the compression always
reproduce the same data when a file is decompressed. Ta-
ble IV and Table V show the comparison of CR and MSE
of the analyzed signals using the Symlets 7 filter. The
compressed file size (in percentage of original file size) is
calculated for the DWT, WPT, and DWT+lossless cod-
ing as well as WPT+lossless coding. Both the DWT and
WPT compression significantly reduce the original file size
of each signal to less than 11 YO. Further, the tables show
that by implementing the lossless coding the CR’s are re-
duced to more than a half of those CR’s without the lossless
coding.
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TABLE I

NUMBER OF RETAINED COEFFICIENTS, MSE, AND NIDL VALUE FOR 22 WAVELET FILTERS IJSING DWT

TABLE II

NUMBER OF RETAINED COEFFICIENTS, MSE, AND MDL VALUE FOR 22 WAVELET FILTERS USING WPT

Filt. r MSE MDL MSE MDL MSE MDL MSE MDL MS13
n (:) (1) (1) (:)

MDL MS12
(2) (2) (:)

MDL
(3) (3) (;)

Dbl
(4)

187
(4) ($) (5) (5) (:) (6) (6)

13.40 12890 341 9.98 13787 336 9.74 13622 352 5.46 11521 279
Db2

9.82 12886
135

217 13.88 13433
10,90 11362 354 3.26 9481 387 2.76 9261 206 3.63 7916 169

Db3 139
6.56 9789 148 9,97

10,05 11090 608 0.88 7670 628 0.75 7287 165
11182

3.25 6926 592
Db4

1.14
142

8478 557 1,72 9671
10,06 11136 583 0.75 6705 603 0.65 6382 539

Db5
0.85 6621 550 1.15 796?

135
528 1,71

10,44
9239

11189 595 0.72 6705 62o 0.58 6166 530
Db6

0.84 6453*
146

547 1.12 7816 .529 1.64
10.02

9091
11173 593 0.71 6626 593 0.62 6060 538

Db7
0.83 648o 540 1.12 ‘/704

138
532 1.62 9062

10.50 11251 589 0.75 6766 594 0.83 6125 538
Db8

0.83 6480 537 1.10
150

7625* 534
10.18

1.61 9079
11291 595 0.71 6631 614 0.59 8149 541

Db9
0.62

129
6487 549 1 06 7707 531

10.27
1,61

11044* 587 0.74 6712 596 0.60 6007 540
9055*

Db10
0.82 6462

137
549 1 08

10.29 1115s
7683 540 1.59

587 0.73 6664 603 0.60 8072 543
Coifl

9117
0,62 6516 541 1.09

136 10.73 11313
7631 535 1.61 9115

331 3.50 9463 361 2.73 9137 202 367 7~08 166 6.47
C0if2 148 9,92

9695 .234 1.92
11159 586 0.74 6706 597 0.63 8193 541

11147

coif3
0.96 6656

150
549 1.14 7910 524 1.66

10.01
9209

11221 565 0.71 6492 600 0.59 5964 540 0.63 6510 539 1.10 7652 534 1.33 9138
C0if4 154 10.03 11266 566 0.70 6487 (ill 0.58 6028 S46 0.62 6576 553 1.09 7782 541 1.60 9162
Coifs 162 9.94 11357 597 0.?1 6657 601 0.59 5974 557 0.32 6690 559 1.07
sYm2 135 10.90

7780 545 1.60 9205

11362 354 3.26 9481 387 2.76 9261 206 3.83 7916 169 6.56 9769 148 9.97

Sym3 139 10.05 11090 608 0.88 7670 628 0.75 7287 165 3.25 6926

11182

%-4 140 9.93

592 1.14 8478 557 1,72 9671

11058- 589 0,75 6752 591 0,65

sym5 140 10.05

6220 532 0.89 6681 544 1.15 7887 531 1,137 9199

11103 5S6 0.72 6590 593 0.61

Sym6 144 9.96
6033 539 0.83 6524 545 1,13 7807 530 1,64 9101

11121 585 0.70 6459 596 0,59 5946 536 0.83 6474 537 1.12

sym7

7664 529

146

1.62

10.01 11167 569 0.73 6420- 598 0,58 -?wv-

9056”

538 0,82 6464* 532 1,12 761O* 536

Sym8 143

1,60 9093

10.20 11203 580 0,71 6435* 583 0.60 5818* 543 0.83 6539 540 1.10 7647 535 1.60 9088

Note: The number inside the parenthesis is the data number, and the asteri6k (*) indicate9 the first two minimum MDL.

TABLE III

THE APPROPRIATEWAVEL~TFILTERSBASEDON MDL CRITERION

m
5 Db7 - Db10 5ym7 - Db7

6 II Svm6 - Db8 I Db8 - Svm6

VI. CONCLUSIONS

The application of DWT and WPT for compressing the
data of power system disturbances has been evaluated.
Both transforms offer attractive properties for the com-
pression, The experimental results show that better qual-

ity reconstruction can be achieved by employing an ap-
propriate wavelet filter to each signal. In practice, it is
preferable to use one suitable filter for all signals. Using

the MDL criterion, the Symlets 7 filter generally appears
superior than other wavelet filters for most power clistur-
bance signals analyzed here. The compression ratios that
can be obtained using this filter are varied but less than
11%. Combining wavelet and wavelet packet compression
with a lossless coding coulcl results in better compression
ratios. Our results show that the compression ratios are re-
duced to more than a half by implementing an additional
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TABLE IV

CR AND MSE USING DWT WITH SYMLETS 7 FILTER AND LOSSLESS

CODINGS

Data DWT DWT+HUff. DWT+LZW DWT+LZH MSE
(%) (%) (%) (%) (%)

1 2.49 1.10 1.20 1,09 10.26
2 10.10 4.38 4.45 4.19 0.75
3 10.72 4.65 4.67 4.40 0.59
4 9.54 3,74 3,20 2.80 0.82
5 9.46 3.73 3.05 2.68 1.12
6 9.55 3.76 3.10 2.74 1.60

TABLE V

CR AND MSE USING WPT WITHSY~LETS 7 FILTERAND LOSSLESS

CODINGS

Data WPT WPT+Huff. WPT+LZW WPT+LZH MSE
(%) (%) (%) (%) (%)

1 2.75 1.21 1.32 1.19 lo. flf-- “
2 10,23 4.43 4,50 4.22 0,73
3 10.75 4.66 4.67 4.39 0,58
4 9.72 3.80 3.25 2.85 0.82
5 9.55 3.76 3.07 2.70 1.12
0 9.64 3.80 3.13 2.78 1.60

- 600
z 400L 1!. Orlglnal\
: 200

0
:-200 -
>-400 :y ~ k.,.,.,-.

A 600
0 100 200 300 400 500 600 700 800

z 400
g 200

0
:-200
>-400

a)

.
S .61 t 1 , , I 1 , I

o 100 200 300 400 500 600 700 800

Time (ins)

Fig. 5. The original, reconstructed, and residual error signals of data

no. ‘2 using WPT with Syn17filter.

10SS1CSScoding. Finally, the compression algorithm pre-
sented here can be used to compress not only ground fault
signals but also wide variety of one-dimensional power dis-
turbance signals.
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