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Abstract – 

The contourlet transform is a new directional 

transform, which is capable of capturing contours and fine 

details in images. We recently introduced the wavelet-based 

contourlet transform (WBCT) that is a non-redundant 

version of the contourlet transform, and appropriately used 

this transform for image coding. In this paper, we 

introduce the concept of wavelet-based contourlet packets 

(WBCP), which is similar to the notion of wavelet packets 

(WP). Using WBCP, we have the flexibility of choosing the 

most proper basis based on a criterion. In this work, we 

utilize WBCP for image coding to extend our previous 

work that was based on WBCT for image coding. Our 

simulation results show that the proposed WBCT packets 

provide both visual and PSNR improvements over WBCT. 

Moreover, for texture images the results outperform those 

of WP, visually, while achieve comparable PSNR values. 

 

I. INTRODUCTION 

 

Wavelets have shown their ability in representing natural 

images that contain smooth areas separated with edges. 

However, wavelets cannot efficiently take advantage of the fact 

that the edges usually found in natural images are smooth 

curves. Incorporating some tree algorithms such as SPIHT [19] 

into the wavelet image coding schemes, one can offset this 

deficiency to some extent. However, many images do not lie in 

the category of images that are piece-wise smooth and hence, 

wavelet-friendly. Texture images and natural images that 

possess mainly oscillatory patterns and fine details are 

examples of signals that wavelets are incapable of representing 

efficiently, and in particular for image denoising [8] and low 

bit-rate image compression [11] applications. Recently, several 

new methods and image transforms have been proposed for 

image denoising and coding. These methods have shown to be 

more powerful in representing the mentioned images than 

wavelets. The steerable pyramid [20], curvelet transform [3], 

contourlet transform [7], [6], [8] and wavelet-based contourlet 

transform [11] are a few examples in literature. 

The contourlet transform is a directional transform that has 

been introduced recently. In [9], it is shown that in spite of the 

redundancy of the contourlet transform, by using this transform 

in an image coding system, one can obtain better visual results 

for texture and contour parts of images in comparison to a 

wavelet coder. This observation motivated us to investigate for 

a new transform based on the contourlet transform that 

provides two new features in addition to the former important 

properties such as directionality and multiresolution. These two 

new important features that facilitate the transform to be used 

for image coding are (a) non-redundancy and (b) a 

multiresolution structure that is similar to the 2-D wavelet 

decomposition. The latter feature is imperative for employing 

efficient scanning schemes similar to the ones used by leading 

wavelets-based coders. Consequently, we introduced the 

wavelet-based contourlet transform (WBCT) [11] that is a non-

redundant version of the contourlet transform.  

In the contourlet transform (Fig. 1), there are two stages: a 

Laplacian pyramid followed by a directional filter banks 

(DFB). That is, the DFB is applied to the output of the 

Laplacian pyramid where the number of directions is decreased 

as one moves through the coarser scales of the Laplacian 

pyramid. Laplacian pyramids provide a multiresolution system 

while directional filter banks grant directionality to the 

contourlet transform. Due to the redundancy of Laplacian 

pyramids, the overall transform of contourlet is redundant, and 

so, is not a proper choice for image coding. In the WBCT, we 

replaced the Laplacian pyramid stage of the contourlet 

transform with the wavelet transform, which is by construction 

a non-redundant multiresolution system, and hence, this results 

in the overall non-redundant WBCT transform. Based on 

WBCT, we developed a new coding approach: CSPIHT 

(Contourlet Set Partitioning in Hierarchical Trees), which 

combines the benefits of the non-redundant WBCT transform 

and the efficiency of a modified version of the SPIHT 

algorithm [10], [11]. Our previous work on CSPIHT showed 

the potential of this scheme for coding a variety of images such 

as fingerprints and textures. 

LP DFB 

Image 

Fig. 1. A flow graph of the contourlet transform. The image is first 

decomposed into subbands by the Laplacian pyramid and then each detail 

image is analyzed by the directional filter banks. 
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Fig. 2. Directional filter bank frequency partitioning. 
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In this work, we extend our previous effort to Wavelet-

based Contourlet Packets (WBCP) and use this family of 

orthogonal basis for coding textures and fingerprint images.  

The paper is organized as follows. The next section briefly 

explains the WBCT and also WBCP. Section III describes the 

coding scheme we used to utilize WBCP including a best basis 

selection algorithm, quantization and scanning. In Section IV, 

we provide some of the experimental results we obtained and 

finally, our conclusions are given in Section V. 

 

II. WBCT AND WAVELET-BASED CONTOURLET PACKETS 

 

A. Wavelet-based Contourlet Transform 

Similar to the contourlet transform, the WBCT consists of 

two filter bank stages. The first stage provides subband 

decomposition, which in the case of the WBCT is a wavelet 

transform, in contrast to the Laplacian pyramid used in 

contourlets [7]. The second stage of the WBCT is a directional 

filter bank, which provides angular decomposition (Fig. 2).  

At each level (j) in the wavelet transform, we obtain the 

traditional three highpass bands corresponding to the LH, HL, 

and HH bands. We apply DFB with the same number of 

directions to each band in a given level (j). Starting from the 

desired maximum number of directions 2 dL
dN = on the finest 

level of the wavelet transform J, we decrease the number of 

directions at every other dyadic scale when we proceed through 

the coarser levels ( j < J ). This way we could achieve the 

anisotropy scaling law; that is 
2

width length≈  [3]. Fig. 3 

illustrates a schematic plot of the WBCT using 3 wavelet levels 

and 3dL =  directional levels. 

Fig. 4 shows an example of the WBCT coefficients of the 

Peppers image. Here we used 3 wavelet levels and 8 directions 

at the finest level. You can see that most of the coefficients in 

the HL subbands are in the vertical directional subbands (the 

lower half of the subbands) while those in the LH subbands are 

in the horizontal directional subbands (the upper half of the 

subbands). 

B. Wavelet-based Contourlet Packets 

One of the major advantages of the WBCT is that we can 

construct Wavelet-based Contourlet Packets (WBCP) in much 

the same way as we have Wavelet Packets (WP). That is, 

keeping in mind the anisotropy scaling law (the number of 

directions is doubled at every other wavelet levels when we 

refine the scales), we allow quad-tree decomposition of both 

lowpass and highpass channels in wavelets and then apply the 

DFB to each subband. Fig. 5 schematically illustrates an 

example of the wavelet-based contourlet packets. Below we 

present a multiresolution analysis for WBCP. 

 For an input image of size N N× , where 1 2LN − = , we 

associate the approximation space 2
L L L= ⊗V V V  to the 

original image or the root of wavelet packet tree [12]. That is, 

we use separable subspaces, and construct image wavelet 

packets using separable products of one-dimensional wavelet 

packets. For a two-dimensional decomposition of wavelet 

packets, we label each node of the quad-tree with a scale j, and 

two values 0 2 j Lp −≤ <  and 0 2 j Lq −≤ <  (where j - L > 0) 

corresponding to the frequencies of one-dimensional subspaces 

 ,p q p q
j j j= ⊗W W W , (1) 

which satisfy , 2 0,0p q
j L j⊂ =W V W .  For the one-dimensional 

spaces we have 

 2 2 1
1 1

p p p
j j j

+
+ += ⊕W W W  and 2 2 1

1 1
q q q
j j j

+
+ += ⊕W W W . (2) 

Fig. 4. The WBCT coefficients of the Peppers image. Here, 3 wavelet scales 

and 8-4-4 directions are used. For better visualization, the transform 

coefficients are clipped between 0 and 7. 

LH1 HH1 

HL1 

Fig. 3. A schematic plot of the WBCT using 3 dyadic wavelet levels and 8-4-4 

directions (8 directions at the finest level ( 8dN = )). The directional 

decomposition is overlaid the wavelet subbands. 
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By inserting (2) in (1) we obtain 

 , 2 ,2 2 1,2 2 ,2 1 2 1,2 1
1 1 1 1

p q p q p q p q p q
j j j j j

+ + + +
+ + + += ⊕ ⊕ ⊕W W W W W , (3) 

which corresponds to the four children subspaces of the quad-

tree node. Now if 1{ , , }i i i i Ij p q ≤ ≤  are the indices of the terminal 

nodes (or leaves) of the wavelet packet tree, we have the 

following reconstruction relation: 

 
,0,0

1
i i

i

p qI
L i j== ⊕W W . (4) 

Let 
11 1{ ( 2 )}

p j
j nx nψ ∈−

ℤ
, 

22 2{ ( 2 )}
q j
j nx nψ ∈−

ℤ
, and 

2

,
{ ( 2 )}

p q j
j n

x nψ
∈

−
ℤ

, where 1 2( , )x x x= , be the elements of 

corresponding spaces p
jW , q

jW , and ,p q
jW . The 

reconstruction relation (4) implies that the corresponding 

wavelet packet bases  

 2
1 2

,

( , ) ,1
{ ( 2 )}i i i

i

p q j

j n n i I
x nψ

∈ ≤ ≤
−

ℤ
, (5) 

construct an orthonormal basis of 2 0,0
L j=V W .  

Now we provide formulation for the DFB stage in WBCP 

and relate it to wavelet packets. For an 

l-level DFB, we have 2 dl  directional subbands with 
( )

, (0 2 )d dl l
kG k≤ <  equivalent synthesis filters and the overall 

downsampling matrices of 
( )

, (0 2 )d dl l
kS k≤ <  defined as [7]: 

 

 

1
1

( )

1
1

2 0 , if 0 2
0 2

2 0
, if 2 2

0 2

d
d

d

d d

d

l
l

l

k
l l

l

k

S

k

−
−

−
−

   ≤ <    = 
  ≤ <   

. (6) 

 

Then, 
( ) ( )

{ [ ]}d dl l

k kg n S m− , ( 20 2 ,dlk m≤ < ∈ � ) is a 

directional basis for 2 2( )l � ; where 
( )dl

kg  is the impulse 

response of the synthesis filter 
( )dl

kG , n is the spatial index, and 

m is a shift in position. Now, if we apply dl  directional levels 

to the space 
,i i

i

p q

j
W  at a terminal node, where 0i ip q+ ≠  (we 

exclude the approximation image), we obtain 2 dl  directional 

subbands for 
,i i

i

p q

j
W  where 

 

 
, , ,( )2 1

0 ,

ld
i i i i d

i i

p q p q l

kj j k

−
== ⊕W W . (7) 

 

The directional level dl  as mentioned before, is dependent on 

the scale j of wavelet packets, that is, for the terminal nodes at 

depth 1j L− =  we apply a DFB with the maximum number of 

desired directions 2 dL
dN =  to the corresponding wavelet 

packets at those nodes and then as we increase the depth, we 

decrease 
d

L  at every other scale (note that we do not apply 

DFB to the leaf node 
0

0,0

j
W  during this procedure). Let us 

define the elements of wavelet-best contourlet packets as 

 
2

, ,( ) ( ) ( ) ,

, , ,
[ ]i i d d d i i

i i

p q l l l p q

k kj k n j m

m

g m S nη ψ
∈

= −∑
�

. (8) 

Using a similar proof to the one provided in [7], we can show 

that the family 2

, ,( )

, , ,1 ,0
{ }i i d

i d

p q l

j k n n i I k l
η

∈ ≤ ≤ ≤ <�
 form an orthonormal 

basis for 2 0,0
L j=V W . 

 

III. WAVELET-BASED CONTOURLET PACKET CODING 

 

Similar to wavelet packets (WP), wavelet-based contourlet 

packets (WBCP) provide a large library of bases. The number 

of WBCP (or WP) bases in a full quad-tree decomposition of 

depth J is at least 
142

J −
 [12]. Therefore, using a proper 

algorithm for choosing a “best” basis from the wavelet packets 

library, one can adaptively provide a best representation for an 

image and improve the non-linear approximation of wavelets. 

Using the same philosophy, we design a WBCP image coding 

scheme to improve our previous results in which we used 

WBCT in conjunction with the CSPIHT algorithm for image 

coding. Below we describe the proposed coding system. 

A. Best WBCP Basis Selection 

A best wavelet packet or wavelet-based contourlet packet 

is a basis that is best adapted to a particular signal. Using a 

brute force search in the library of 
142

J −
 bases would require 

more than 
12 4

2
J

N
−

 operation (for an image of size N N× ), 

which is computationally prohibitive. In [5], a bottom-up 

pruning scheme of the fully decomposed wavelet packets tree 

is presented that is based on dynamic programming. The 

authors suggested the Shannon entropy measure as the cost 

function; however, the cost function can be any additive 

function of the form 2( ) (| ( ) |); (0) 0
k

M x x kµ µ
∈

= =∑ �
. The 

Shannon entropy measure is different from the entropy of a 

random variable that is not an additive function, and the 

authors in [15] observed that it is incapable of choosing a 

meaningful basis from the library of WP. Another method is to 

optimizing the rate-distortion function using Lagrange 

multipliers [18]. However, this approach is computationally 

exhaustive. Other approaches including matching pursuit [14] 

and basis pursuit [4] have also been proposed. If we consider a 

redundant dictionary of bases 0{ }p p PD g ≤ <=  with P > N 

vectors, they provide a solution for choosing N linearly 

independent vectors out of the dictionary D. The solution, 

however, is a suboptimal solution. Although these approaches 

supply better adapted bases that can represent signals not well 

adapted with the WP tree structure, they are computationally 

prohibitive for large signals [12].  

For a best basis selection, we used the dynamic 

programming approach proposed in [5]. Furthermore, we used 

Fig. 5.  Schematic diagram of an example of the wavelet-based contourlet 

packets. 
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a direct transform coding approach as proposed in [13] that is 

based on non-linear approximation. In this approach we 

threshold the transform coefficients and then quantize them. 

However, we have to code also the positions of these 

significant coefficients, in which we use a binary bitstream as 

the significance map. For this coding approach, a proper cost 

function would be a one that estimates the actual entropy of the 

generated bitstreams, which are the quantized coefficients and 

significance map. Therefore, we used the cost function 

proposed in [15], which is the addition of two costs: 

 

•  2

,( ( ) 0)

cost1( ) max(0, log (| ( ) |))

i

i

i Q x

x Q x
≠

= ∑ , 

•  
2

2 2
cost2( ) ( log ( ) (1 ) log (1 ))x N p p p p= − − − − , 

 

where cost1 is a first order approximation of the entropy and 

cost2 is formulated assuming a Bernoulli random variable for 

the significance map. Hence, considering a global threshold, 

we use the above cost function to find the best basis of WBCP 

for a given image. 

B. Quantization and Scanning 

Similar to the contourlet transform [17], we found that the 

WBCT coefficients are non-Gaussian, and hence a uniform 

quantization is not optimal. For a Laplacian distribution, it is 

shown [21] that if one takes the zero-bin twice as large as the 

other bins, then a near-optimal quantization can be achieved. 

Assuming a Laplacian distribution for the WBCT coefficients, 

we use the mentioned quantizer for our approach. 

Using a proper method for scanning the transform 

coefficients, one can take advantage of the dependencies 

among them to improve the resulting rate. One of the scanning 

method is employing a Hilbert filling curve. If one uses this 

mapping curve for scanning the wavelet coefficients, an 

improvement in the output rate is gained when compared with 

the case of row-wise scanning [1]. Fig. 6 illustrates a Hilbert 

filling curve of order 4. Another approach is to scan the 

coefficients taking into account the orientation of each 

subband. The scanning of the wavelet scales is performed in 

order of increasing frequency. In WBCP each wavelet subband 

(except the approximation image) is decomposed into several 

directional subbands; therefore, at each wavelet subband, we 

scan the directional subbands individually. We employed the 

following three scanning approaches: row-wise (or column-

wise) scanning, scanning based on the orientation of directional 

subbands in which we scan horizontal (vertical) directional 

subbands, horizontally (vertically), and scanning using Hilbert 

filling curves. We observed that Hilbert filling curves yield the 

best results.  

After scanning, we run-length-code the significance map 

and entropy-code the resulting bitstreams. Of course, we are 

required to code the shape of the selected best WBCP tree, as 

well. To do so, we assign 1 to the terminal nodes of the best 

tree and zero to the other existing nodes, then scan these 

values. A run-length coding could also be used for the resulting 

bitstream. The length of this bitstream is maximally 4
J

 for a 

packet tree of depth J. For small J, the overhead of coding the 

shape of tree is not significant. 

 

IV. EXPERIMENTAL RESULTS 

 

We tested the proposed WBCP coder scheme as well as 

the WBCT/CSPIHT coder on a variety of images with fine 

details such as textures and fingerprints, each having a size of 

512x512. For the sake of comparison, we also provide the 

results of the wavelets-based SPIHT coder and WP coder. The 

WBCT and WBCP use 5 wavelet levels and 16 directions at 

the finest scale. We used non-separable fan filters of support 

sizes (23, 23) and (45, 45) as described in [16]. We also used 

depth-five WP and utilized biorthogonal Daubechies 9-7 

wavelets in all the schemes. Fig. 7 depicts the rate-distortion 

curves obtained for the texture images D16 and D80 acquired 

from the Brodatz textures collection [2] and Fingerprint image. 

The rates of the coders are computed using the entropy of the 

output bitstreams. However, one can approach the entropy 

using the arithmetic entropy coder. As Fig. 7 demonstrates, we 

could clearly improve our previous PSNR performance 

resulting from the WBCT/CSPIHT coder. When compared 

with the WP coder, for the texture images mentioned above, 

the proposed WBCP coder provides competitive PSNR results. 

To compare the above approaches visually, we present some of 

the coded images at very low bit-rate. Fig. 8 shows the coded 

results of the image D80 at 0.07r =  bpp. As seen, more details 

are preserved in the coded image of the WBCP coder when 

compared with the other methods. Fig. 9 depicts another 

example where the coded results of the Fingerprint image at 

0.05r =  bpp are shown. Again, the best result is obtained 

through the proposed WBCP coding approach. Although it is 

clear that the WBCT/CSPIHT coder preserved more ridges 

when compared with the popular wavelets SPIHT coder, there 

are still more ridges retained in the coded image using the 

proposed WBCP coder. Because of the smooth regions around 

the Fingerprint image, the PSNR values are degraded in the 

CSPIHT and WBCP coding results for this image. As we 

reported in [11], due to the downsampling of highpass channel 

of the wavelet transform in the WBCT, this scheme introduces 

pseudo-Gibbs phenomena artifacts in the smooth regions. 

However, the WBCT and WBCP schemes provide significant 

improvement in the visual results of texture images and other 

images that contain mostly contours and oscillatory patterns. 

Fig. 6. A Hilbert filling curve of order 4. 
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V. CONCLUSIONS 

 

We extended our recent work (WBCT/CSPIHT coding) 

and proposed a coding scheme based on WBCP. With WBCP, 

we could gain an overall (significant) improvement in PSNR 

values. Our experiments also indicated an enhancement in the 

visual results when compared with the WBCT/CSPIHT coder 

as well as the WP coder. 

Fig. 7.  The PSNR-rate curves for the images D16, D80 [2], and Fingerprint using the coding schemes of WBCP coder, WP coder, WBCT/CSPIHT coder, and SPIHT 

coder. The original images are shown at the bottom. 
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Fig. 8. The D80 image coded at rate 0.07r =  bpp. 
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Fig. 9. The Fingerprint image coded at rate 0.05r =  bpp. 
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