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ABSTRACT 

 
In this paper, we first propose a new family of geometrical 
image transforms that decompose images both radially and 
angularly. Our construction comprises two stages of filter 
banks that are non-redundant and perfect reconstruction 
and therefore lead to an overall non-redundant and perfect 
reconstruction transform. Using the wavelet transform as 
the first stage, we apply directional filter banks to the 
wavelet coefficients in such a way to maintain the 
anisotropy scaling law. Furthermore, we propose a new 
image coding scheme based on the proposed transform, 
the wavelet-based contourlet transform (WBCT), using a 
new contourlet-based set partitioning in hierarchical trees 
(CSPIHT) algorithm that provides an embedded code. Due 
to differences in parent-child relationships between the 
WBCT coefficients and wavelet coefficients, under 
CSPIHT, we developed an elaborated repositioning 
algorithm for the WBCT coefficients in such a way that 
we could scan spatial orientation trees that are similar to 
the original SPIHT algorithm. Our experiments 
demonstrate that the proposed approach is efficient in 
coding images that possess mostly textures and contours. 
Our simulation results also show that this new coding 
approach is competitive to the wavelet coder in terms of 
the PSNR-rate curves, and is visually superior to the 
wavelet coder for the mentioned images. 

 

1. INTRODUCTION 
 
Although the wavelet transform has been proven to be 
powerful in many signal and image processing 
applications such as compression, noise removal, image 
edge enhancement, and feature extraction; wavelets are 
not optimal in capturing the two-dimensional singularities 
found in images. Therefore, several transforms have been 
proposed for image signals that have incorporated 
directionality and multiresolution and hence, could more 
efficiently capture edges in natural images. Steerable 
pyramid [12], curvelets [1] and contourlets [3] are some 
popular examples. The contourlet transform is one of the 

new geometrical image transforms, which can efficiently 
represent images containing contours and textures [2][3]. 
This transform uses a structure similar to that of curvelets 
[1], that is, a stage of subband decomposition followed by 
a directional transform. In the contourlet transform, a 
Laplacian pyramid is employed in the first stage, while 
directional filter banks (DFB) are used in the angular 
decomposition stage. Due to the redundancy of the 
Laplacian pyramid, the contourlet transform has a 
redundancy factor of 4/3 and hence, it may not be the 
optimum choice for image coding applications. Recently, 
some approaches have been attempted to introduce non-
redundant image transforms based on the DFB with the 
capability of both radial and angular decomposition. The 
octave-band directional filter banks [4] are a new family of 
directional filter banks that offer an octave-band radial 
decomposition as well. Another approach is the critically 
sampled contourlet (CRISP-contourlet) transform [6], 
which is realized using a one-stage non-separable filter 
bank. Using similar frequency decomposition to that of the 
contourlet transform, it provides a non-redundant version 
of the contourlet transform. 

In this paper we first propose a new non-redundant 
image transform, the Wavelet-Based Contourlet Transform 
(WBCT), with a construction similar to the contourlet 
transform. Then, we use the non-redundant WBCT in 
conjunction with an SPIHT-like algorithm [10] to 
construct an embedded image coder. Due to differences in 
parent-child relationships between the WBCT coefficients 
and wavelet coefficients, we develop an elaborated 
repositioning algorithm for the WBCT coefficients in such 
a way that we could have similar spatial orientation trees 
[10] (the zero-trees introduced in [11]) as the ones used 
for scanning the wavelet coefficients. We refer to our 
contourlet-based, SPIHT-like scanning as CSPIHT. Our 
simulation results show that the proposed coder is 
competitive to the original SPIHT coder in terms of the 
PSNR values, especially for a category of images that 
have a significant amount of textures and oscillatory 
patterns and therefore are not “wavelet-friendly” images 
and is visually superior to the SPIHT coder for the 
mentioned images. 
 



 

(a)                                            (b) 

Fig. 1. (a) A schematic plot of the WBCT using 3 dyadic 
 wavelet levels and 8 directions at the finest level ( 8

D
N = ). 

The directional decomposition is overlaid the wavelet subbands. 
 (b) An example of the wavelet-based contourlet packet. 

 
2. THE WBCT CONSTUCTION 

 
Similar to the contourlet transform, the WBCT consists of 
two filter bank stages. The first stage provides subband 
decomposition, which in the case of the WBCT is a 
wavelet transform, in contrast to the Laplacian pyramid 
used in contourlets. The second stage of the WBCT is a 
directional filter bank (DFB), which provides angular 
decomposition. The first stage is realized by separable 
filter banks, while we implement the second stage using 
non-separable filter banks. For the DFB stage, we employ 
the iterated tree-structured filter banks using fan filters [2].  

At each level (j) in the wavelet transform, we obtain 
the traditional three highpass bands corresponding to the 
LH, HL, and HH bands. We apply DFB with the same 
number of directions to each band in a given level (j). 
Starting from the desired maximum number of directions 

2L

D
N = on the finest level of the wavelet transform J, we 
decrease the number of directions at every other dyadic 
scale when we proceed through the coarser levels ( j < J ). 
This way, we could achieve the anisotropy scaling law; 
that is 2width length≈ .  

Fig. 1(a) illustrates a schematic plot of the WBCT 
using 3 wavelet levels and L = 3 directional levels. Since 
we have mostly vertical directions in the HL image and 
horizontal directions in the LH image, it might seem 
logical to use partially decomposed DFB’s with vertical 
and horizontal directions on the HL and LH bands, 
respectively. However, since the wavelet filters are not 
perfect in splitting the frequency space to the lowpass and 
highpass components, that is, not all of the directions in 
the HL image are vertical and in the LH image are 
horizontal, we use fully decomposed DFB on each band.  

One of the major advantages of the WBCT is that we 
can have Wavelet-based Contourlet Packets in much the 
same way as we have Wavelet Packets. That is, keeping in 
mind  the anisotropy scaling law  (the number of directions 

 

Fig. 2. A diagram that shows the multiresolutional  
subspaces for the WBCT. 

is doubled at every other wavelet levels when we refine 
the scales), we allow quad-tree decomposition of both 
lowpass and highpass channels in wavelets and then apply 
the DFB on each subband. Fig. 1(b) schematically 
illustrates an example of the wavelet-based contourlet 
packets. However, if the anisotropy constraint were 
ignored, a quad-tree like angular decomposition, which is 
introduced in [9] as Contourlet Packets, can be 
constructed as well. Below, we present a brief 
multiresolution analysis of the WBCT. 

Following a similar procedure outlined in [3], for an 
l-level DFB we have 2l  directional subbands with 

( ) , 0 2l l

k
G k≤ <  equivalent synthesis filters and the overall 
downsampling matrices of ( ) , 0 2l l

k
S k≤ <  defined as: 
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Then, ( ) 2{ [ ]}, 0 2 , ,l l l

k k
g n S m k m− ≤ < ∈�  is a 

directional basis for 2 2( )l � ; where ( )l

k
g  is the impulse 

response of the synthesis filter ( )l

k
G . Assuming an 

orthonormal separable wavelet transform, we will have 
separable 2-D multiresolution [7]: 
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Fig. 3. The WBCT coefficients of the Peppers image.  
For better visualizing, the transform coefficients are 

 clipped between 0 and 7. 
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Fig. 3 shows an example of the WBCT coefficients of 
the Peppers image. Here we used 3 wavelet levels and 8 
directions at the finest level. You can see that most of the 
coefficients in the HL subbands are in the vertical 
directional subbands (the upper half of the subbands) 
while those in the LH subbands are in the horizontal 
directional subbands (the lower half of the subbands). 

 
3. WBCT CODING USING THE CSPIHT 

ALGORITHM 
 
Said and Pearlman [10] developed the SPIHT algorithm 
for wavelet coding of images and could achieve significant 
improvement over the EZW coder [11][5]. Similar to the 
spatial orientation tree (or zero-tree) concept of wavelet 
coefficients in which we have a parent-child relationship 
along wavelet scales, one can find parent-child 
dependencies in other subband systems. In the case of the 
contourlet transform, one can assume two different parent-
child relationships depending on the number of directional 
decompositions in the contourlet subbands [9]. If the two 
successive scales in which the parent and children lie have 
the same number of directional decompositions, then the 
parent and children would lie in the corresponding 
directional subbands; however if the scale in which the 
children lie has twice  as many directional subbands as  the 
 

                          (a)                                           (b) 
Fig. 4. Two possible parent-child relationships in the WBCT. 

Wavelet subbands (or radial subbands in the WBCT) are 
separated by the solid lines and directional subbands are 

separated by the dotted lines. (a) When the number of directional 
subbands are the same at the two wavelet scales. Here we have 4 

directions at each wavelet subband. (b) When the number of 
directional subbands in the finer wavelet scale (here is 8) is 

twice as many as those in the coarser wavelet scale (here is 4). 
 

 
Fig. 5. An example of repositioning a radial subband in the 
WBCT having 8 directional subbands assuming its coarser 

subband is at first level and has 4 directional decompositions. In 
this process we combine each two adjacent directional subbands 

by interlacing the columns of horizontal directional subbands 
(upper half subbands) and the rows of vertical directional 

subbands (lower half subbands). 

scale in which the parent lies, the four children will be in 
two adjacent directional subbands. These two directional 
subbands correspond to the directional decomposition of 
the directional subband in which the parent is located. Due 
to the similarities of the WBCT to the contourlet 
transform, for each LH, HL, and HH subband we can 
assume the same parent-child relationships as illustrated in 
Fig. 4. Therefore, due to differences in parent-children 
dependencies between the WBCT and the wavelet 
transform, before applying the SPIHT algorithm, we 
reposition the transform coefficients in the WBCT in such 
a way to be able to use a similar SPIHT algorithm. Fig. 5 
shows an example of repositioning a radial subband in the 
WBCT having 8 directional decompositions. In the next 
section, we show the experimental results obtained for 
images that mostly contain contours and oscillatory 
patterns such as textures (from Brodatz texture images 
collection) and fingerprint images. 
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Fig. 6. Rate-distortion curves obtained for the images D16, D80 

and Fingerprint using the SPIHT and CSPIHT coders. 

4. NUMERICAL EXPERIMENTS 
 
We tested the proposed WBCT/CSPIHT coding scheme as 
well as the original wavelet-based SPIHT coder on several 
images such as textures and fingerprints, each having a 
size of 512x512. The WBCT uses 5 wavelet levels and 16 
directions at the finest scale. We used non-separable fan 
filters of support sizes (23, 23) and (45, 45) as described 
in [8]. The FIR half-band filter used for constructing fan 
filters is designed using the “remez” function in 
MATLAB. We used biorthogonal Daubechies 9-7 
wavelets in both schemes. We used an arithmetic encoder 
to entropy-code the resulting bit streams of the SPIHT 
algorithm. Fig. 6 shows some of the rate-distortion curves 
obtained for coding the images using the SPIHT wavelet 
and WBCT coders. We can see that the PSNR values for 
both schemes are comparable. However, our experiments 
indicated that the proposed scheme is superior in 
preserving textures and details in the coded images. This 
observation is not effectively captured by the PSNR 
metric.  Fig. 7 shows the visual coded results of the 
Fingerprint, D80, and a part of the Barbara images. As 
seen, more ridges in the coded Fingerprint image by the 
proposed coder are retained. This figure also clearly 
shows the capability of the proposed coder for images 
consisting of mainly textures and oscillatory patterns. 

 
5. CONCLUSION 

 
We proposed the wavelet-based contourlet transform, 
which is a new non-redundant transform, and designed a 
new image coder based on the proposed WBCT transform 
using an SPIHT-like algorithm. Our simulation results 
indicated that the proposed coder is visually superior to 
the wavelet SPIHT scheme in preserving details and 
textures in the coded images. 
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