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Abstract: Wavelet-based Contourlet transform (WBCT) is a typical Multi-scale Geometric Analysis

(MGA) method, it is a powerful technique to suppress background and enhance the edge of target.

However, in the small target detection with the complex background, WBCT always lead to a high

false alarm rate. In this paper, we present an efficient and robust method which utilizes WBCT method

in conjunction with kurtosis model for the infrared small target detection in complex background.

We mainly made two contributions. The first, WBCT method is introduced as a preprocessing

step, and meanwhile we present an adaptive threshold selection strategy for the selection of WBCT

coefficients of different scales and different directions, as a result, the most background clutters are

suppressed in this stage. The second, a kurtosis saliency map is obtained by using a local kurtosis

operator. In the kurtosis saliency map, a slide window and its corresponding mean and variance

is defined to locate the area where target exists, and subsequently an adaptive threshold segment

mechanism is utilized to pick out the small target from the selected area. Extensive experimental

results demonstrate that, compared with the contrast methods, the proposed method can achieve

satisfactory performance, and it is superior in detection rate, false alarm rate and ROC curve especially

in complex background.

Keywords: infrared small target detection; Wavelet-based Contourlet transform (WBCT); kurtosis

map; complex background

1. Introduction

Infrared small target detection has been a hot topic for guidance, defense, navigation, infrared

search and track and other photoelectric imaging systems [1–4]. In the past few decades several classical

methods have been proposed, such as max-mean filter and max-median filter [5], Two-Dimensional

Least Mean Square [6], bilateral filter [7], morphological filter [8]. However, these baseline methods

fail to obtain satisfactory performance in complex background with low SNR.

In recent years, multiscale geometric analysis (MGA) has shown substantial advantages in target

detection area. MGA makes up for the shortcomings of wavelet transform [9] in capturing direction

information, its representative methods include ridgelet transform [10], curvelet transform [11],

contourlet transform [12], and shearlet transform [13]. The Contourlet transform can make the most

of the geometric characteristics of data, such as line singularities and plane singularities. Since

contourlet transform contains the downsampling, it lacks shift invariant property [14]. Researchers

have proposed Nonsubsampled contourlet transform (NSCT) to describe complex spatial structures

in various directions well. Both the Contourlet transform and the NSCT transform are implemented

based on the Laplacian pyramid. Due to the redundancy of the Laplacian pyramid, both of these
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transforms have high redundancy factor. Eslami and Radha [15] proposed a new non-redundant

image transform which named Wavelet-based Contourlet transform. In target detection, MGA can

not only accurately capture the singularity of an image, but also suppress the background noise and

highlight the target. Up to now, there are many MGA type methods have been applied to infrared

small target detection, and achieve good detection results. For example, Qu et al. [16] proposed a

small target detection method based on curvelet neural network to improve the recognition rate of the

complex background. Zhao et al. [17] proposed a new detection method based on nonsubsampled

contourlet transform (NSCT) to achieve high detection rate in low SNR infrared image. Ji et al. [18] used

contourlet transform combined with principal component analysis (PCA) to achieve strong anti-noise

performance and target detection performance. Lei et al. [19] adopted an optimized fast NSCT to

maintain better time-consuming performance for small target detection. Peng et al. [20] introduced

the Shearlet and maximum kurtosis to infrared target detection and obtain good performance. The

method Gaussian Scale-Space and Spectral Scale-Space belong to another multiscale method. The

image is decomposed into multiscale sub-bands by these methods, and small target is detected by

processing multiscale sub-bands. Xin et al. [21] proposed a small target detection method based on

Spectral Scale-Space and Gabor Wavelet to gain high correct target detection rate. Yi et al. [22] used an

improved spectral scale space combined with the Adaptive Local Contrast Measure method to small

target detection, which improved the efficiency of small target detection under complex backgrounds.

Guan et al. [23] presented a fast and effective detection method based on Gaussian scale space and

Enhanced Local Contrast Measure. The multi-scale method can enhance targets by eliminating the

noise and background, but also enhance the background edges.

Recently, methods based on human visual system (HVS) have shown many advantages in the

field of target detection. HVS generates a saliency map to identify the regions of interest (ROI) and

detects target in ROI. Guo et al. [24] calculated the spatiotemporal saliency map based on phase

spectrum of quaternion Fourier transform to against white-colored noise in target detection. Wang

et al. [25] performed the analysis of small target grey intensity surface to establish an efficient and

reliable small target detection method based on facet model. Chen et al. [26] processed a new contrast

measuring method named local contrast measure (LCM). This method generates a saliency detection

map by using the dissimilarity between the target and the surrounding background. Chen et al. [27]

combined local self-similarity with local contrast to compute the local saliency map for small target

detection, from which the target region can be highlighted. Deng et al. [28] proposed a multiscale gray

difference weighted image entropy small target detection method, which effectively enhanced small

target. These HVS-based methods are usually superior to baseline methods in detection performance,

However, some of them cannot detect the target accurately when apply to the images with highly

heterogeneous backgrounds.

In this paper, an efficient and robust small target detection method in single-frame infrared image

is presented. The presented method consists of a preprocessing stage and a detection stage. At the

preprocessing stage, WBCT is utilized to decompose the original infrared image into multiscale and

multidirectional sub-bands, and then an adaptive threshold selection strategy is applied to select the

background information in high frequency sub-bands, and the coarse target image is obtained by making

a difference between the original image and the background image after the Inverse Wavelet-based

Contourlet transform (IWBCT) transformation. In this stage, most background clutters are suppressed

and the target is enhanced. At the detection stage, an effective kurtosis map calculated by local

kurtosis operator combined with the adaptive threshold segmentation mechanism is applied to process

the coarse target image, by which the residual background edge is efficiently eliminated. Extensive

experimental results demonstrate that the proposed method can achieve satisfactory performance.
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2. Related Work

2.1. Wavelet-Based Contourlet Transform (WBCT)

The Contourlet transform consists of a Laplacian Pyramid (LP) and a Directional Filter Bank

(DFB). The WBCT replaces the LP in the Contourlet transform with a non-redundant Mallat tower.

Wavelet transform firstly implements the multiscale decomposition, and then DFB implements the

angular decomposition. Figure 1 illustrates the implementation principle of WBCT.
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Figure 1. Flow chart of WBCT implementation principle.

WBCT has the advantages of Wavelet transform and Contourlet transform, which inherits the

multi-resolution of wavelet transform, and overcomes the problem of the redundancy of the Contourlet

transform. In this paper, the image is made 3 level wavelet transform decomposition. Then the

high-pass sub-bands (LH1, HL1, HH1) of the first level are decomposed in 8 directions, the high-pass

sub-bands (LH2, HL2, HH2) of the second level are decomposed in 4 directions, the high-pass sub-bands

(LH3, HL3, HH3) of the third and the low-pass sub-band (LL3) level are not decomposed. This frame is

in favor of background suppression.

2.2. Kurtosis Model

The kurtosis is used to measure the degree of convergence of random signals in the center [29].

The kurtosis is defined as:

K =
M4

M2
2

− 3 (1)

where M4 represents the 4th-order sample central moment, M2 represents the 2th-order sample

central moment.

If the value of the kurtosis is 0, it means that the random variable is the same as the normal

distribution. If it is greater than 0, it means that the random variable is more concentrated, and there is

a tail shorter than the normal distribution. If it is less than 0, the random variable is not concentrated,

and there is a tail that is longer than the normal distribution. As shown in Figure 2:
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Figure 2. Illustration of sub-Gaussian, sup-Gaussian, and Gaussian distributions. Their Kurtosis value

are also presented.

3. Proposed Method

The frame of the proposed Infrared image small target detection method is shown as Figure 3.

It can be seen that the proposed method is divided into two stages: the preprocessing stage and the
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detection stage. At preprocessing stage, the input image is decomposed into the multiscale and the

multidirectional sub-bands by WBCT, and then an adaptive threshold selection strategy is applied to

the high frequency sub-band, which could remove small targets information and remain background

information. Next, the background image is obtained By IWBCT of the processed high frequency

sub-bands and low frequency sub-band. After then, a coarse target image is obtained by a subtract

operation of the input with the background image. At detection stage, the kurtosis map is obtained

by local kurtosis operator of the coarse target image, and then a sliding window and its associated

mean and variance are used to determine the small target area in kurtosis map. Finally, an adaptive

threshold segmentation mechanism is applied to extract the small target from the selected area.
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Figure 3. The frame of the proposed Infrared image small target detection method.

3.1. Preprocessing Stage

In this part, we adopt an adaptive threshold selection strategy to remove detail information from

WBCT sub-band coefficients and recover the background information. The image f (i, j) could be

represented mathematically as:

f (i, j) = b(i, j) + t(i, j) (2)

where b(i, j) represents the background of the image, t(i, j) represents the detail of the image, such as

small target or edge of the object.

After the infrared image f (i, j) is decomposed by WBCT, it can be represented as:

Ci, j = Si, j + Ni, j (3)

where Ci, j, Si, j, and Ni. j represent sub-band coefficients of the original image f (i, j), the background

information b(i, j) and the detail information t(i, j) after WBCT decomposed. The background

information b(i, j) is mainly in low frequency sub-band, while the detail information t(i, j) is mainly

in high frequency sub-bands. Thus, the focus of this stage is to separate background information

and detail information in high frequency sub-bands. According to the wavelet domain denoising

model [30], an effective soft-thresholding function is applied to remove the detailed information in

high frequency sub-bands, represented as:

Ĉi, j =



















Ci, j − T, Ci, j > T

Ci, j + T, Ci, j < −T

0, −T ≤ Ci, j ≤ T

(4)

where T represents threshold, the optimal threshold T is defined to be the argument which minimizes

the expected squared error, it can be well approximated by

T =
σ̂2

N

σ̂S
(5)
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where σ̂2
N

represent the variance estimation of detail information, σ̂S represent the variance estimation

of background information.

According to Equation (3), sub-band coefficients are hybrid matrix of the background information

and the detail information, so the variance of Ci, j is also viewed as the variance of Si, j and Ni, j.

Here, we assume that the background information b(i, j) and the detail information t(i, j) are

independent of each other, so the variance σ2
S

of background information can be represented as:

σ2
S = σ2

C − σ
2
N (6)

where σ2
C

is the variance of sub-band coefficients after WBCT decomposition. The variance σ2
N

of the

detail information is estimated by using the robust median estimator in the highest sub-band of the

wavelet transform:

σ̂2
N =

median
(

| Ci, j |
)

0.6745
, Ci, j ∈ HH1 (7)

which is also used in [30]. By estimating the parameter σ2
S

for each sub-band, we can get a uniform

threshold T. However, using a single threshold for sub-bands of different scales, frequencies and

orientations is lack of credibility. Considering the continuity of background information in frequency

sub-band, one has the luxury of estimating the parameter σ2
S

for each coefficient by using a moving

window. For a given coefficient Ci0 j0 , its variance is estimated σ2
S
(i0, j0) is represented as:

σ2
S(i0, j0) = max{

1

Nβ

∑

(i, j)∈βi, j

Ci, j
2 − σ2

N, 0} (8)

where the set β denote the pixels contained in the window centered on point (i0, j0). The Nβ represent

the number of coefficient contained in set β. Then calculating the threshold Ti, j for every location (i,j)

according to Equations (5)–(8) yields an adaptive threshold. The process of the preprocessing stage is

described as follows:

(1) The infrared image is decomposed into multiscale and multidirectional sub-bands as shown in

Figure 1.

(2) In each high frequency sub-band, set a sliding window to traverse the entire sub-band from left

and top to right and down. In the sliding window, the threshold of the current window center

coefficient is estimated by using Equations (5)–(8).

(3) According to the spatially adaptive threshold, the soft-thresholding function is used to remove

the detailed information in each high frequency sub-band respectively.

(4) Inverse transform of WBCT is performed on the low frequency sub-band and the processed high

frequency sub-band coefficients, and difference is made with the original image to obtain the

coarse target image.

Considering that the sub-band of each level obtained after the image is decomposed by WBCT is

smaller than the previous level, so the size of the sliding window is used in each level is also smaller

than the previous level. Here, the sliding window size set as 9× 9, 7× 7 and 3× 3 in the high frequency

sub-band of first, second and third level.

Figure 4 shows the preprocessed results of different images. The upper left image in the second

row images is their three-dimensional diagrams. It can be seen when there are few clouds or buildings

in the image, the background of the infrared image is effectively suppressed, and small targets can

be detected by simple threshold segmentation (as shown in Figure 4(b1,b2)). However, when there

are “bright” man-made buildings or trees in the image, some edges of the infrared image are not

completely suppressed. If simple threshold segmentation is performed on these images, the residual

edges will cause false detection (as shown in Figure 4(b3,b4)). Therefore, detecting the small target

accurately in the residual background edge is a critical stage.
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Figure 4. The preprocessed results of different images. (a) Original image, (b) Image after

preprocessing stage.

3.2. Detection Stage

In this part, we introduce a method based on kurtosis map how to eliminate residual background

edge. This method uses a local kurtosis operator to generate a significant kurtosis map. In the

kurtosis map, the area where the small target could be effectively located, and then adaptive threshold

segmentation is used for small target detection. It is good improving small target detection in

infrared image.

3.2.1. Local Kurtosis Operator

The kurtosis reflects the difference between the sample distribution and the normal distribution.

For an image, if its gray values have a homogeneous distribution its kurtosis value would be small,

on the contrary if have a inhomogeneous distribution its kurtosis value would be large. Generally,

the kurtosis value is greater in small target image than in background image. However calculating

kurtosis values for the entire image neglects the texture and frequency information of an image. Thus,

the local kurtosis operator is restricted in a local window whose size is m × n, and it can represent

the information content contained in the window. When a small target appears in an infrared image,

it will intensify the change of the gray value of the local area around the target, thereby making the

kurtosis value of the local area larger. In a sense, the local kurtosis operator can be used to enhance

small infrared targets under complex backgrounds. The local kurtosis operator can be expressed as:

K =
1

NΩ

∑

(x,y)∈Ω( f (x, y) − µ)4

σ4
− 3 (9)

where Ω denote the pixels contained in local window whose size as m× n, NΩ is the number of the

pixels contained in set Ω.

3.2.2. Kurtosis Map

The preprocessed result is shown in Figure 4b, indicating that the background is well suppressed.

However, for infrared image against complex terrain-sky or sky backgrounds, the edge of the object

has similar thermal intensity measure as a small target which greatly affects the performance of the

WBCT method. Therefore, a kurtosis map is calculated by local kurtosis operator to offset this effect,

improving the adaptability of the WBCT method. The method to calculate the kurtosis map as shown

in Algorithm 1, where m× n is the size of the neighboring area centered at the pixel point (i,j), and m

and n are odd integet numbers, respectively. The kurtosis map is shown in Figure 5.
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Algorithm 1 Calculating the Kurtosis map

Input: Given an input image f of size M×N

Output: The Kurtosis map K

(1) for i = 1 : M do

(2) for j = 1 : N do

K(i, j) =
1

mn

∑x=i+(m−1)/2

x=i−(m−1)/2

∑y= j+(n−1)/2

y= j−(n−1)/2
( f (x, y) − µ)4

σ4
− 3

Replace the value of the center pixel with the K(i,j).

(3) end for

(4) end for
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Figure 5. The kurtosis map of calculated with respect to different patch sizes (a) the patch size is 7 × 7,

(b) the patch size is 13 × 13.

In Figure 5, a small white patch (marked by the green circle in the figure) appears in the target

area. This shows that when calculating the kurtosis of a small target and its neighboring image patch,

the kurtosis value of these patch affected by the small target is generally large. However, the kurtosis

value of the background edge is larger in a certain direction. In addition, experiments demonstrate

that when different image patch size is used to calculate the kurtosis map, the size of small white patch

is different. The larger image patch is used to calculate the kurtosis map, the larger small white patch

is obtained. At the same time, the difference between the kurtosis characteristic of the small target

area and the background edge area is larger. But when the image patch is increased to a certain extent,

the difference will be no longer obviously. Therefore, the chosen image patch size will greatly affect the

detection results of the proposed method.

3.2.3. Area Location

According to the kurtosis map, the small target and the background edge show different

characteristics. The specific method for determining the area where the small target is located as

follows:

(1) Calculate the kurtosis map according to Algorithm 1. Experimental data shows that this we select

the image patch size as 13× 13 have a better effect than other size.

(2) Determine the sliding window size m× n. Considering the size of small target and the calculate

speed of method, we still select the window size as 13× 13.

(3) Set the sliding step (we set it as the half of the sliding window). Calculate the mean and variance

within each sliding window as the sliding window sliding from left and top to right and down in

the kurtosis map, denoted as mean(K)i and D(K)i.

(4) Set the threshold T. Based on the sensitivity study, let T = α×mean(K)max, αǫ[0.8, 1]. If mean(K)i

> T, it is considered that the small target may be in the ith image patch, otherwise it is considered

as background clutter and discarded.
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(5) The image patch with the smallest variance among the image patches whose mean value is

greater than T is considered to be the small target area, and the rest are the background edge

areas and removed.

3.2.4. Target Segmentation

In the previous step, the small target area is located. In this step small target is segmented by

adaptive threshold in the area. The adaptive threshold Th is defined as:

Th = µ+ k× δ (10)

where µ and δ are the mean and standard deviation of the image patch in the preprocessed image

respectively. The parameter k is an empirical value from experiments, usually choosing 1 in our

experiments. The pixels whose gray value is larger than Th are identified as target and the remaining

pixels are background and discarded.

4. Experiments and Analysis

In our experiments, 8 real small target image sequences with low SCR values (denotes as Sequence

1 to Sequence 8) are utilized to test the performance of the proposed method. The real IR images are

taken by the members of our lab with IR detector outdoors. The most of test sequences have low

contrast. The resolution of the images is 288 × 384. The details about targets and backgrounds are

listed in Table 1.

Table 1. The details of the eight real IR sequences.

Sequence Target Size Target Details Background Details

Sequence 1 2× 5
A small size with a little change.

Keeping motionless.
Cloud-sky backgrounds. Uniform

backgrounds.

Sequence 2 3× 4
Low SNR value. Keeping motion. A

dim target within a big range.
Terrain-sky background. Heavy noise.

Almost keeping the same.

Sequence 3 2× 4
A long imaging distance. A small

size. Keeping motion.
Terrain-sky background. Changing

background.

Sequence 4 3× 6
Low SNR value. A changing size

within a big range.
There are “bright” buildings. Almost

keeping the same. Heavy noise.

Sequence 5 3× 4
A small size. Hidden in the clouds.

Keeping motion.
Cloud-sky background. Changing
backgrounds. Heavy cloud clutter.

Sequence 6 2× 4
A dim target. Keeping motionless.

Low SNR value.
There are “bright” buildings. Almost

keeping the same. Heavy noise.

Sequence 7 3× 4
A long imaging distance. A small

size. Keeping motion.
There are “bright” buildings. Changing

backgrounds.

Sequence 8 3× 3
A dim target with a little change.

Low SNR value.
Heavy noise. Uniform backgrounds. There

are “bright” buildings.

To verify the validity of the proposed method, we compared it with state-of-the-art multiscale

methods, e.g., DWT, Spectrum Scale-Space and Gabor wavelet (SSS-GW) [19], Fast Spectrum Scale-Space

and Adaptive Local Contrast Measure (TDGS is used for shorthand notation for method in paper [20])

and Gaussian Scale-Space and Enhanced Local Contrast Measure (GSS-ELCM) [21] as four baseline

methods. Moreover, Novel Weighted Image Entropy (NWIE) [26] based on Local Contrast Measure

method is also chosen as the baseline method in this paper. All the experiments were conducted

on a computer with 8-GB RAM and 3.6-GHz Intel core i7CPU, and the code was implemented in

MATLAB R2017a.

Figure 6 illustrates the test images and detection results of different methods, it can be seen that

the proposed method can effectively suppress complex backgrounds and all targets are accurately

detected without missing detection in eight sequences. The method NWIE produces a strong response

at the most background. When the image contains a little “bright” buildings or trees, the saliency
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maps of the NWIE also enhance the object edges, and the false alarms emerge in Figure 6(b6,b7). The

method DWT can suppress the cloudy background and detect the target, such as Figure 6(c1,c3,c5). But

the DWT cannot suppress the clutter, making the target drowned in noise, such as Figure 6(c2,c6,c8).

The method SSS-GW can suppress background and most noise. In Figure 6(d1–d5), it can detect

the target correctly. However, the SSS-GW cannot make the target isolated from the interferences in

Figure 6(d7,d8). The method TDGS can detect the target in Figure 6(e1,e3,e5). However, the TDGS

have the similar results with DWT in some complex images. The method GSS-ELCM shows a good

performance in most images. But when the target is very dim (possibly much lower brightness than the

background), the GSS-ELCM can only detect a few pixels of small target, such as Figure 6g8, however

the other baseline methods can lead to real target missed.

 

 

Figure 6. Cont.
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Figure 6. Test images and detection results of different methods. (a1–a8) test images and corresponding

3D diagrams of Sequence 1 to Sequence 8, respectively, (b1–b8) processed images of method NWIE

and corresponding 3D diagrams, (c1–c8) processed image of methods DWT and corresponding 3D

diagrams, (d1–d8) processed images of method SSS-GW and corresponding 3D diagrams, (e1–e8)

processed images of method TDGS and corresponding 3D diagrams, (f1–f8) processed images of

method GSS-ELCM and corresponding 3D diagrams, (g1–g8) processed images of our method and

corresponding 3D diagrams. Red rectangle marks the location of the real small target.

In order to further illustrate the superiority of our method, this paper introduces two evaluation

indicators: signal-to-clutter ratio gain (SCRG) and background suppression factor (BSF). They are

defined as:

SCR =
µt − µb

σb
(11)

SCRG = 20× log10

(

SCRout

SCRin

)

(12)

BSF =
σin

σout
(13)

where µt, µb represent the gray mean of the small target and the image background, σb represents the

standard deviation of the image background; σin and σout represents the standard deviations of the

input image and the output image.

The SCRG and BSF of the six methods for eight image sequences are respectively shown in

Tables 2 and 3, where SCRG and BSF are the average SCRG and BSF in five frame images randomly

selected from the eight real image sequences, respectively. The larger SCRG value means a larger gray

difference between the small target and the background. The larger BSF value means stronger the

suppression of the background. It can be seen that our method have the highest values among the

comprised methods which means our method obtain the best performance in background suppression

and small target extraction.
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Table 2. The Values of SCRG of Results Obtained Different Methods.

Sequence 1 Sequence 2 Sequence 3 Sequence 4 Sequence 5 Sequence 6 Sequence 7 Sequence 8

NWIE 33.5057 64.2209 32.6168 24.3036 29.1318 23.0811 17.9498 18.8251
DWT 29.0982 49.8862 24.0603 15.4281 23.7058 15.1744 11.9642 12.5335

SSS-GW 33.9181 61.2395 32.6128 22.4076 34.8627 12.1550 17.5429 17.5581
TDGS 34.2707 46.3169 34.5819 19.8412 34.2712 14.3744 −3.2065 3.6179

GSS-ELCM 30.8430 64.0019 27.2701 17.6308 9.6349 21.3876 21.1241 20.1698
Our method 37.2318 70.5383 38.5675 31.8643 40.2450 39.3232 34.9650 44.2755

Table 3. The Values of BSF of Results Obtained Different Methods.

Sequence 1 Sequence 2 Sequence 3 Sequence 4 Sequence 5 Sequence 6 Sequence 7 Sequence 8

NWIE 30.9016 23.5972 27.3800 25.2920 23.2550 16.7425 18.7937 21.1644
DWT 24.3641 13.5543 19.7854 17.3074 21.1133 16.5301 15.5757 14.9175

SSS-GW 29.6892 22.9971 30.2402 24.4064 31.4539 13.6742 21.0282 19.5508
TDGS 29.0140 18.4452 30.3124 21.4572 28.7883 22.2547 25.4452 22.4326

GSS-ELCM 29.1536 26.6688 25.2412 23.0235 19.8636 23.6987 26.6781 27.2831
Our method 32.3398 29.5252 32.3920 29.2573 32.7446 27.8692 30.1006 29.6718

The receiver operating characteristic (ROC) curve, another metric often used to evaluate the

effectiveness of the method, is used in our experiment. The ROC curve describes the relationship

between the probability of detection (Pd) and the false alarm rate (Fa). The definitions of Pd and Fa are

as follows:

Pd =
number of detected true targets

total number of real targets
(14)

Fa =
number of detected false targets

total number of pixels in the whole image
(15)

Figure 7 shows the ROC curves of six methods for eight real images. Our method has better

performance than baseline methods and possesses higher Pd but lower Fa, compared with the baseline

methods, especially for Sequence 6, 7, and 8. For the Sequence 5, the SSS-GW and TDGS are slightly

superior to the proposed method when Fa > 0.7 or Fa > 0.84. In general terms, the ROC curves

demonstrate that the proposed method is robust and appropriate to detect small targets against

complex backgrounds.
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Figure 7. ROC curves of different methods for eight real images. (a) Sequence 1, (b) Sequence 2, (c)

Sequence 3, (d) Sequence 4, (e) Sequence 5, (f) Sequence 6, (g) Sequence 7, (h) Sequence 8.

5. Conclusions

In this paper, we present an efficient and robust infrared small target detection method based

on WBCT and kurtosis map. Some representative methods such as NWEI, DWT, SSS-GW, TDGS

and GSS-ELCM are used as contrast methods to demonstrate the performance of the presented

method. In the experiment, we have processed eight typical scenarios such as cloud-sky background,
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terrain-sky background, “bright” buildings background, heavy noise, and their hybrid background.

The experimental result image and corresponding 3D diagrams show that the proposed method can

well suppress the background and accurately detect small targets under a variety of backgrounds. The

BSF value and SCRG value of the proposed method are also larger than the baseline methods. The

comparisons derived from the ROC curves demonstrate that the proposed method has a high detection

rate, except for a few special cases which the Pd value of the same Fa is lower than the contrast method.

In general, it is an efficient method to the IR dim and small target detection in the complex background.
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