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Abstract. Vibration signals resulting from roller bearing defects, present a rich content of physical information, the appropriate

analysis of which can lead to the clear identification of the nature of the fault. The envelope detection or demodulation methods

have been established as the dominant analysis methods for this purpose, since they can separate the useful part of the signal

from its redundant contents. The paper proposes a new effective demodulation method, based on the wavelet transform. The

method fully exploits the underlying physical concepts of the modulation mechanism, present in the vibration response of faulty

bearings, using the excellent time-frequency localization properties of the wavelet analysis. The choice of the specific wavelet

family is marginal to their overall effect, while the necessary number of wavelet levels is quite limited. Experimental results and

industrial measurements for three different types of bearing faults confirm the validity of the overall approach.
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1. Introduction

Bearings are one of the most important and fre-
quently encountered components in the vast majority
of rotating machines, their carrying capacity and relia-
bility being prominent for the overall machine perfor-
mance. Therefore, quite naturally, fault identification
of roller bearings has been over the years the subject
of extensive research [14]. Vibration analysis has been
established as the most common and reliable analysis
method. Defects or wear cause impacts at frequencies
governed by the operating speed of the unit and the
geometry of the bearings, which in turn excite various
machine natural frequencies. Several methods exist to
exploit this physical effect, based either directly on the
shape of the time domain form of the signal, or on its
spectral content.

From all those methods, demodulation or envelop-
ing based methods offer a stronger and more reliable

diagnostic potential, since they are based on a more

solid physical background. The corresponding phys-

ical mechanism is described in [8]. The general as-

sumption with the enveloping approach is that a mea-

sured signal contains a low-frequency phenomenon that

acts as the modulator to a high-frequency carrier sig-

nal. In bearing failure analysis, the low-frequency phe-

nomenon is the impact caused by a small spur or crack;

the high-frequency carrier is a combination of the natu-

ral frequencies of the associated rolling element or even

of the machine. The goal of the enveloping is first to

isolate the measured signal in a relatively narrow fre-

quency band around a specific natural frequency using

a band-pass filter and then demodulate it to produce a

low-frequency signal, called the “envelope”.

Several demodulation methods have been used to

identify faults in rolling element bearings. A “hard-

ware based” approach, proposed in [3], involves the
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following steps. The measured signal is passed through

a band-pass filter to remove all low frequency high-

amplitude signals to keep the dynamic range of the sig-

nal within the capabilities of the instruments. The band-

pass-filtered signal is passed through a diode, retaining

only the positive content. The rectified signal is then

low-pass-filtered to remove the high frequency content.

The resulting signal is the low frequency modulation

with a DC component. This signal is passed through

a capacitor (AC coupled) to produce the demodulated

time waveform.

Alternative to “hardware based” approaches, other

demodulation approaches have been also used, based

on the Fourier Transform. An approach, based on the

direct use of the FFT, is proposed in [6]. First, an FFT

is applied to the N measured, rectangularly windowed

data points, the lowest [(N/2) + 1] FFT coefficients are

multiplied by two and the remaining coefficients are

set to zero. Then, an inverse FFT is applied to the N

modified FFT coefficients, resulting to an N point pre-

envelope. The squared magnitude for each of the N pre-

envelope points leads to the final envelope. The advan-

tage of an FFT-based envelope is that, if the frequency

content of the modulating signal and of the measured

modulated signal do not intersect, an exact copy of the

true envelope can be recovered.

A more advanced method is based on the proper

combination of the FFT with the Hilbert transform [11].

The measured signal is passed through a band-pass

filter, in order to isolate a specific high-frequency band,

that presents in the spectrum relatively high amplitude

components, corresponding presumably to a specific

natural frequency of the machine. This step can be

omitted in many cases with negligible effect. The band-

pass-filtered signal is then converted into an analytical

signal. This analytical signal is a complex signal, the

real part of which is the band-pass-filtered signal and

the imaginary part is the Hilbert transform of the band-

pass-filtered signal. The magnitude of the analytical

signal corresponds to the envelope of the measured

signal.

This study presents a new demodulating approach,

based on the Wavelet Transform (WT). The WT has

been established as the most widespread joint time-

frequency analysis tool [7,9,13] due among others, to

its inherent capability to be realized in real-time in the

form of a Discrete Wavelet Transform (DWT). The WT

overcomes the known disability of the Fourier Trans-

form to represent local features of the signal, such as

the quite typical impulses, present in the vibration re-

sponse of faulty roller bearings. It has already been

used with success in specific case studies for bearing

fault detection [5,10,12], as well as for other machine

components [1,2,15,16]. The purpose of using the WT

in the proposed method, is to obtain the envelope of

the vibration response of faulty bearings, based on the

physical mechanism that generates the modulation ef-

fect and taking into full account its underlying physical

concepts and major conclusions.

Part 2 of the paper summarizes the basic physical

concepts describing the modulation mechanism, inher-

ent in faulty bearing response. Part 3 performs a brief

review of the basic concepts of wavelet analysis, with

special emphasis on their behavior in the frequency do-

main. Part 4 describes the proposed method and anal-

yses the major parameters affecting its performance.

Experimental results and industrial measurements for

three different types of bearing faults are provided in

part 5, verifying the effectiveness of the method.

2. Modulation of vibration signals generated by

roller bearing defects

Whenever a defect present in one surface of a bearing

strikes another surface, an impact results, exciting the

resonances of the bearing and of the overall mechan-

ical system. Thus, the pulsation generated by rolling

bearing defects, excites vibration at specific defect fre-

quencies as well as a high-frequency response in the

overall machine structure. A well established physi-

cal model for the vibration produced by a single point

defect on the inner race of a rolling element bearing

under radial load has been proposed in [8], describing

the amplitude modulation of the excitation forces and

the corresponding response. The model incorporates

the effects of bearing geometry, shaft speed, bearing

load distribution, transfer function and the exponential

decay of vibration.

Initially, the impact produced by the defect striking

one of the rolling elements is modeled as an ideal im-

pulse, denoted by the Dirac function δ(t). The magni-

tude of the impulse is depended on the severity of the

worn and also on the load on the defect at the time of

impact. As the inner race of the bearing rotates, the im-

pacts occur periodically at the Ball Passing Frequency

Inner race frequency (BPFI), which is defined [14] by:

fBPFI =
m

2

[

1 +
BD

PD
cosβ

]

fr (1)

where m is the number of rolling elements, BD is

the rolling element diameter, PD is the pitch circle
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Fig. 1. Waveforms involved in the generation of the envelope of

vibrations produced by an inner race defect under radial load [7]:

(a) Impacts produced under a constant uniform unit load, (b) Load

distribution in the bearing (Stribeck equation), (c) Transfer func-

tion between the worn and the fixed measurement point, (d) Typical

response decay law, (e) Final envelope.

diameter, β is the contact angle and fr is the shaft

rotation frequency.

Thus, the impacts produced by a single point defect

under a constant uniform unit load can be modeled as

an infinite series of impulses, shown in Fig. 1(a):

w(t) = w0

∑

i

δ(t− iTBPFI) (2)

wherew0 represents the magnitude of the impulses and

TBPFI = 1/fBPFI is the period between the impacts.

The load distribution in the bearing is assumed to follow

the Stribeck equation, graphically shown in Fig. 1(b):

q(t) = qmax

{

1 − 1

2ε
[1 − cos(2πfrt)]

}n

for |Arg(2πfrt)| < ϑmax (3)

q(t) = 0 elsewhere

where qmax is the maximum load intensity, θmax is the

angular extent of the load zone, ε is the load distribution

factor and n is a constant. As the bearing rotates,

the transmission path and hence the transfer function

between the worn, where the impacts occur, and the

fixed measurement point, vary. This rotation effect

is taken into account by the introduction of a transfer

function r(t), the approximate form of which is shown

graphically in Fig. 1(c). Both q(t) and r(t) are periodic,

with repetition period Tr = 1/fr.

The train of impulses w(t), generated by a constant

uniform unit load, is multiplied by the actual load q(t),
experienced by the defect, to give the actual impulses

delivered at the location of the defect. These impulses

are then multiplied by the amplitude of the transfer

function r(t) between the defect and the fixed measure-

ment point. Thus, the excitation on the fixed structure

of the machine is described by a force in the form:

f(t) = w(t)q(t)r(t) (4)

This excitation force, dependent on its location and

spectral content, excites a number of machine natu-

ral frequencies. The total vibration response can be

described by an equation in the form:

x(t) = f(t) ⊗ h(t) = [w(t)q(t)r(t)] ⊗ h(t) (5)

whereh(t) is the impulse response function of the entire

machine and ⊗ denotes the convolution operator.

In order to properly identify the fault, only the shape

of the impulse sequence, as described by the excita-

tion force pattern f(t) in Eq. (4), is necessary. Thus,

the objective of the fault identification procedure, is to

remove from the final response x(t) in Eq. (5) all its

spectral contents resulting from the structural natural

frequencies, and isolate its envelope in the following

form:

v(t) = [w(t)q(t)r(t)] ⊗ e(t) (6)

where e(t) represents the typical decay of a resonance

excited by the impacts, assumed to follow an expo-

nential decay law with a time constant τ , which is in-

dependent of the position at which the impact occurs

(Fig. 1(d)):

e(t) = e−t/τ for t > 0
e(t) = 0 elsewhere

(7)

A typical form of the requested envelope is shown in

Fig. 1(e).

A signal simulating the vibration response of a bear-

ing with an inner race fault is shown in Fig. 2(a). This

signal is generated according to Eq. (5), assuming a ro-

tation frequency of 36 Hz, a BPFI frequency of 181 Hz

and a single structural resonance at 2000 Hz. Its cor-
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Fig. 2. Signal simulating the vibration response of a faulty bearing under an inner race fault: (a) Time waveform, (b) Spectrum (Shaft Speed:

36 Hz, BPFI: 181 Hz, Natural Frequency: 2 KHz, Sampling Frequency: 10 KHz).

responding spectrum with a sampling rate of 10 KHz

is shown in Fig. 2(b). Although just a single struc-

tural resonance exists, the spectrum occupies the en-

tire frequency band, due to the various modulation ef-

fects. This clearly indicates the difficulty of bearing

fault identification, based just on FFT analysis.

For other typical bearing faults (e.g. outer race faults,

ball faults, etc.), the physical modulation mechanism is

essentially the same one to the inner race fault mech-

anism, the basic difference being in the shape of the

envelope.

3. Wavelet analysis

The Fourier Transform (FT) is a linear expansion

of the signal into sinusoidal waveforms that have in-

finite length in time and that are extremely localized

in frequency. This results to the total loss of the

time-information in the frequency domain. An im-

provement of the Fourier transform is given by the

Windowed Fourier Transform, called the Short Time

Fourier Transform (STFT). The STFT is just a series of

FTs, performed on successive portions of a waveform.

This approach does introduce the opportunity to iden-

tify time dependent variations in the structure of the

waveform at various scales, as the window, over which

the FT is computed, is moved along the longer wave-

form. However, a fixed window size must be used for a

given STFT, and in order to obtain good resolution for

the frequencies that compose the signal, a long window

is required. The STFT retains the time information

but has strong time-frequency resolution limitations. If

shorter windows are chosen, then one will have a higher
time resolution but a coarser frequency resolution. On
the other hand, if longer windows are chosen, then one
will have a higher frequency resolution but a coarser
time resolution.

To overcome the limitations of the fixed resolution
of the STFT in frequency and time domains, a new
method, based on wavelets, has been developed [7,9].
The wavelet transform (WT) is a mathematical tool that
permits the decomposition of a signal in terms of ele-
mentary contributions, called wavelets. Time-domain
wavelets are simple oscillating amplitude functions of
time, that have large fluctuating amplitudes during a
restricted time period and very low amplitude or zero
amplitude outside this time period.

The wavelets are obtained from a single function
ψ(t) by translation and dilation:

ψ(α, τ)(t) =
1√
α
ψ

(

t− τ
α

)

(8)

whereα is the so-called scaling parameter, τ is the time
localization parameter and ψ(t) is called the “mother
wavelet”. The parameters of translation τ ∈ R, and
dilation α > 0, may be continuous or discrete.

The WT of a finite energy signal x(t) with the an-
alyzing wavelet ψ(t) is the convolution of x(t) with a
scaled and conjugated wavelet:

W (α, τ) = x(t) ⊗ 1√
α
ψ

(

− t
α

)

= x(t) ⊗ 1√
α
ψ∗

(

t

α

)

(9)

=
1

α

∫

∞

−∞

x(τ)ψ∗

(

t− τ
α

)

dτ
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Fig. 3. Presentation of a three level wavelet analysis in the frequency domain. The signal is decomposed in a low resolution signal A3 and three
detail functions D1–D3, with corresponding spectra shown.

where ∗ denotes the complex conjugate.

Expression Eq. (9) can take the following alternative

form:

W (α, τ) =
√
α

∫

∞

−∞

X(f)Ψ∗(2παf)ei2πfτdf

(10)
=

√
αF−1{X(f)Ψ∗(2παf)}

where X(f) and Ψ(f) are the Fourier transforms of

x(t) andψ(t) respectively, andF −1 denotes the Inverse

Fourier Transform.

Equations (9) and (10) show that the wavelet analysis

is a time-frequency analysis, or, more properly, a time-

scaled analysis. In particular, Eq. (10) shows that the

WT acts as also as filter.

There exist many methods [9] to compute in prac-

tice the WT of a waveform. They can be divided in

two major classes: I) Methods based on the numeri-

cal computation of the Continuous Wavelet Transform

(CWT), II) Methods using specially designed filters,

that generate a highly efficient Discrete Wavelet Trans-

form (DWT), also known as “Multiresolution Decom-

position”.

The CWT is not computationally efficient. The infor-

mation it displays at closely spaced scales or at closely

time points is highly correlated and therefore unneces-

sarily redundant for many applications. The DWT pro-

vides a non-redundant, highly efficient wavelet repre-

sentation, that can be implemented with a simple recur-

sive filter scheme. The DWT produces only as many

coefficients as the number of samples within the origi-

nal signal, without the loss of any information at all.

A vibration waveform can be decomposed into its

DWT coefficients through a simple recursive filter

scheme, that consists of a high pass filter and a low pass

filter, whose filter coefficients are uniquely determined

by the particular wavelet shape used in the analysis.

Different wavelet shapes are associated with different
filter coefficient sequences. Regardless of the wavelet
used, the filters that produce the detail functions and the
low resolution signal in a DWT have a variable band-
width that depends on the center frequency of those
filters. Figure 3 schematizes the frequency spectrum
for each scale in a typical three-level DWT. The figure
shows that each successive detail function in a DWT
(D1, D2, D3) has a spectrum with a center frequency
at fo,j (level j = 1, 2, 3, . . .) and a bandwidth ∆fo,j

half than that of the previous detail function. Thus, the
frequency resolution improves by a factor of 2 for each
successively larger scale in a DWT and the time reso-
lution correspondingly decreases by a factor of 2. Con-
versely, the time resolution improves by a factor of 2 at
successively larger scales and the frequency resolution
correspondingly decreases by a factor of 2.

The center frequency fo,j and bandwidth ∆fo,j of
the jth wavelet’s spectrum become:

fo,j =
fN

2j
+
fN

2j+1
, j = 1, 2, 3, . . . (11a)

∆fo,j =
fN

2j−1
− fN

2j
, j = 1, 2, 3, . . . (11a)

where fN is half the sampling frequency of the signal
(Nyquist frequency).

At the wavelet analysis stage shown in Fig. 3, the
DWT analysis has four basic parts, namely a first detail
function D1 that captures the high frequencies between
1/2 the Nyquist frequency and the Nyquist frequency, a
second detail function D2 that captures the intermedi-
ate frequencies between 1/4 the Nyquist frequency and

1/2 the Nyquist frequency, a third detail function D3
that captures the intermediate frequencies between 1/8
the Nyquist frequency and 1/4 the Nyquist frequency
and a low resolution signal A3 that captures the low
frequencies between 0 and 1/8 the Nyquist frequency.
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Fig. 4. Indicative application of the WT in the frequency domain: (a) Original waveform of the signal, (b) Fourier transform of the signal, (c)
Fourier transform of the Morlet wavelet, (d) Application of the wavelet transform operation of Eq. (10) in the frequency domain, (e) Result of the

wavelet transform in the time domain.

Several wavelet families have been developed [7] to

define the exact shape of the wavelet ψ(t). For demon-

stration purposes of the basic concepts of wavelet anal-

ysis, the complex-valued Morlet wavelet is used as a

typical example. The Morlet wavelet is defined in the

time domain as a sinusoidal wave multiplied by a Gaus-

sian function:

(t) = cje
−σ2

j t2ei2πfo,j t (12)

where cj is a positive parameter, σj determines the

width of the wavelet and hence the width of the fre-

quency band and f0,j is the center frequency of the

band. The parameter cj is equal to:

cj = σj/
√
π (13)
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The Fourier transform of the Morlet’s wavelet is

given by:

Ψ(f) = e
−

π2

σ2

j

(f−fo,j)2

(14)

where Ψ(f) = Ψ∗(f), since Ψ(f) is real.

This wavelet has a Gaussian shape in the frequency

domain, where the center frequency fo,j is given by

Eq. (11a) and the corresponding frequency range for

level j is:

[

fo,j −
σj

2
, fo,j +

σj

2

]

=

[

fN

2j
,
fN

2j−1

]

(15)

The parameter σj becomes:

σj =
fN

2j
(16)

The procedure for the calculation of the wavelet

transform in the frequency domain using Eq. (10) is

demonstrated in Fig. 4. The Morlet wavelet is applied.

Figure 4(a) indicates the original signal and Fig. 4(b)

the real part of its Fourier Transform. Figure 4(c) indi-

cates the Fourier Transform Ψ∗(2παf) of the Morlet

wavelet, generated according to Eq. (15) for a given

center frequency fo,j (level j) and Nyquist frequency

fN . Figure 4(d) indicates the productX(f)Ψ∗(2παf),
representing the band-pass filtering of the time-domain

signal. Finally, Fig. 4(e) represents the inverse Fourier

transform of the filtered signal. This waveform is

the wavelet transform of the input signal for a given

level j.
Although the calculation of the Wavelet Transform in

practice is performed directly in the time domain using

the DWT transform, the different presentation shown

in Fig. 4 has been chosen to clearly illustrate the effect

of the wavelet transform in the frequency domain.

4. Wavelet based demodulation

The efficiency of the WT can be fully exploited in

the demodulation of vibration signals, resulting from

bearing defects. The development of the proposed en-

veloping approach is based on the fact that the mea-

sured signal, as described in part 2, contains a low-

frequency component, which acts as the modulator to a

high-frequency carrier signal. The goal of the envelop-

ing approach is to isolate the low-frequency informa-

tion of the measured signal that contains the percus-

sive frequencies caused by the bearing defect. Thus,

the high-frequency carrier signal, which contains the

natural frequencies of the associated race or rolling el-

Fig. 5. Schematic presentation of the proposed demodulation

method.

ement, is ‘filtered’ and drawn away of the measured
signal. Figure 5 illustrates schematically the proposed
approach.

The vibration, measured by an accelerometer mounted
on the casing of the machine near the bearing, is first
squared to obtain the absolute value of the modulated
signal. The squaring procedure offers a number of ad-
vantages. First, a waveform is produced, possessing
only positive values, as does the final form of the ex-
pected envelope. Then, squaring escalates the differ-
ences of the peak variations, in order that the peaks are
more discrete in the signal. Finally, as shown [4], the
squaring procedure, is able to transfer the most impor-
tant frequency content of the signal to lower frequency
bands.
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Fig. 6. Low resolution approximations A1, A2, A3 of of the signal of Fig. 2, using the Daubechies wavelet family of order 2.

Fig. 7. Details and spectrum of the low resolution approximation A2 of Fig. 2.

Then, using an N level wavelet transform, the rec-

tified signal is decomposed into its approximation and

detail waveforms. The approximation waveform AN ,

which contains the low-frequency components of the

signal, is the requested envelope. Optionally, it can

be further processed using alternative signal processing

techniques like the FFT transform, in order to derive

other specific signal features.

The selection of the proper decomposition-level N is

critical for the method. It depends on the extent of the

low-frequency region, where the characteristic bearing

frequencies are expected to appear and on the sampling
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Fig. 8. Alternative signal simulating the vibration response of a faulty bearing under an inner race fault: (a) Time waveform, (b) Spectrum (Shaft

Speed: 24.5 Hz, BPFI: 245 Hz, Natural Frequency: 2 KHz, Sampling Frequency: 20 KHz).

Fig. 9. Low resolution approximations A2, A3, A4 of of the signal of Fig. 12, using the Daubechies wavelet family of order 2.

rate. The first factor is known by the geometry of the

bearings that are monitored and on the shaft speed.

Characteristic calculation formula, similar in form to

Eq. (1), exist in the literature [14]. The selection of the

sampling rate determines the total frequencybandwidth

of the monitored signal. This bandwidth should be

selected as high as necessary, in order to include a

number of structural natural frequencies, exited by the

characteristic impulses of the bearing defect. Thus, the

measured signal includes all the relevant information

necessary for allowing the fault features to be properly

exposed. The proper decomposition level N is then

subsequently selected in such a way, that the frequency

content of the approximation waveformAN completely

covers the low frequency region, without intersecting

with the frequency band dominated by the structural

resonances.

The procedure for the selection of the proper decom-

position level is shown in two characteristic examples.

In the first example, the signal of Fig. 2 is used. Wavelet

decomposition is performed at three different levels N

= 1, 2 and 3. The resulting approximations A1, A2 and
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Fig. 10. Details and spectrum of the low resolution approximation A3 of Fig. 8.

A3 respectively, are shown in Fig. 6. Approximation

A1 covers the range between 0 Hz and 2500 Hz, half

the Nyquist frequency of 5000 Hz. Since the structural

resonance of 2000 Hz is also present in this range, the

level A1 contains additional high frequency compo-

nents, which render the demodulation procedure inef-

ficient. Approximations A2 and A3 cover respectively

the ranges 0–1250 Hz and 0–625 Hz. Both isolate well

the low frequency region of the characteristic bearing

fault frequencies from the structural resonance region

and as shown in Fig. 6, both are practically equivalent

as envelope estimators. Thus, for computational pur-

poses, only analysis up to level N = 2 is necessary in

this case. A corresponding detail view of the waveform

A2 and its Fourier analysis is shown in Fig. 7. The

BPFI frequency of 181 Hz and its modulation by the

shaft rotation frequency of 36 Hz, both characterizing

the fault, clearly appear now in the spectrum.

The signal used in the second example and its cor-

responding spectrum are shown in Fig. 8. Wavelet de-

composition is performed at three different levels N =
2, 3 and 4 and the resulting approximations A2, A3

and A4 respectively, are shown in Fig. 9. Since ap-

proximation A2 covers also in this case the range 0–

2500 Hz, where the structural resonance of 2000 Hz is

also present, it is inappropriate as envelope estimator.

Both approximations A3 and A4, covering respectively

the ranges 0–1250 Hz and 0–625 Hz, isolate well the

low frequency region from the structural resonance re-

gion. Thus, analysis only up to level N = 3 is neces-

sary in this case. A corresponding detail view of the

waveform A3 and its spectrum is shown in Fig. 10. The

BPFI frequency and the shaft rotation frequency char-

acterizing the fault, clearly appear again in the spec-

trum. Compared to the analysis of the first example,

although the structural resonance and the characteris-

tic bearing fault frequencies are in the same region,

an additional analysis level was necessary, since the

sampling frequency was doubled.

The selection of the specific wavelet family to be

used has a marginal effect on the method, since the

primary effect of the wavelet analysis with respect to

the proposed method is to isolate the low frequency

component of the signal, preserving its specific local

features in time. However, the Daubechies wavelet of

order 2 presents a slightly better behavior, indicating a

better high frequency component isolation.

5. Experimental results

Three characteristic cases are presented, each one

been typical of a different type of bearing fault. Case A

presents an inner race fault, case B presents an outer

race fault and case C a rolling element fault. The

measurements in cases A and C where conducted on

a machinery fault simulator manufactured by Spec-

taQuest, in order to study signatures of common ma-

chinery faults. The measurements in Case B where

conducted on a fan motor at the industrial installations

of Aluminium of Greece S.A.

In all cases, the measuring device is based on a Pen-

tium II/266 MHz portable computer, equipped with a

PCMCIA DAQCard-1200 data acquisition card from
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Fig. 11. Mesurements and analysis results of the bearing of Case A, representing an inner race fault: (a) Measured signal, (b) Spectrum of the

measured signal, (c) Envelope predicted by the proposed approach, (d) Spectrum of the envelope.

National Instruments. This is an 8 channel software-

configurable 12-bit data acquisition card, with a total

sampling rate capacity of 100 KHz. A B&K type 8325

accelerometer is used, with a sensitivity of 97.3 mV/g

and a dynamic range of 1 Hz to 10 KHz. The code of the

algorithm that is used in the data acquisition procedure

and signal analysis has been developed under the Lab-

VIEW programming environment of National Instru-

ments. The wavelet transform of the measured signal

is accomplished at the MATLAB wavelet toolbox.

The bearing examined in Case A consists of 8 balls,

has a ball diameter equal to 0.2813 inches, a pitch di-

ameter equal to 1.1228 inches and a contact angle equal

to 0 deg. The rotor speed is 36.52 Hz and the sam-

pling frequency is 16384 KHz. Figure 11(a) illustrates

the measured signal and Fig. 11(b) the corresponding

spectrum. Although a “spiky” behavior is observable

in the signal and a number of modulation indicating

side-bands are observable in the spectrum, the source

and the nature of the fault cannot be identified with-

out further processing. Figure 11(c) indicates the en-

velope produced by the demodulation procedure pro-

posed in this paper. A three level wavelet analysis is

performed and the approximation function A3 is re-

tained, corresponding to the range 0–1024 Hz. The

envelope clearly follows with great accuracy the shape

and the local features of the spikes of the original sig-

nal, without containing its high frequency components,

clearly demonstrating the value of the WT. For a more

clear identification of the nature of the fault, Fig. 11(d)

presents the spectrum of the envelope. The spectrum of

the demodulated signal in Fig. 11(d), compared to the

spectrum of the original signal in Fig. 11(b), presents

a far more clear structure, revealing peaks to the rotor
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Fig. 12. Mesurements and analysis results of the bearing of Case B, representing an outer race fault: (a) Measured signal, (b) Spectrum of the

measured signal, (c) Envelope predicted by the proposed approach, (d) Spectrum of the envelope.

speed fs, the characteristic bearing frequency BPFI (=
181.1 Hz) and its second harmonic 2*BPFI. Therefore,

the nature of the fault can be clearly identified.

The bearing examined in Case B is of type 6324MC3

manufactured by SKF. The rotor speed is about

1,500 rpm. The sensor is mounted near the bearing

at the horizontal direction. The sampling rate used is

20 KHz and the number of samples is 32,768. The

same type of analysis as in Case A is performed, using

a 3 level wavelet analysis. The results are presented in

Fig. 12. The low-frequency information transferred to

the spectrum of the demodulated signal reveals peaks

to the rotor speed fs, the characteristic Ball Passing Fre-

quency Outer race BPFO (= 78.12 Hz) and its second

and third harmonic, confirming also in this Case the

validity of the approach.

The last Case C presented, was accomplished with

the same type of bearing as in Case A, exhibiting now a

fault on the rolling elements. The rotor speed is about

1,450 rpm and the values of the rest of the measure-

ment parameters are the same as in Case A. The results

of the analysis are shown in Fig. 13, using again a 3

level WT. The spectrum of the original signal presents

a broad band spectrum, indicating a rather strong mod-

ulation. Only the spectrum of the envelope allows the

identification of the fault, revealing peaks at the rotor

speed fs, the characteristic Ball Spin Frequency BSF

(BSF = 1.871× Rotor speed) and its second harmonic.

6. Conclusion

The excellent time-frequency localization capabili-

ties of the wavelet transform, enhanced by the squaring

preprocessing phase of the signal, are able to exhibit the

underlying physical modulation mechanism, present in

the vibration response of faulty bearings, leading to a

new effective demodulation procedure. Key element

for the effectiveness of this demodulation procedure is

first that the choice of the specific wavelet family to

perform the analysis has a marginal effect. Also, for

the typical defect frequencies, resonance regions, and
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Fig. 13. Mesurements and analysis results of the bearing of Case C, representing a ball fault: (a) Measured signal, (b) Spectrum of the measured

signal, (c) Envelope predicted by the proposed approach, (d) Spectrum of the envelope.

sampling frequencies encountered in faulty bearing re-

sponse, the number of the necessary wavelet levels can
be quite limited in practice, a typical value being three

levels of approximation. The above facts render the

overall procedure quite simple conceptually and fast

computationally, taking into account the efficiency of

the DWT. The experimental results clearly confirm the

effectiveness of the proposed method.
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