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Abstract The robustness of two widespread mul-
tifractal analysis methods, one based on detrended
fluctuation analysis and one on wavelet leaders, is dis-
cussed in the context of time-series containing non-
uniform structures with only isolated singularities.
Signals generated by simulated and experimentally-
realized chaos generators, together with synthetic data
addressing particular aspects, are taken into consider-
ation. The results reveal essential limitations affect-
ing the ability of both methods to correctly infer the
non-multifractal nature of signals devoid of a cascade-
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like hierarchy of singularities. Namely, signals harbor-
ing only isolated singularities are found to artefactu-
ally give rise to broad multifractal spectra, resembling
those expected in the presence of a well-developed
underlying multifractal structure. Hence, there is a real
risk of incorrectly inferring multifractality due to iso-
lated singularities. The careful consideration of local
scaling properties and the distribution of Hölder expo-
nent obtained, for example, through wavelet analysis,
is indispensable for rigorously assessing the presence
or absence of multifractality.
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1 Introduction

The concept of multifractality, whereby not just one
but an extended spectrum of exponents is required to
account for the dynamics of a system, represents one
of the pillars of complex signal analysis [1–5]. The
term was coined in the context of fully-developed tur-
bulence [6] and mathematically formalized, with the
multifractal or singularity spectrum as principal char-
acteristic, by Halsey et al. [7] in the year 1986. Within
the framework of multifractal formalism, a function is
decomposed into subsets, which are characterized by a
Hölder exponent α and a fractal dimension f (α) [7].
The identified set of Hölder exponents provides explicit
information about the regularity of a time-series. When
only one type of regularity is present in a signal, its
statistical properties are quantified by a single Hölder
exponent; this results in the convergence of the multi-
fractal spectrum to a single point. A typical example
of such a monofractal process is fractional Brownian
motion (fBm) with a homogenous organization of the
fluctuations. On the other hand, multifractal signals,
related to intermittency phenomena and correlations
heterogeneity, are characterized by an extended set of
Hölder exponents and developed multifractal spectrum
resembling an inverted parabola [8]. A representative
example is the binomial cascade generated through
the iterative and multiplicative procedure. Thus, the
multifractal methodology offers an opportunity to
distinguish between signals characterized by the same
autocorrelation function or power spectrum, but having
a different underlying organization. The pervasiveness
of emergent fractal and multifractal structures has made
it possible to apply this methodology fruitfully across
diverse areas such as physics [9,10], biology [11–
13], physiology and neuroscience [14,15], chemistry
[16,17], economy [18–24], even linguistics [25,26] and
music [27,28].

The study of the multifractal properties of time-
series can be approached in two ways. The most

common approach involves estimating the spectrum
through global procedures that neglect the precise loca-
tion of the singularities. These procedures, as we show
in our study, work well for fractal structure with a
well-developed hierarchy of singularities and densely
roughness of the signals. An alternative one, based
on assessing singularity locally, offers the possibility
to determine also the location of the Hölder expo-
nents. This opens up the possibility of quantifying
the singular behavior of the signal whenever singu-
larities appear isolated, e.g., when analyzed processes
reveal local smoothness or outliers due to measurement
error. Although this approach provides more informa-
tion about the fluctuation organization, it is consider-
ably more numerically unstable, and as such, rarely
applied in practical time-series analysis. However, as
we clearly demonstrate in our study, this is possibly
the only way of distinguishing artefactual (or appar-
ent) from genuine multifractality.

Several methods have been devised for numerically
estimating the multifractal spectrum of a process given
a simulated or recorded signal (in the present context,
equivalent to time-series) [29–31]. The prevalent algo-
rithms encompass the multifractal detrended fluctua-
tion analysis (MFDFA) [32], the wavelet transform
modulus maxima [33], and its development wavelet
leaders (WL) [34]. Due to their numerical stability and
usual accuracy, these two methods are commonly rec-
ognized as the most reliable means of estimating the
multifractal spectrum [35–37]. Their accuracy has been
repeatedly demonstrated via synthetic time-series hav-
ing known multifractal properties [35]. Moreover, the
results obtained with these two methods can be used as a
cross-test of the validity of the assessed multifractality,
since MFDFA and WL are based on different numerical
methods of quantifying the multifractality. The former
hinged around the scaling properties of the variance,
whereas the latter is grounded on the wavelet transform
for decomposing the signal and characterize its self-
similar properties. Thus, in our study, we applied both
approaches as complementary methodologies. Albeit
distinct, these methods are all based on the well-known
q-filtering technique, which decomposes a time-series
into subsets predicated on the fluctuation amplitudes.
As such, they similarly provide information about the
average level of fractality across all time-series seg-
ments. While their practical usefulness is beyond ques-
tion, the results should be interpreted cautiously due to
the inherent complexity of both the signals under anal-
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ysis and of the algorithms themselves. Here, several
compelling examples are given of how even elemen-
tary systems can yield signals for which a naive inter-
pretation of the multifractal spectrum, obtained via both
the MFDFA and the WL, leads to completely flawed
conclusions. To this end, consideration is given to sim-
ulated and experimentally-recorded time-series from
the Saito chaos generator, a simple four-dimensional
non-linear dynamical system with a strong hysteretic
component, as well as to synthetic signals which by
construction cannot possess any multifractal structure.
The results show that relying only on the multifractal
spectrum width as an indicator of multifractality can be
profoundly misleading. At a minimum, other spectral
attributes such as the asymmetry have to be taken into
account, where the key is considering the local scaling
properties and the distribution of Hölder exponents.

This paper is organized as follows. In Sect. 2, the
notion of local and global Hölder exponents is intro-
duced, together with the methods of MFDFA and WL.
In Sect. 3, a selection of examples of true multifractal-
ity is firstly introduced. Then, the case of a hysteretic
oscillator is considered to exemplify the consequences
of isolated singularities on both MFDFA and WL, fol-
lowed by the presentation of paradigmatic synthetic
signals leading to similar issues. Finally, in Sect. 4,
practical recommendations for the proper application
of these analyses are offered.

2 Methodology

2.1 Hölder exponents

Analyzing the regularity of a signal provides essential
insight into its statistical properties and possible under-
lying geometrical structure. To characterize the local
singular properties of a time-series, then, the point-wise
Hölder exponent α can be considered. Given a function
f , for each x0 ∈ ℜ the same is defined as follows [38]:

α(x0) = sup{h : f ∈ Ch(x0)}, (1)

where f belongs to the Hölder space Ch(x0) if and only
if

|x − x0| ≤ ǫ, | f (x) − f (x0)| ≤ C |x − x0|
h . (2)

Values of the Hölder exponent approaching zero
indicate increasing irregularity of the function f ; con-
versely, larger values of α denote more regular fluctua-
tions. The multifractal formalism is a statistical descrip-
tion of functions through quantifying their distribution
of the point-wise Hölder exponents, which is naturally
extended to continuous signals and discretized time-
series.

2.2 Multifractal detrended fluctuation analysis

Multifractal detrended fluctuation analysis (MFDFA)
[32] is a method for detecting and quantifying the scal-
ing properties of time-series which is widely applied
across diverse areas of experimental and computational
science [39–44]. It comprises multiple steps, which
may be summarized as follows. Let us consider a time-
series xi having length N , i = 1, 2 . . . N and, as a first
step, calculate its profile according to

X ( j) =

j
∑

i=1

[xi − 〈x〉], (3)

where 〈x〉 denotes the mean of time-series xi . Since
fractality manifests as patterns which are self-similar
across different temporal scales, the profile has to be
analyzed over segments of different length. Thus, the
time-series is next subdivided into Ns non-overlapping
segments ν of length s (Ns = int(N/s)) starting from
the beginning. However, since the length is not nec-
essarily an integer multiple of the scale s, the proce-
dure is also repeated starting from the end, yielding a
total of 2Ns segments. To remove possible trends in the
time-series, which can distort the results, in each seg-
ment ν a polynomial of order m (P

(m)
ν ) is fit and sub-

sequently subtracted from the data. The effectiveness
of this detrending step strongly depends on the polyno-
mial order, and it is generally agreed that small values of
m provide the most reliable results [45]. Here, no sta-
tistically discernible differences were found between
results obtained for m = 2, 3 and 4, thus, for brevity,
only results assuming m = 4 are given.

As a next step, the detrended variance is calculated
within each segment according to

F2(ν, s) =
1

s

s
∑

k=1

(

X ((ν − 1)s + k) − P(m)
ν (k)

)

.

(4)
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Then, in order to quantify the fractal properties of the
signal with respect to the amplitude, the q-order filter-
ing technique is applied, obtaining the q-order fluctu-
ations function

Fq(s) =
{ 1

2Ns

2Ns
∑

ν=1

[F2(ν, s)]q/2
}1/q

, q ∈ ℜ \ {0},

(5)

where q operates as a filter which discriminates fluctua-
tions based on their amplitude; more precisely, negative
and positive settings of q respectively emphasize small
and large changes. Fractality in a time-series manifests
itself as power-law behavior of Fq(s) over different
scales, that is,

Fq(s) ∼ sh(q), (6)

where h(q) denotes the generalized Hurst exponent.
Hence, h(q) represents the fractality of the fluctua-
tions selected by a given setting of q. For monofrac-
tal time-series, h(q) is constant and equals the Hurst
exponent h(q) = H [46,47]. This can be used to
classify time-series with respect to linear correlations.
Namely, H > 0.5 indicates persistent dynamics (i.e.,
positive long-range correlation), whereas for H < 0.5
a signal is anti-persistent (i.e., a tendency to reverse
is observed); on the other hand, H = 0.5 denotes the
absence of any linear correlation. For multifractal sig-
nals, h(q) is a decreasing function of q, and the Hurst
exponent is retrieved at h(q = 2) = H . Thus, for better
visualizing the results and interpreting the spectrum of
the generalized Hurst exponents, the same can be con-
verted into the multifractal spectrum via the Legendre
transform of the scaling function τ(q) = qh(q)−1, or
directly through

α = h(q) + qh
′

(q), f (α) = q[α − h(q)] + 1, (7)

where α is the Hölder exponent, and f (α) refers to the
fractal dimension of the data supported by a particular
α.

The intensity of multifractality, and thus the degree
of signal complexity, is often quantified through the
width of the multifractal spectrum, that is, �α =

αmax − αmin. The larger �α, the more developed a
multifractal structure is deemed to be. Another impor-
tant feature of the multifractal spectrum is its asymme-

try. For the paradigmatic case of the binomial cascade,
a mathematical multifractal, f (α) resembles a sym-
metric inverted parabola [48]. However, for real-world
time-series, the spectrum is often asymmetric, having
one side better developed than the other; this stems
from a heterogeneous organization of the signal fluc-
tuations across scales. Hence, through quantifying the
spectral asymmetry, one can retrieve critical informa-
tion about the temporal organization of a time-series.
The asymmetry parameter is defined as [49]

Aα = (�αL − �αR)/(�αL + �αR), (8)

where �αL and �αR stand, respectively, for the dis-
tances between the spectral maximum and the small-
est and largest values of α. In turn, the degree of the
asymmetry is quantified as |Aα|, whereas the sign indi-
cates the asymmetry direction. A positive value of Aα

hallmarks a leftwards-stretched spectrum and denotes
a well-developed fractal organization of the large fluc-
tuations, while smaller ones are governed by simpler
dynamics. Contrariwise, for negative Aα the spectrum
is stretched towards the right, denoting more com-
plex behavior of the small fluctuations compared to
the larger ones.

2.3 Multifractal analysis based on wavelet leaders

Another class of techniques for estimating the multi-
fractal characteristics of a non-stationary time-series is
based on the wavelet transform [50,51]. According to
these techniques, a signal is decomposed into the ele-
mentary space-scale wavelet coefficients by means of
a family of functions stemming from a basic function,
the so-called mother wavelet. By scaling and transla-
tion of the mother wavelet ψa,s(x) = s−1/2ψ( x−a

s
),

one can obtain a decomposition of the signal at each
scale s corresponding to a frequency band, separately
for all time-points a (a, s ∈ ℜ, s > 0). The wavelet
transform of a function f (x) is defined as [52]

W f (a, s) =
1

s−1/2

∫ +∞

−∞

f (x)ψ

(

x − a

s

)

dx . (9)

Importantly, visualization of the resulting wavelet
spectrum W f (a, s) on the scale-time plane promptly
reveals the skeleton of the hierarchical structure of
the process being analyzed. The choice of the mother
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wavelet is dictated by it being well-localized in both the
time and frequency domains (derivatives of a Gaussian
function are often used as mother wavelets). A crucial
property of the wavelet transform is its close relation
with the Hölder exponent α [50], wherein

W f (x0, s) ∼ sα(x0), s → 0+. (10)

Hence, a local singularity α(x0) can be characterized
by the scaling behavior of the wavelet transform around
the point x0. Moreover, the maxima of the wavelet
transform produce maxima lines in space-scale half-
plane, which converge towards loci of singularity. Thus,
by retrieving the power-law behavior of the wavelet
transform coefficients along these lines, one can esti-
mate the Hölder exponents, and in turn, quantify the
singularity strength [33]. Due to the instability of the
canonical wavelet-based multifractal methods when-
ever a large number of coefficients are close to zero,
and due to its insensitivity to oscillating singularities
[53], the notion of wavelet leaders (WL) was introduced
[34,51]. For a discrete scale parameter s j = 2− j and
time a j,k = 2− jk ( j, k ∈ Z ), the signal can be recov-
ered via the formula [54,55]

f (x) =
∑

j,k∈Z

c j,kψ(2− j x − k), (11)

where the wavelet coefficient c j,k is given by

c j,k = 2− j

∫

ℜ

f (x)ψ(2− j x − k)dx . (12)

In this study, the Daubechies wavelet with 4 vanishing
moments was used [56]. The wavelet leader of x0 at the
level j denotes the largest wavelet coefficient among
those existing in the spatial neighborhood of x0 at finer
scales [57]. Formally, for the dyadic interval λ j,k =

[2 j k, 2 j (k + 1)], it is defined as

L j (x0) = sup
λ′⊂3λ j,k (x0)

|c j,k(λ
′)|, (13)

where 3λ j,k(x0) = λ j,k−1 ∪ λ j,k ∪ λ j,k+1 = [2 j (k −

1, 2 j (k + 2))) and contains x0. For a given scale 2 j ,
one can define structure functions S(q, j) based on the
q-th order average of the leaders

S(q, j) = 2 j
∑

λ∈	 j

L
q
j , (14)

where q is a real number, and 	 j is a set of dyadic
intervals at scale j . Power-law behavior of the struc-
ture function in the limit of small scales S(q, j) ≈

Cq2 jζ(q), (2 j → 0) is a manifestation of scale invari-
ance. Thus, ζ(q) determines the scaling exponents, and
can be numerically estimated by means of a log-log
regression. Since the ζ(q) function is necessarily con-
cave [58], the Legendre transform can be used to esti-
mate the multifractal spectrum according to the formula

f (α) = inf
q∈ℜ

(qα − ζ(q)) + 1. (15)

2.4 Global versus local Hölder exponents

The multifractality of a time-series manifests itself
through sets of non-trivial Hölder exponents, which
quantify the local variation in its irregularity [59].
These exponents may be collectively quantified by
means of a “global” measure, obtained from the mul-
tifractal spectrum in Eq. (7) or Eq. (15) and denoted
as αG, or directly through the analysis of local scal-
ing properties of the signal by means of Eq. (10) and
denoted as αL. Ideally, the two approaches should give
consistent results. However, as demonstrated below, the
multifractal analysis of complex time-series has limi-
tations which, under certain circumstances, yield mis-
leading signatures of multifractality.

2.5 Surrogates

To assess the statistical validity of the results, additional
analyses were performed on surrogate time-series for
all scenarios under consideration. Two commonly-used
surrogate sets were generated. One relies on random-
ization of the Fourier phases and, as such, preserves
only the spectral amplitudes while obliterating all
non-linear inter-dependencies [60]. The other involves
randomly permuting the time-points, destroying all
temporal correlations while preserving the value dis-
tribution [21].
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3 Results

3.1 Examples of truly multifractal time-series

For comparison with the particular cases considered
below, representative instances of real multifractals
having diverse properties are firstly presented, based
on analyses conducted over the range q ∈ [−4, 4]

[61]. To this end, two mathematical multifractals
are considered, namely the binomial cascade and
the chaotic metronome derived from the Ikeda map
[62], together with several real-world time-series: the
inter-beat intervals extracted from electrocardiographic
signals (103,885 data points), the sentence length vari-
ability of the “Finnegans Wake” book by James Joyce,
the logarithmic returns of the American stock market
index S&P500 (7440 data points), and the sunspot num-
ber variability (43,495 data points) [11,21,26,35,49].
In all these cases, the multifractal spectrum f (αG)

assumes the shape of a wide inverted parabola, span-
ning �αG > 0.2, indicating a multifractal organization
of the data (Fig. 1, left). Yet, the spectra develop differ-
ent degrees of asymmetry. For the binomial cascade, the
inter-beat intervals, and the sentence length variability,
the spectra appear almost symmetrical (Aα ≈ 0), which
suggests a homogeneous distribution of the correlations
over small and large fluctuations. On the other hand, for
stock market data and sunspot number variability, the
asymmetry is, respectively, positively- and negatively-
skewed. Thus, multifractality of the S&P500 price vari-
ation is mainly the effect of a complex organization of
the large fluctuations, whereas the arrangement of small
fluctuations is primarily responsible for multifractality
in the time-series of sunspot numbers.

Importantly, the presence of true multifractality is
confirmed, for all these cases, via analysis of the local
scaling properties (Fig. 1, right). Therein, a continuous
distribution of the estimated Hölder exponents spans a
range of αL even broader than in the multifractal spec-
trum, incidentally revealing the higher sensitivity of the
wavelet transform on the local scaling properties com-
pared to the global methodology, which mainly reflects
the prevalent singularities in the time-series.

(a) (b)

Fig. 1 Examples of true multifractality. a Multifractal spectra
and b relative frequency fr histograms of the Hölder exponents.
The following cases are presented: binomial cascade, chaotic
metronome derived from the Ikeda map, inter-beat intervals, sen-
tence length in “Finnegans Wake”, logarithmic returns of the
S&P500 index, and sunspot number variability

3.2 Artefactual multifractality in the Saito chaos
generator

To illustrate the potential pitfalls inherent in drawing
hasty conclusions solely from global measures, let us
now consider the case of the Saito chaos generator,
which is a four-dimensional non-linear oscillator con-
sisting of the following dimensionless state equations
[63]:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ẋ = −z − w

ẏ = γ (2δy + z)

ż = ρ(x − y),

ẇ = (x − h(w))/ε

(16)

wherein

h(w) =

⎧

⎪

⎨

⎪

⎩

w − (1 + η) if w ≥ η

−η−1w if |w| < η

w + (1 + η) if w ≤ −η.

(17)

Despite its simple form and low dimensionality, this
system readily generates rich dynamics spanning peri-
odicity, quasi-periodicity, chaos, and eventually hyper-
chaos as a function of the parameters γ , δ, ε, η, and ρ.
Here, it was initially deemed of interest from the per-
spective of its hypothetical ability to generate signals
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having a truly multifractal structure; however, in the
course of numerical investigation, another feature was
realized to be fundamentally important for the purposes
of the present work, namely, the presence of the hystere-
sis function h(w), which only enters the equation of the
state variable w. As a consequence of it, even though
all state variables conjointly participate in the tempo-
ral dynamics, x, y, z have rather smooth an activity,
whereas, in the limit of ε → 0, the temporal evolution
w is characterized by sudden jumps. As shall become
clear, it is these discontinuities, namely the combina-
tion of slow and fast motions corresponding to the con-
tinuous manifold and sudden jumps, which may lead
to a mistaken inference of multifractality. Unless indi-
cated otherwise, the parameters were set for operation
in the hyperchaotic regime, that is, γ = 1, δ = 0.94,
ε = 0.01, η = 1, and ρ = 14 [63,64].

Preliminary examination revealed differences
between short- and long-range temporal correlations
in the simulated time-series, giving rise to a cross-over
in the fluctuation functions. In particular, the multi-
scale characteristics revealed a strong autocorrelation
only over short time scales (i.e., s < 1000), occurring
alongside a monofractal organization with weak linear
correlations on the larger scales. Thus, in the analy-
ses below, the focus is on the short-range correlations,
which are relevant to the search for possible multifrac-
tality.

3.2.1 Numerical simulations

Time-series having a length of 106 points were simu-
lated given Eqs. (16), (17), applying the adaptive step-
size Runge–Kutta (4,5) method and returnig the results
at a fixed step size of �t = 0.1 [65]. All simulations
were repeated 10 times with randomized initial con-
ditions. Representative segments for each variable in
the hyperchaotic regime are depicted in Fig. 2a. Evi-
dently, the dynamics of x, y, z are characterized by the
markedly irregular behavior characteristic of chaotic
systems. However, the dynamics of w are even more
complex, featuring sharp upward and downward jumps.
Even though the underlying system is the same, the
multifractal properties of the signals, being influenced
by the presence of singularities, could then be partially
dependent on the variable under consideration. This
observation is confirmed by the corresponding fluctua-
tion functions Fq(s) (Fig. 2b). Therein, it is clearly vis-
ible that the functions obey power-law behavior, which

(a) (b)

(c) (d)

Fig. 2 Dynamics of the simulated Saito chaos generator. a

Time-series in the hyperchaotic regime (all variables), and b

corresponding fluctuation functions Fq (s). c Time-series in the
quasiperiodic regime (w only), and d corresponding fluctuation
functions

is a signature of fractal organization: however, while
for x, y and z the scaling is rather homogeneous, for w

a pronounced heterogeneity is apparent. Moreover, for
the latter the majority of fluctuation functions have a
slope close to those found close for the extreme values
of q, i.e., q = ±4; only a minority assume intermediate
levels, a fact that already points to a more bifractal-like
organization of the data rather than to a well-developed
multifractal structure.

Strikingly, rather similar characteristics of Fq(s) are
observed in the quasiperiodic regime, with δ = 0.65
(Fig. 2c; for brevity, results are only shown for w).
Though the dynamics are profoundly different com-
pared to the hyperchaotic regime, the heterogeneity of
the fluctuations functions remains most pronounced for
w, with the distribution of slopes nearly unchanged and
characteristic of a bifractal structure (Fig. 2d).

The multifractal analyses for the time-series of w

generated as a function of the control parameter δ

are depicted in Fig. 3. The parameter was swept in
δ ∈ [0.6, 1], thus allowing the system to develop a
wide range of dynamical behaviors comprising both
chaotic motions and closed orbits [63]. The correspond-
ing averaged Hurst exponent H and multifractal spec-
trum width �αG as estimated through the MFDFA and
WL algorithms are depicted in Fig. 3a. It is evident
that the multifractal characteristics are insensitive to
the qualitative features of the system dynamics. The
time-series remain strongly persistent, with H ≈ 1.5,
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(a)

(b)

(c)

Fig. 3 Analysis of the simulated w time-series from the Saito
chaos generator. a Width of the multifractal spectrum �α and
Hurst exponent given different settings of the control parameter
δ. Horizontal dashed line: average spectra widths estimated for
Fourier-based surrogates; for randomly shuffled data, �αG <

0.1 (not shown). b Comparison of the multifractal spectra across
two regimes: quasiperiodic and hyperchaotic. c Corresponding
relative frequency histogram of the Hölder exponents

and feature a wide spectrum with �αG ≈ 2.25: this
could, at the surface, suggest a multifractal organiza-
tion. In Fig. 3b, the multifractal spectra for the hyper-
chaotic and quasiperiodic regimes are compared. Their
shape is almost identical, with a strong left-sided asym-
metry Aα ≈ 0.5: importantly, this coexists with an
uneven distribution of the points along the spectrum,
which concentrate mainly towards its ends. Here, anal-
ysis of the local scaling revealed fundamental sub-
tleties of the data organization. The relative frequency
histogram fr of the Hölder exponents αL forms two
separable peaks, whose locations coincide with high-
concentration points close to the minimal and maximal
values of αG identified on the multifractal spectrum.

The locations of the singularities and their “strength”
were recovered, as given by the Hölder exponents,
through analysis of the local wavelet transform coef-
ficients (Fig. 4). It is well-evident that for the time-
series of the w variable, in both the quasiperiodic and
hyperchaotic regimes (Fig. 4a), the maxima form sep-
arate lines on the space-scale half-plane (cf. Fig. 4b),
which delineate isolated singularities (Fig. 4c). In the
presence of a truly multifractal geometry, the maxima
would follow a tree-like structure, stemming from the
self-similar organization of the fluctuations. By con-
trast, consideration of the locations and strength of the
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Fig. 4 Local scaling properties of the w time-series from the
Saito chaos generator, simulated in the hyperchaotic (left) and
quasiperiodic (right) regimes. a Time-courses and b their wavelet
transforms obtained via the fourth derivative of the Gaussian
wavelet. Color coding denotes the magnitude of the wavelet
coefficients W f (x0, s) ranging from dark blue (the smallest
W f (x0, s)) to red (the largest one). c Corresponding time-
localized Hölder exponents

singularities reveals that two discrete types are present
in these time-series, and related to volatile portions of
the signal: one reflects instants wherein the hysteretic
behavior is apparent (αL ≈ 1.2), the other reflects the
local extrema of the oscillatory component (αL ≈ 3).
Thus, a faithful reconstruction of the multifractal spec-
trum would clustered around two separate points. How-
ever, as discussed below, the q-filtering method inher-
ently yields a concave spectrum, and isolated peaks
are impossible to obtain. The artifactual result, then, is
purely the product of the averaging procedures inherent
in the MFDFA methodology: together with the dense
sampling of the q parameter, these generate a broad
spectrum of Hölder exponents, even when only iso-
lated singularities are present in the signal. Although it
is markedly stretched towards the left-hand side, with a
high concentration of points towards the two limit val-
ues of Hölder exponent, the estimated spectrum resem-
bles an inverted parabola. Instead, the scaling proper-
ties of the time-series generated by this system should
be represented by a single exponent for the x, y, z vari-
ables, and by a bifractal organization for the w variable.

3.2.2 Experimental confirmation

To independently confirm that the results presented
above stem faithfully from the dynamics of this sys-
tem, an experimental version of the same was conve-
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Fig. 5 Experimental implementation of the Saito chaos genera-
tor. a Circuit diagram, and b representative example of physical
realization

niently constructed using two operational amplifiers
(type TL082) and a non-linearity based on two anti-
parallel series Zener diodes (type BZT52-C5V1). The
corresponding circuit diagram is given in Fig. 5a, where
r1 = r2 = R1 = R2 = R = 10 k�, ro = 820 �, C1 =

C2 = 3.9 nF, L0 = 3.3 mH, L = 32 mH (two induc-
tors in series), and UZ = 5.1 V. These component val-
ues yield γ = C1/C2 = 1, ε = L0/(r

2
1 C1) = 0.0085,

η = r1/r2 = 1, and ρ = r2
1 C1/L = 12.2. The sig-

nal corresponding to the variable w was digitized from
the physical circuit board (Fig. 5b) using a recording
oscilloscope at a rate of 1 MSa/s, tuning g−1 to obtain
δ = {0.63, 0.67, 0.71, 0.77, 0.83, 0.91, 1}. The corre-
sponding time-series have been made publicly avail-
able [66].

In agreement with the simulations, apparent mul-
tifractality only arises for the variable w. In Fig. 6,
the time-series in the quasiperiodic and hyperchaos
regimes are shown alongside the corresponding fluc-
tuation functions. The heterogeneity of the latter is
equally apparent in both cases, suggesting that the
multifractal properties of the signals are only weakly
dependent on the dynamics. The multifractal spec-
tra are shown in Fig. 7: they are wide (�αG > 2)
but, in contrast to the simulations, more symmetric
(Aα ≈ 0.3) (cf. Fig. 7b). On the other hand, anal-

(a) (b)

(d)(c)

Fig. 6 a Experimental time-series of variable w recorded from
the physical Saito chaos generator in the hyperchaotic regime
and b corresponding fluctuation functions Fq (s). c Time-series
for the same recorded in the quasiperiodic regime and d cor-
responding fluctuation functions. Y -axis presented in arbitrary
units

ysis of the local scaling properties reveals a singu-
larity organization comparable to the simulations (cf.
Fig. 7c). Thus, the variability of the Hölder exponents
for the experimental signals is higher; however, the his-
togram still forms two separable clusters (albeit more
dispersed than in the simulations), wherein high val-
ues reflect local signal maxima and small ones corre-
spond to the sudden jumps. A possible explanation for
the more diverse distribution of the singularities could
be sought in the tolerances and non-ideal behaviors of
the electronic components (e.g., finite quality factor
and self-resonance of the inductors, smooth response
of the diodes, etc.), which knowingly give rise to richer
dynamics. Altogether, these results confirm the above
conclusions, reassuring that they are not an artifact of
the numerical integration.

3.3 Artefactual multifractality in the Rössler system

The next example of dynamical system that we consider
is the Rössler system. Its dynamics are governed by the
following system of three differential equations [67]

⎧

⎪

⎨

⎪

⎩

ẋ = −y − z

ẏ = x + ay

ż = b + z(x − c).

(18)

Similarly to the Saito generator, the Rössler system
reveals rich dynamics spanning periodic and chaotic
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(a)

(b)

(c)

Fig. 7 Analysis of the experimental recordings from the elec-
tronic Saito chaos generator. a Width of the multifractal spec-
trum and Hurst exponents estimated for the w variable given
different settings of the control parameter δ. Average �αG for
the Fourier based-surrogates and randomly shuffled data, respec-
tively, < 0.65 and < 0.1. b Multifractal spectra estimated for the
quasiperiodic and hyperchaotic regimes. c Corresponding rela-
tive frequency histograms for the Hölder exponents

behaviors. Notably, its dynamical properties depend on
state equations without a hysteresis element. They are
controlled by parameters that were set to a=0.3, b=0.2,
c=5.7, knowingly realizing chaotic behavior with an
intermediate level of folding. To ensure statistical reli-
ability, we generated time-series having a length of 106

points, a representative fragment of which is visible in
Fig. 8a. The distribution of the fluctuation functions
already suggests a bi-fractal organization (Fig. 8b) [68].
However, the multifractal spectra estimated through the
MFDFA and WL algorithms resemble typical multi-
fractal characteristics, with a strong left-sided asym-
metry (Fig. 8c). This is in contrast with the local
scaling properties (Fig. 8d). The histogram of local
Hölder exponents forms, similarly to the Saito gen-
erator case, two separate peaks that concentrate in the
vicinity of the extreme αG values. Thus, the underly-
ing structure reflects isolated singularities rather than a
unified multifractal organization.

3.4 Further examples of artefactual multifractality in
synthetic signals

The results presented above suggest that singular
behavior in the Saito chaos generator can be quantified
through just two scaling exponents. Moreover, the sub-

(a) (b)

(d)(c)

Fig. 8 Analysis of the simulated z time-series from the Rössler
system. (a) Representative fragment of the times series. (b) Fluc-
tuation functions Fq (s) from MFDFA algorithm. (c) Multifractal
spectra estimated for the analysed signal. (d) Corresponding rel-
ative frequency histogram of the Hölder exponents

sets corresponding to different singularities index sep-
arate components of the time-series, rather than consti-
tuting hierarchically-interwoven structures, which are
the hallmark of true multifractality. Thus, a naive inter-
pretation of the spectrum width �αG as a signature
of multifractality can be faulty. To highlight this issue
even more clearly, we finally consider processes that
are, by construction, not multifractal. Yet, the methods
based on q-filtering, namely the MFDFA and WL, yield
misleadingly wide multifractal spectra in these cases.

As an instructive example, results from the multi-
fractal analysis of the Lévy process, which possesses
a well-recognized bifractal structure, are firstly pre-
sented. The multifractal spectrum of the Lévy time-
series consists of two points, whose locations are
directly related to the asymptotic behavior of the dis-
tribution tail P(x) ∼ x−(αLevy+1) and are given by
[35,69]:

α =

{

1/αLevy (q ≤ αLevy)

0 (q > αLevy)
f (α) =

{

1 (q ≤ αLevy)

0 (q > αLevy)

(19)

where αLevy is the Lévy index and q is q-th moment of
the fluctuation function Fq(s). The multifractal analy-
sis of the Lévy time-series having a length of 50,000
points (Fig. 9a) with αLevy = 1.5 is reported in Fig. 10a,
b. Therein, the bifractal nature of the data is clearly vis-
ible in the histogram of Hölder exponents: two peaks,
corresponding to the theoretical values, can be read-
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ily identified. The dispersion of these peaks is artifact
purely due to the finite time-series length. Yet, the mul-
tifractal spectrum estimated utilizing the MFDFA and
WL methods is wide (i.e., �αG = 0.7) and strongly
left-sided asymmetrical (Aα ≈ 0.38): this could lead
to the faulty conclusion that the process is multifractal
when, in reality, it is not.

Next, a minimal-complexity arrangement which can
reproduce qualitative characteristics similar to those
observed in the Saito chaos generator is considered:
it simply consists of the linear superposition w(t) of
two related signals. One is a pseudo-periodic signal
given by, e.g., u(t) =

∑

i sin 2ωt/(pi/ max p) where
pi = {2, 3, 5, 7, 11}. The other is a sequence of binary
fluctuations v(t) = W [u(t), ξ ] generated by a hystere-
sis operator W acting on that signal, with v ∈ [−1, 1]

and hysteresis parameter ξ = 0.2 max u. Their linear
combination, e.g., w(t) = v(t) + u(t)/ max u is, by
definition, not hierarchically interwoven and does not
obey different scaling exponents [70,71], hence, the
multifractal spectrum should consist of two separable
points. To test this hypothesis, 10 time-series segments
each having a lengths of 106 points were generated, and
MFDFA was performed. The average of the multifrac-
tal spectra and the histogram of the Hölder exponents
are depicted in Fig. 10c, d. In this case too, the multi-
fractal spectrum appears well-developed (�αG = 1.5),
with a strong left-sided asymmetry (Aα = 0.37),
hence cursory interpretation of these results might sug-
gest a complex multifractal structure. Again, the true
nature of the process is revealed by the histogram of
the Hölder exponents estimated through the wavelets,
which shows that only two discrete types of singular-
ities are present in the time-series. Thus, the analyzed
structure is closer to a fractal structure than to mul-
tifractality. It is worth noting that the distribution of
the Hölder exponents as well as the shape of the mul-
tifractal spectrum resemble closely the results for the
variable w in the Saito chaos generator; here, however,
there was no underlying non-linear dynamical system.

Finally, a pseudo-multifractal process, consisting of
the superposition of a fractal time-series with periodic
components, is considered. At a first glance, this pro-
cess resembles the multifractal time-series of sunspot
number variability (cf. Fig. 1). However, as demon-
strated below, careful inspection of the fractal charac-
teristics illuminates its pseudo-multifractality. To this
end, fractional Gaussian noise (fGn) [4] was gener-
ated: it represents a well-known example of a stochas-

(a)

(b)

(c)

Fig. 9 Examples of synthetic time-series leading to apparent
multifractality. a Lévy process, b pseudo-periodic signal with
sudden jumps (mimics w variable in the Saito chaos generator),
c pseudo-multifractal process based on fractional Gaussian noise

tic monofractal structure with possible long-range cor-
relations quantified by the Hurst exponent, which has
been applied to model phenomena across various fields
of science. Namely, simulations produced a fractional
Gaussian noise with an arbitrarily-chosen Hurst expo-
nent of H = 0.8 (strongly persistent behavior), for
which the amplitude of the process was modulated by
a cosinusoidal function F(i) = A + A cos(2π i/T0) in
i = 1 . . . N , where A and T0 are the model parame-
ters (cf. Fig. 9c). Then, the periodic function F(i) was
added to this amplitude modulated noise. In our sim-
ulations, N = 106, A = 0.5 and T0 = 4000 were
set. The results of the local scaling analysis, as well
as the multifractal spectrum, are shown in Fig. 10e,
f. Analysis of the distribution of Hölder exponents
confirms that the time-series is a composition of the
two independent processes having different singular
behaviors. The smaller values of αL concentrate around
αL ≈ H = 0.8, corresponding to the fGn compo-
nent, whereas the larger ones are related to the periodic
trend. A cursory analysis of the multifractal spectrum
indicates heterogeneity in the scaling properties. Par-
ticularly, the width of the spectrum, together with its
strong right-sided asymmetry (Aα = −0.85), could
be taken as the hallmark of a multifractal time-series
with a well-developed hierarchy of small fluctuations;
however, this is purely an artifact. To avoid mistak-
ing pseudo-multifractality as a valid multifractal struc-
ture, the analysis of the global fractal properties should
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(a) (b)

(d)(c)

(f)(e)

Fig. 10 Analysis of the synthetic time-series, with multifractal
spectra (left) and relative frequency histogram fr of the Hölder
exponents (right). a Lévy process, b pseudo-periodic signal with
sudden jumps (mimics w variable in the Saito chaos generator),
c pseudo-multifractal process based on fractional Gaussian noise

always be corroborated by consideration of the local
scaling properties as given by the wavelet transform.

As a last example, we analyzed an artefactually-
generated stochastic process with the singularity spec-
trum derived analytically. In this respect, we considered
the square transform of fractional Brownian motion
(Fig. 11a), which represents a bi-Hölder process whose
spectrum is given by the following relation [72]:

f (α) =

⎧

⎨

⎩

1 if α = H

1 − H if α = 2H

−∞ elsewhere.
(20)

In our study, we generated fBm having a length of
106 points with a Hurst exponent H = 0.7. Fluc-
tuations functions Fq(s) (Fig. 11b) obtained through
MFDFA show non-homogeneous scaling, which sug-
gests a multiscaling behavior of the data. This is even
more clearly visible in the singularity spectrum, which
reproduces a concave hull supported by the interval in
the range from H to 2H (Fig. 11c). Thus, based only
on the Legendre-based methodology, a flawed conclu-
sion on the multifractal structure of the data would
be drawn. However, consideration of the histogram of
Hölder exponents (Fig. 11d) estimated through wavelet
analysis reveals the true bi-fractal nature of the process,
with exponents corresponding to the theoretical expec-
tations. This leads to the conclusion that the exponents
identified through MFDFA and WL, except the two

(a) (b)

(d)(c)

Fig. 11 Analysis of the square transform of fractional Brownian
motion. a Representative fragment of the times series. b Fluc-
tuation functions Fq (s) from MFDFA algorithm. c Multifractal
spectra estimated for the analysed signal. d Corresponding rela-
tive frequency histogram of the Hölder exponents

extreme values, are an artifact caused by a methodolog-
ical limitation and do not contain any true information
about the analysed process.

4 Discussion

The present study was initially conceived as the search
for a deterministic non-linear dynamical
system, relatively low-dimensional, which could gen-
uinely generate multifractal structures. The Saito chaos
generator, representing a hysteretic oscillator which
can be easily simulated numerically as well as real-
ized experimentally in an electronic circuit, was iden-
tified as a promising candidate. Indeed, an initial
investigation of its dynamics based on the commonly-
accepted MFDFA technique yielded a spectrum
suggestive of fully-developed multifractality; similar
conclusions were drawn from the WL analysis. How-
ever, concerningly, these results could only be obtained
for the dynamical variable w, which features discon-
tinuities in the form of jumps, and not for the others.
A clear indication of a flaw came from the observation
of largely overlapping multifractal spectra between the
hyperchaotic and quasiperiodic regimes: since in the
latter there is no turbulence, this is unexpected.

Closer visual inspection of the time-series was
instrumental in resolving this issue, because it demon-
strated the absence of a cascaded hierarchy of singu-
larities, fractally nested over the consecutive scales of
magnification; instead, it revealed merely a sequence of
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isolated singularities, associated with a restricted num-
ber of distinct Hölder exponents. In the Saito chaos
generator, these isolated singularities are produced by
twofold dynamics of the system, namely a continuous
manifold and sudden jumps. The dynamics of these
components, whose organization is quantified by sin-
gle scaling exponents, are not strongly interrelated: this
results in a fluctuation structure devoid of hierarchical
organization. An explicit step-by-step wavelet-based
estimation of the same indicated values limited to two-
well separated, narrow intervals (Fig. 3): this is in stark
contrast with the results given by both the MFDFA
and WL algorithms, which generated a broad distri-
bution of f (α), comprising the two Hölder exponents
seen locally, but mistakenly suggesting coverage of the
entire interval between these extremes. Tentatively, a
combination of processes without intrinsic convolution
can be indicated as a necessary condition for the emer-
gence of artefactual multifractality related to isolated
singularities. Thus, our methodology can be applied to
dynamical systems revealing different forms of dynam-
ics (cf. Fig. 7); for instance, the Saito system in the
(quasi-)periodic regime is characterized by two types
of behavior. One, related to the periodic component,
and the other, produced by hysteresis. However, these
dynamics are not hierarchically nested, which leads to a
set of isolated singularities, which in turn masquerade
as a uniform multifractal structure. Further synthetic
signals revealed that the danger of over-evaluating the
multifractal content is not confined to the dynamics
of this particular oscillator: quite on the contrary, the
diversity of these signals points to a potentially perva-
sive problem.

At the same time, for the genuine multifractals con-
sidered, such as the binomial cascade, the MFDFA
and WL methods reproduced remarkably closely the
explicitly-determined distribution of underlying Hölder
exponents. Similarly, a good correspondence was
found for the other cases of fully-developed multifrac-
tality, such as the series of heart inter-beat intervals or
sentence length variability in “Finnegans Wake”. These
methods, then, are obviously not per-se flawed, but their
results need to be interpreted much more cautiously
than is generally done.

However, precise numerical determination of the
singularity spectrum for experimental signals know-
ingly remains an open problem [73]. Due to the intricate
nature of the multifractal formalism, there are no theo-
retical proofs of the mathematical validity of the algo-

rithms used to estimate the singularity spectrum: these
algorithms are treated simply as reasonable numerical
approximations of the underlying ground truth [74]. In
particular, the commonly used formulas for the mul-
tifractal spectrum have been proposed heuristically,
through analogy with thermodynamic formalism, and
verified numerically for specific cases based on multi-
fractal measures [75]. Generally, the multifractal for-
malism yields the upper bound of the singularity spec-
trum as was shown in [76], but not the exact spectrum.
Therefore, it does not lend itself to formal proof. The
present demonstration of what cases under which the
MFDFA and WL algorithms produce a flawed indica-
tion of multifractality provides essential inspiration and
input for further, more mathematically rigorous inquiry
into the validity of these methods.

It is important to point out that the observed dis-
agreement between the multifractal spectra and the
true distribution of the underlying Hölder exponents
is not merely down to avoidable algorithmic imple-
mentation choices, but stems straight from the founda-
tional assumptions upon which the multifractal anal-
yses under consideration are built. The MFDFA and
WL approaches represent two related advances of the
Parisi-Frisch procedure [77], aiming for a compromise
between reflecting the mathematical definition of the
Hölder exponent and obtaining an estimate which is
practically viable in terms of both computational load
and stability. An averaging procedure related to the par-
tition function [or its equivalent, cf. Eqs. (5) and (14)]
and Legendre transform [cf. Eq. (15)] is central to their
framework. Although numerically stable, this method-
ology has one serious drawback. Namely, the Legendre
transform by construction imposes the concavity of the
multifractal spectrum [73] a priori even when this is not
true: if non-concave Hölder characteristics are consid-
ered, it provides only the upper bound of the Hölder
spectrum [78]. Therefore, it is patently impossible to
say without additional tests whether an observed con-
cave spectrum is a valid representation of the data, or
simply reflects the limitations of the methodology. To
overcome this problem, multifractal methods not based
on the Legendre transform have to be applied [37,79].
However, in many cases, these methods suffer from
issues of practical implementation and computational
stability. Therefore, in this work, the distribution of
the Hölder exponents was instead directly analyzed. In
the presence of non-concave multifractal characteris-
tics, it formed two clearly-separable clusters: this inex-
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orably illuminates the true organization of the data and
thus demonstrates the risk of faulty interpretation of
MFDFA- and WL-based results.

To conclude, while these techniques offer very effi-
cient and practical tools for quantifying the principal
characteristics of multifractal patterns both in time and
in space, extreme care needs to be taken when a sus-
picion arises that the pattern does not stem from true,
uniform multifractality. The reason is that the methods
are, by design, forced to assume a multifractal form for
the singularity spectrum. This aspect points to a defi-
nite necessity to be addressed in future developments,
namely, mitigating this strong prior assumption. For
now, inspection of the distribution of the local Hölder
exponents as given by wavelet-based techniques is cru-
cial in identifying such instances and classifying them
correctly.
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2. Kwapień, J., Drożdż, S.: Physical approach to complex sys-
tems. Phys. Rep. 515, 115–226 (2012)

3. Vicsek, T.: Fractal Growth Phenomena. World Scientific,
Singapore (1992)

4. Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian
motions, fractional noises and applications. SIAM Rev. 10,
422–437 (1968)

5. Peng, C.-K., Buldyrev, S.V., Goldberger, A.L., Havlin, S.,
Sciortino, F., Simons, M., Stanley, H.E.: Long-range corre-
lations in nucleotide sequences. Nature 356, 168–170 (1992)

6. Frisch, U., Parisi, G.: Fully developed turbulence and inter-
mittency. In: Ghil, Michael (ed.) Turbulence and Predictabil-
ity in Geophysical Fluid Dynamics and Climate Dynamics.
North-Holland, New York (1985)

7. Halsey, T.C., Jensen, M.H., Kadanoff, L.P., Procaccia, I.,
Shraiman, B.I.: Fractal measures and their singularities: the
characterization of strange sets. Phys. Rev. A 33, 1141–1151
(1986)
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49. Drożdż, S., Oświȩcimka, P.: Detecting and interpreting dis-
tortions in hierarchical organization of complex time-series.
Phys. Rev. E 91, 030902(R) (2015)

50. Muzy, J.F., Bacry, E., Arneodo, A.: The multifractal formal-
ism revisited with wavelets. Int. J. Bifurc. Chaos 4, 245–302
(1994)

51. Jaffard, S.: Wavelet techniques in multifractal analysis. In:
Lapidus M., van Frankenhuijsen M. (eds.) Fractal Geome-
try and Applications: A Jubilee of Benoit Mandelbrot. Pro-
ceedings of Symposia in Pure Mathematics, vol. 72(2), pp.
91–152, AMS (2004)

52. Arneodo, A., Bacry, E., Muzy, J.F.: Oscillating singularities
in locally self-similar functions. Phys. Rev. Lett. 74, 4823–
4826 (1995)

53. Lashermes, B., Jaffard, S., Abry, P.: Wavelet leader
based multifractal analysis. In: International Conference on
Acoustics, Speech, and Signal Processing, vol. 4, pp. 161–
164 (2005)

54. Wendt, H., Roux, S., Jaffard, S., Abry, P.: Wavelet lead-
ers and bootstrap for multifractal analysis of images. Signal
Process. 89, 1100–1114 (2009)

55. Deliège, A., Nicolay, S.: A wavelet leaders-based climate
classification of European surface air temperature signals.
In: Proceedings of the International Work-Conference on
Time-Series, vol. 1, pp. 40–51 (2014)

56. Daubechies, I.: Orthonormal bases of compactly supported
wavelets. Commun. Pure Appl. Math. 41, 909–996 (1988)

57. Figliola, A., Rosenblatt, M., Serrano, E.P.: Local regularity
analysis of market index for the 2008 economical crisis. Rev.
Math. 19, 65–78 (2012)

58. Jaffard, S., Lashermes, B., Abry, P.: Wavelet leaders in
multifractal analysis. In: Qian, T., Vai, M.I., Yuesheng, X.
(eds.) Wavelet Analysis and Applications. Birkhäuser Ver-
lag, Basel (2006)

123

http://arxiv.org/abs/1106.2902
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