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ABSTRACT Epilepsy is a common neurological disease that can cause seizures and loss of consciousness
and can have a severe negative impact on long-term cognitive function. Reducing the severity of impact
requires early diagnosis and treatment. Epilepsy is traditionally diagnosed using electroencephalogra-
phy (EEG) performed by trained physicians or technicians but this process is time-consuming and prone to
interference, which can negatively impact accuracy. This paper develops amodel for epilepsy diagnosis using
discrete wavelet transform to analyze sub-bands within the EEG parameter and select EEG characteristics
for epilepsy detection. Theminimize entropy principle approach is used to build fuzzymembership functions
of the characteristics of each brain wave and are then used as the basis for the construction of an associative
Petri net model. Using our APN model, the associative Petri net approach provides diagnosis accuracy rates
of 93.8%, outperforming similar approaches using decision tree, support vector machine, neural network,
Bayes net, naïve Bayes, and tree augmented naïve Bayes. Thus, the proposed approach shows promise for
fast, accurate, and objective diagnosis of epilepsy in clinical settings.

INDEX TERMS Epilepsy, electroencephalogram, wavelet transform, associative petri net.

I. INTRODUCTION

Epilepsy is one of the most common neurological diseases.
It is a cranial nerve disease which is a paroxysmal disorder
of brain functions and, among serious neurological disorders,
the incidence of epilepsy is second only to cerebrovascular
stroke. Epilepsy can cause recurrent, frequent abnormal brain
discharge which can damage brain cells, impact cognitive
function, and even cause shock. Treatment efficacy decreases
as the disease progresses.
Epilepsy detection and diagnosis relies heavily on elec-

troencephalography (EEG). It is estimated that most epilepsy
patients show abnormal EEG patterns, while a small of
patients still show normal EEG activity [1]. Epilepsy diag-
nosis using EEG requires close observation for extended
periods to detect seizures in real time, but this detection is
dependent on the experience and subjective interpretation of
the administering technician, making it time-consuming and
less than fully objective. EEG signals are also prone to exter-
nal interference which can significantly reduce diagnosis
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efficacy. Therefore, a faster and more objective approach for
the clinical diagnosis of epilepsy is needed.

This study analyzes the physiological parameters of EEG
through discrete wavelet transform to generate multiple
sub-bands and extract their features. Using the minimize
entropy principle approach (MEPA), in conjunction with
associative Petri net (APN) classification, we compare the
accuracy of these features in classifying epilepsy brainwave
with other common methods including decision tree, support
vector machine, neural network, Bayes net, Naïve Bayes, and
Tree AugmentedNaïve Bayes, and develop a diagnosis model
for epilepsy to reduce the time and cost of diagnosis.

II. LITERATURE REVIEW

A. ELECTROENCEPHALOGRAM (EEG)

EEG can effectively show abnormal discharge patterns in
the brain [2], allowing it to reflect patterns potentially asso-
ciated with epileptic seizure activity and other nonspecific
abnormities [3] through spikes, sharp waves, and paroxys-
mal rapid activities which are often accompanied by slow
waves [4]. Spikes rise and fall vertically with a higher
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amplitude of 100∼200µV. Sharp waves are triangular waves
which rise quickly and fall more slowly, with an amplitude
of more than 200µV. These represent transient electrical dis-
charge originating from synchronized neurons and are asso-
ciated with cerebral blood-flow and cerebral metabolism that
may affect cognition [5]. Seizures typically originate in the
brain’s temporal lobe, and spike amplitude during measure-
ment will be limited by the anterior temporal electrode [6].
During seizures, EEG electrodes attached to the scalp provide
reliable brain information to understand seizures [7], which
can also be used as a basis for early detection of epilepsy [8].

B. RELATED RESEARCH ON EPILEPSY DETECTION

In the feature extraction of epilepsy frequency domain, there
are literatures proposed that decomposing brainwaves into
several sub-bands provides more information than using the
original brainwave signal [9]. Brainwave signal is usually
decomposed into four sub-bands: δ band, θ band, α band,
and β band.
Most features extracted from frequency domain are invalid

and the accuracy is generally not high. Nevertheless, there
is exception; Übeyli and Güler (2007) used power spectral
density (PSD) as a feature and classified by mixture of
experts (ME) and modified mixture of experts (MME) to
obtain an accuracy rate of 95.53% and 98.6% [10].
The use of discrete wavelet transform (DWT) in the time

domain is the most practical method for EEG signal clas-
sification [10]–[16]. In order to reduce the dimension of
the eigenvector and the computational complexity, statistical
features such as maximum (MAX), minimum (Min), mean
and standard deviation (SD) can be used to represent the
signals [10], [11], [17]. Other studies [18] used different fea-
tures to cut continuous energy signals into window functions.
Guo et al. (2011) used the mean, SD, and curve length of
asymmetric frequency bands as features [12]. The study of
scholars Acharya et al. (2011) used the principal component
of wavelet packet decomposition (WPD) as features [19].
The study of Chen (2014) used the coefficients of dual tree
complex wavelet transform as features [15].
For the classification methods, the more common and

accurate methods include the neural network theory and
the probabilistic neural network(PNN), with an accuracy
rate over 93% [20]–[23]; the k-nearest neighbors algorithm
(KNN), with an accuracy rate of 99.3% [12]; multilayer
perceptron network (MLPNN), with an accuracy rate over
89% [17], [18], [20]–[24]; artificial neural network referred
to as the fuzzy inference system (ANFIS), with an accuracy
rate of 98.68% [11]; support vector machine (SVM), with
an accuracy rate about 99.2% [21], [24] and optimum path
forest (OPF) with an accuracy rate of 89.2% [16].

III. RESEARCH METHODOLOGY

This study uses discrete wavelet transform to extract features
via high-frequency and low-frequency filters, and uses a
variety of classification methods to compare its accuracy rate
for epilepsy detection including discrete wavelet transform,

minimize entropy principle approach, and associative Petri
net.

A. DISCRETE WAVELET TRANSFORM

Wavelet transform (WT) is mainly used for signal pre-
processing, noise reduction, and feature extraction. WT can
analyze EEG signals of different scales and capture more
details than short-time Fourier transfer (STFT). Discrete
wavelet transform (DWT) is a wavelet transform that can be
used in the frequency and time domains to divide original
data into consistent data and highly variable data to respec-
tively run high-frequency and low-frequency filtering on the
original series. The series generated by the low-frequency
filter retains the consistent data of the original series and the
series generated by the high-frequency filter retains the highly
variable data of the original series [25].

FIGURE 1. Process of discrete wavelet transform.

The architecture of DWT is shown in Fig. 1: x[n] is the
discrete input signal with length N; g[n] is the low pass filter
that filters out the high frequency of the input signal and
outputs the low frequency; h[n] is the high pass filter that
filters out low frequency and outputs high frequency; ↓ Q

is the downsampling filter; and a indicates the ath-layer in the
architecture.

B. MINIMIZE ENTROPY PRINCIPLE APPROACH

MEPA uses the concept of entropy to minimize the level of
confusion in the data and then establish a fuzzy membership
function, membership degree and linguistic value. Entropy
indicates the distribution uniformity of any kind of energy
in space, with a higher distribution uniformity indicating
greater entropy. The probability distribution of entropy is
used tomeasure the distribution of uncertainty.MEPA divides
data into different segments via interval segmentation and
then evaluates the degree of clutter of messages in every
specific data segment based on one key objective: tominimize
entropy or data randomness. This assessment can identify the
interval segment that produces the minimum degree of data
randomness.
Suppose we want to find the threshold segmentation line

xi to divide the data set into two regions [a, a + x] and
[a + x, b] in the data collection interval [a, b]. To find the
most appropriate threshold segmentation line, MEPA will
establish a threshold segmentation line for every different
data type in the data collection interval [a, b]; therefore,
a set of threshold segmentation lines X , xi will be obtained.
Next, use Eqs. (1), (2), (3), and (4) to calculate the entropy
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value at the established threshold xi for each different data
type [26]. The threshold with the minimum entropy value will
be the determined threshold used to divide the entire data set
into two regions p and q. The induction is performed using
the entropy minimization principle; we can find intervals in
which the distribution of samples of any class is as relatively
uniform as possible and obtain the optimal clusters within the
interval [26].

S(x) = p(x)Sp(x) + q(x)Sq(x) (1)

Sp(x) = −[p1(x) + lnp1(x) + p2(x) + lnp2(x)] (2)

Sq(x) = −[q1(x) + lnq1(x) + q2(x) + lnq2(x)] (3)

p(x) + q(x) = 1 (4)

pk (x) and qk (x) respectively denote the conditional proba-
bility of k-type samples in [a, a+x] and [a+x, b]. In the set of
threshold segmentation lines, the segmentation line with the
minimum entropy value is the optimum threshold. The value
estimates of pk (x), qk (x), p(x) and q(x) are descripted in the
literatures [26].

C. ASSOCIATIVE PETRI NET

Associative Petri Net (APN) integrates the Apriori algorithm
to Petri net that becoming a new type of Petri network struc-
ture. It can be constructed in the original knowledge-based
system to generate new knowledge rules to form a net-
work structure that can describe the reasoning process. Then
the causal relationship between the input/output places is
deduced using the unique transition reasoning mechanism of
the associative production rule (APR) generated byAPN [27].

APN contains three types of nodes: (1) places, which are
circles and describe a certain state; (2) squares, which rep-
resent the threshold of association between the antecedent
and consequence, and are used to evaluate whether there
is an association between two place nodes; (3) transitions,
bars, which contain an associative function G, as referred
to as certainty function (CF), that transform the association
through which different antecedents impact consequences
into appropriate representations. When the conditions are
satisfied, the antecedent is transformed into consequence via
a transition mechanism. The main concept of APN lies in
the discussion of dynamic processes. Therefore, its imple-
mentation rule emphasizes its ability to enable and fire the
transition; that is, firing transitions that are enabled. During
the transition state, inference ability is triggered by different
conditions to further explore the influence and correlation of
antecedent and consequence. The APN can be defined as a
13-tuple, APN = (P,T , S,C,D, 3, Ŵ, I ,O, α, β,G,W ) and
a detailed description is in the literatures [27] and [28].

1) ASSOCIATIVE PRODUCTION RULE (APR)

The reasoning mechanism of APN uses different types of
APR and, based on different input antecedents, puts the
association function between places and transitions into con-
sideration to reason out the possible value of consequences
via the unique reasoning algorithm. Given the antecedents or

consequences and the uncertainty factor of reasoning process,
in an APN a logical approach for processing uncertainty is
incorporated to the reasoning mechanism to produce five dif-
ferent types of associative production rules (APR). Accord-
ing to different conditions, APR comprises ‘‘and’’ or ‘‘or’’
computations and is also called a complex APR. This study
mainly uses three types of APRs and their calculation are
described as follows [27]:

Type 1: IF dj THEN dk (CF = cjk ). This form of APR is
calculated as formula (5):

α (pk) = α
(

pj
)∗
cjk when sjk ≥ τjk , cjk ≥ γjk (5)

Type 2: IF dj1 or dj2 or . . ..or djn THEN dk (CF = cji). This
form of APR is calculated as formula (6):

α (pk) = Max
{

α
(

pj1
)∗
cj1, α

(

pj2
)∗
cj2, . . . α

(

pjn
)∗
cjn

}

when sji ≥ τji, cji ≥ γji, i = 1, 2, . . . n (6)

Type 3: IF dj THEN dk1 or dk2 or. . ..or dkn (CF= cji). This
form of APR is calculated as formula (7):

α (pk1) = α
(

pj1
)∗
cj1, α (pk2) = α

(

pj2
)∗
cj2,

. . . α (pkn) = α
(

pjn
)∗
cjn when sji ≥ τji,

cji ≥ γji, i = 1, 2, . . . n (7)

All types of APRs can be presented mathematically and
graphically. By connecting the associated places and giving
transitions an appropriate CF, an APN reasoning model that
expresses the specialized domain knowledge can be derived.

2) REASONING ALGORITHM

Each place in an APN model is represented by a triple (p\x ,
α(px), IRS(px)), where px ∈ P, P = {p1, p2, . . . . . . .pn} is
a finite set of places. The px represents a place (node) in an
APN and dx denote the proposition of px . The degree of truth
of proposition dx is defined as α(px); the threshold of degree
of truth of each proposition is given as λ. If α(px) ≥ λx,
then the proposition dx exists. IRS(px) and RS(px) denote
the immediate reachability set and reachability set of px ,
respectively. Taking into account the degree of association
of every antecedent proposition and consequence proposi-
tion, this study adopted the Apriori algorithm in association
rule [29] to find the associative degree between places px and
py. Let sxy is the support degree and cxy denote conference
degree between places px and py. The thresholds of support
and confidence degree are given with τxy and γxy. When the
associative degree satisfies their minimum threshold τxy and
γxy, they are considered interesting; these threshold values
can be defined by user-experience or experts in this domain.
If the support and confidence of values are higher than thresh-
old values (sxy ≥ τxy and cxy ≥ γxy), the transition txy is
enabled to fire. Moreover, an appropriate certainty function
and corresponding confidence value (CF = cxy) is given,
otherwise the association does not exist and the correspond-
ing confidence value is zero (CF = 0). When a transition
ti fires, the tokens in the input places pass all squares and
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move to output places. The degree of truth of proposition dy
is calculated by α(px)∗ cxy.
If there is an APN network structure, a reasoning algo-

rithm is adopted to generate all reasoning paths from starting
place ps to goal place pg. Through our proposed a reasoning
algorithm [27], the degree of truth of the goal proposition
can be predicted under different antecedents. An example
of epilepsy diagnosis will be used to illustrate the reasoning
algorithm in this study.

IV. EXPERIMENT DESIGN AND PERFORMANCE

EVALUATION

A. DATA SET DESCRIPTION

The dataset used in this study is a public dataset
published by the Epilepsy Center of Department of
Epileptology, University of Bonn (http://epileptologie-
bonn.de/cms/front_content.php?idcat = 193) [30], and
has been widely used in studies related to EEG sig-
nals [10], [11], [18], [24]. Class A is the brainwave mea-
sured from normal subjects awake with eyes open. Class
B is the brainwave measured from normal subjects awake
with eyes closed. Class C is the brainwave measured in
the regions around the hippocampal formation of epileptic
patients during a partial seizure. Class D is the brainwave
measured in the hippocampal formation of epileptic patients
during a partial seizure. Class E is the collection of data
measured centralizing in the hippocampal formation during a
clinician-confirmed generalized seizure. Each class contains
100 samples, for a total of 500 samples each lasting 23.6 sec-
onds with a sampling frequency range of 0.53∼40Hz. The
sampling rate per second is 173.61Hz, and the resolution is
12 bits. This study classified Class A and Class B as normal,
with a total of 200 samples; and Class C, Class D, and Class
E were classified as epilepsy, with a total of 300 samples.

B. CONSTRUCTION OF EPILEPSY DIAGNOSIS MODEL

In this study, the epilepsy diagnosis model was constructed
in two stages. First, the dataset was discretized by dis-
crete wavelet transform (DWT) and important features were
extracted. The second stage was the diagnosis of epilepsy,
using the minimize entropy principle approach (MEPA) to
produce fuzzy membership functions and rules, and integrate
the associative Petri net (APN) for classification.

1) DATA PROCESSING

This study ran discrete wavelet transformation on the
500 samples using MATLAB software. The waveform used
was the db2, which was relatively smooth and the downsam-
pling parameter was set to 2 [11]. Discrete wavelet transfor-
mation discretized the data. The process is shown in Fig. 1.
In the first discrete wavelet transform, the D1 sub-band
with higher frequency and A1 the sub-band with lower fre-
quency were divided via high-pass and low-pass filter. Next,
the A1 sub-band was used for the second discrete wavelet
transform. The D2 sub-band with higher frequency and the

A2 sub-bandwith lower frequencywere divided via high-pass
and low-pass filter. The A2 sub-band was then used for the
third discrete wavelet transformation. Similarly, the A3 sub-
band was used for the fourth discrete wavelet transformation
to divide the high-frequency D4 sub-band and low-frequency
A4 sub-band. The dataset was divided into D1, D2, D3, D4,
and A4 sub-bands.

2) FEATURE EXTRACTION

According to Übeyli et al., to reduce the dimensionality of
the feature eigenvector and the computational complexity,
statistical features such as maximum (Max), minimum (Min),
mean, and standard deviation (SD) can be used to express
the signals [20]–[24]. In this study, the maximum, minimum,
mean, and standard deviation of each sub-band generated
after discrete wavelet transformations were used as the fea-
tures to classify epileptic states. A total of 20 features are
summarized in Table 1.

TABLE 1. Features of sub-bands for epilepsy detection.

3) FUZZY MEMBERSHIP FUNCTION

In this study, the MEPA is used to establish the fuzzy mem-
bership function of every feature in each sub-band. First,
the entropy of dataset was calculated; the minimum was the
optimal segmentation position and used to divide the dataset
into two datasets. The entropy values of these two datasets
were respectively calculated, and then the minimum entropy
was used as the segmentation position. The entropy value
at the segmentation position was used to establish the fuzzy
membership function of the feature. Taking the Max of the
D1 sub-band as an example, the fuzzy membership function
of the feature from low to high was divided into D1_MaxL ,
D1_MaxM and D1_MaxH . Figure 2 shows the fuzzy mem-
bership function of Max in the D1 sub-band. The equations
for the low, middle, and high semantic membership functions
are shown below.

4) ASSOCIATIVE PETRI NET MODEL

Using the fuzzy membership functions constructed in section
4.2.3, we incorporate the linguistic value and membership
degree into the propositions of input place and degree of truth
in the associative Petri net. We establish the associating Petri
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FIGURE 2. Fuzzy membership function of max_D1.

net model by calculating the association between each feature
and epilepsy and setting the threshold value of support to
0.05 and threshold value of confidence to 0.05 by trial and
error.
To improve the accuracy of epilepsy diagnosis, this study

obtained the ranking of information gain of each feature to
sort the feature with priority. Excluding the lowest ranked
D2_Mean and D4_Mean, the accuracy of the associative Petri
net model classification of epilepsy was tested by trial and
error to finally establish the associative Petri net model as
shown in Fig. 3.

FIGURE 3. APN model for epilepsy detection.

5) REASONING OF EPILEPSY DIAGNOSIS

An example of epilepsy diagnosis reasoning is described
with our proposed APN algorithm. As illustrated in Fig. 3,
our proposed APN model has eight input places and nine
middle places, and one final place. The support and confi-
dence of each APR were calculated using equations shown

TABLE 2. Support and confidence of APRs.

TABLE 3. IRS and RS of each places.

in Table 2 below. The immediate reachability set (IRS) and
reachability set (RS) of each place are summarized in Table 3.

We assume an EEG data record has twenty features after
the wavelet transform and feature extraction. These feature
values are represented by p1, p2, p3 . . . and p20 in our pro-
posed APN model, as shown in Fig. 3. Let d1, d2, d3 . . .

and d20 be the propositions of p1, p2, p3 . . . and p20. The
places p1, p2, p3, p9, p11, p13, p16, and p20 are called the
starting place and the goal place is p21. The truth degree of
the propositions of the eight starting places {p1, p2, p3, p9,
p11, p13, p16, p20} based on the fuzzy membership function
is {0.8406, 0.9217, 0.5926, 0.8599, 0.5167, 0.9246, 0.5329,
1} for the input of APN. Assume that all the threshold values
τij and γij of support and confidence are respectively set to
0.1 and 0.35. Our reasoning process uses these changes to
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the EEG characteristics to assess the likelihood of epilepsy.
The APN reasoning process is as follows:
Set p3 and p11 as the starting points andmake the inference:

Step 1: moving from p3 and p11 to p14
α(p14) = Max{α(p3)∗c3,14, α(p11)∗c11,14} =
Max{0.5926∗0.6291, 0.5167∗0.6274} =
Max{0.3728,0.3242} = 0.3728

Step 2: moving from p2 to p17
α(p17) = α(p2)∗c2,17 = {0.5926∗0.9605}
= 0.5692

Step 3: moving from p14 and p13 to p10
α(p10) = Max{α(p14)∗c14,10, α(p13)∗c13,10} =
Max{0.3728∗0.9783, 0.9246∗0.9483} =
Max{0.3647,0.8768} = 0.8768

Step 4: moving from p17 and p9 to p6
α(p6) = Max{α(p17)∗c17,6, α(p9)∗c9,6} =
Max{0.5692∗0.8345, 0.8599∗0.8916} =
Max{0.4750,0.7667} = 0.7667

Step 5: moving from p10 to p12
α(p12) = α(p10)∗c10,12 = {0.8768∗0.9780}
= 0.8575

Step 6: moving from p1 to p18
α(p18) = α(p1)∗c1,18
= {0.8406∗0.9855}
= 0.8284

Step 7: moving from p16 to p19
α(p19) = α(p16)∗c16,19
= {0.5329∗0.7801} = 0.4157

Step 8: moving from p6, p12, and p18 to p5
α(p5) = Max{α(p6)∗c6,5, α(p12)∗c12,5,
α(p18)∗c18,5} = Max{0.7667∗0.9556,0.8575
∗1,0.8284 ∗0.8063} =
Max{0.7327,0.8575,0.6679} = 0.8575

Step 9: moving from p19 and p20 to p8
α(p8) = Max{α(p19)∗c19,8, α(p20)∗c20,8} =
Max{0.4157∗0.7065, 1∗0.8462} =
Max{0.2937,0.8462} = 0.8462

Step 10: moving from p5 and p8 to p4
α(p4) = Max{α(p5)∗c5,4, α(p8)∗c8,4} =
Max{0.8575∗0.9417, 0.8462∗0.9742} =
Max{0.8075,0.8244} = 0.8244

Therefore, after reasoning we can obtain the propositions
of p4 and the degree of truth.

C. EVALUATION OF EPILEPSY DIAGNOSIS MODEL

The associative Petri net (APN) used in this study was com-
pared with other common classification methods, including
decision tree (DT), neural network (NN), support vector
machine (SVM), Bayes net (BN), tree augmented Naïve
Bayes (TAN), and Naïve Bayes (NB). The decision tree
adopted the C4.5 algorithm and set the minimum number of
leaf nodes of each branch at 2; the pruning threshold value
was 0.25 and seed was 1; the SVM kernel used polynomial
functions. Each method ran cross-validation 10 times. The
data were divided into 10 subsamples, 9 for training and

TABLE 4. Evaluation of various classification methods.

1 for testing. The cross-validation was repeated for 10 times
and each subsample was validated. The results are shown
in Table 4. Precise rate, F-measure, G-mean and accuracy
of the APN diagnosis model used in this study outperformed
other machine learning methods.

This section compares the common classification methods
used for epilepsy diagnosis. During the comparison process,
True Positives (TP: the number of normal samples classified
as normal), True Negatives (TN: number of epilepsy sam-
ples classified as epilepsy), False Negatives (FN: number of
epilepsy samples classified as normal), and False Positives
(FP: number of normal sample classified as epilepsy) are
calculated and evaluated by the following indicators:

(1) Precision Rate: TP/(TP + FP), the correct proportion
of normal sample classification.

(2) Recall Rate: TP/(TP + FN), the proportion of normal
samples in all samples classified as normal.

(3) F-measure: 2∗ TP/(2∗ TP + FP + FN), a measure of
the quality for classification system.

(4) G-mean:
√
(TP/(TP + FN) × TN/(TN + FP)), assess-

ment for the average classification accuracy of all classes.
(5) AUC: the area under the ROC curve, where a larger

value indicates that at least one class is correctly classified.
(6) Accuracy: the correct number of epilepsy and normal

classification/total number of samples.
This study combined MEPA and APN to perform epilepsy

diagnosis, and can effectively and accurately determine
whether the patients suffer from epilepsy. The experimental
results of the APN model proposed in this study showed
a precision rate of 99% and negative predictive value of
90.33%where the negative predictive value was calculated by
TN/(TN + FN). Compared with other methods, the precision
rate of the APN model was the best, indicating that the prob-
ability of misclassification of the APN model in classifying
normal participants was lower than in other methods. This
improved accuracy will help reduce medical costs due to
diagnostic errors, such as follow-up testing. The negative
predictive value of the APN model was lower than DT, NN,
and TAN, indicating a lower probability of misclassification
of epilepsy.

1) COMPARISON WITH PAST WORK

This study used APN to classify Class A and Class B as nor-
mal participants and Class C, Class D, and Class E as epilepsy
patients (two classes) with an accuracy rate of 93.8%. Nunes
et al. (2014) [16] classified Class A and Class B as normal
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subjects, Class C and Class D as patients with partial seizure,
and Class E as patients with generalized seizure, a total
of three classes. The accuracy rates using OPF, Bayesian,
SVM-RBF and ANN-MLP were respectively 89.2%, 87.4%,
84.4%, and 70.6% [16]. The data classification of Nunes’
study was similar to this study, but the present study produced
more accurate results.
To explore the accuracy of the classification of epilepsy

patients with generalized seizures, Guo et al. (2010a,
2010b) [31], [32] classified Class A, Class B, Class C, and
Class D into one class and Class E to another. Using the
MLPNNandANN for classification, they achieved respective
accuracy rates of 97.77% and 98.27%. To compare against
Guo et al. [31], [32], we classified Class A, Class B, Class
C, and Class D into one class and Class E to another; using
the APN for classification and information gain to filter vari-
ables, with an obtained accuracy of 98.6%, thus improving
on the results of Guo et al. [31], [32]. Comparison results are
summarized in Table 5.

TABLE 5. Comparison of prior studies for epilepsy detection.

V. CONCLUSION

This study constructed an epilepsy diagnosis model. First,
high-pass and low-pass filters were used to generate D1∼D4
and A4 sub-bands and extracted the Max, Min, mean and
SD of the features. Then, the information gain was used to
filter out variables and MEPA was adopted to construct the
fuzzy membership function of each feature to understand the
relationship between each feature and seizures. The infor-
mation gain was used to sort and rank the features. Finally,
the APN was used for classification, achieving an accuracy
rate of 93.8% thus outperforming other common machine
learning classification methods. The diagnosis model estab-
lished in this study (1) can quickly classify normal and
epilepsy in the initial diagnosis and serve as an objective
indicator for epilepsy diagnosis; (2) the APN model can
graphically represent the classification rules, and can easily
be transformed into a rule base for an expert system; (3)
In addition to classifying into Class AB and Class CDE
for further exploration, this study also classified into Class
ABCD and Class E to compare with past studies. Using the

information gain to sort and rank the features and finally
using theAPN for classification, we obtained an accuracy rate
of 98.6%, which improved on previous results.

Since samples of patients with epilepsy were difficult to
obtain, this study was limited to use of public datasets for
testing. Although the accuracy rate was good, it may be
biased in clinical diagnosis. Future studies should cooperate
with doctors to collect patient samples of different severity to
develop a diagnosis system based on this diagnosis model,
combining mobile devices and a simple EEG App as the
objective basis for clinical diagnosis to reduce costs and time
needed to achieve an accurate diagnosis.
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