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ABSTRACT

In an effort to provide a more efficient representation of the
acoustical speech signal in the pre-classification stage of a speech
recognition system, we consider the application of the Best-Basis
Algorithm of Coifman and Wickerhauser. This  combines the
advantages of using a smooth, compactly-supported wavelet basis
with an adaptive time-scale analysis dependent on the problem at
hand.
We start by briefly reviewing areas within speech recognition
where the Wavelet Transform has been applied with some
success. Examples include  pitch detection, formant tracking,
phoneme classification. Finally, our wavelet based feature
extraction system is described and its performance on a simple
phonetic classification problem given.

1. INTRODUCTION
Speech recognition systems generally carry out some kind of
classification/recognition based upon speech features which are
usually obtained via time-frequency representations such as Short
Time Fourier Transforms (STFTs) or Linear Predictive Coding
(LPC) techniques. In some respects, these methods may not be
suitable for representing speech; they assume signal stationarity
within a given time frame and may therefore lack the ability to
analyse localised events accurately. Furthermore, the LPC
approach assumes a particular linear (all-pole) model of speech
production which strictly speaking is not the case.
Other approaches based on Cohens general class of time-
frequency distributions such as the Cone-Kernel and Choi-
Williams methods have also found use in speech recognition
applications but have the drawback of introducing unwanted
cross-terms into the representation.

The Wavelet Transform overcomes some of these
limitations; it can provide a constant-Q analysis of a given signal
by projection onto a set of basis functions that are scale variant
with frequency. Each wavelet is a shifted scaled version of an
original or mother wavelet. These families are usually orthogonal
to one another, important since this yields computational
efficiency and ease of numerical implementation. Other factors
influencing the choice of Wavelet Transforms over conventional
methods include their ability to capture localised features. Also,
developments aimed at generalisation such as the Best-Basis
Paradigm of Coifman and Wickerhauser [1] make for more
flexible and useful representations.
We consider the possibility of providing a unified wavelet-based
feature extraction tool, one designed to contend optimally with
the acoustical characterisics particular to speech, in the most
computationally efficient manner.

The indications are that the Wavelet Transform and its variants
are useful in speech recognition due to their good feature
localisation but furthermore because more accurate (non-linear)
speech production models can be assumed [2]. The adaptive
nature of some existing techniques results in a reduction of error
due to inter/intra speaker variation.
We shall begin by defining the wavelet transform.

2. WAVELETS AND SPEECH

2.1 The Discrete Wavelet Transform
The basic wavelet function ψ ( )t can be written
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The Continuous Wavelet Transform is then defined as
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where ψ ( )t is known as the analysing wavelet or prototype

function. Typically, these continuous wavelet functions are
overcomplete and therefore do not form a true orthonormal basis.
Redundancy may be eliminated by appropriately sampling the
wavelet on a dyadic lattice, i.e. in a manner that reflects the tiling
of the time-frequency plane as in figure 1. An orthonormal basis
of compactly supported wavelets can then be obtained to

spanL2 ( )ℜ (the space of all finite energy signals) by shifting

and dilating the wavelet function ψ ( )t i.e.
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where n=1,2, . . . represents the scale and m=0,1, . . .  the time
shift. Note that the scaling factor a is here chosen as 2 in order
that the frequency axis is decomposed in octaves. Now if one
chooses a suitable wavelet, a true orthonormal basis will be
obtained. This results in a multiresolutional analysis of a given

signal over L2 ( )ℜ , yielding a time -scale decomposition

similar to that exhibited in Figure 1. For further details on MRA,
the reader is referred to the work of Mallat   [3].
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Figure 1: Tiling of time-frequency plane via the wavelet
Transform.



2.2 Pitch and Formant Extraction using
Wavelet Analysis
Kadambe & Boudreaux-Bartels [4] have used the
multiresolutional properties of wavelets  to propose an event -
based pitch-detection system. Their method works by detecting
the Glottal Closure Instant (GCI) and determines the pitch for
each sample within a particular speech segment. This approach is
particularly suitable for noisy speech.
Evangelista [5] has developed a ‘Pitch-Synchronous’ wavelet
representation using a modified version of the QMF (Quadrature
Mirror Filter) multiplexed filter bank outlined in [6].  Using the
MRA properties of wavelets, the pitch-synchronous wavelet
transform (PSWT) can be used for pitch tracking once the pitch
has been extracted using conventional methods. Unique
characterisation of  speech events such as fricatives and occlusive
unvoiced consonants may thus be achieved via the variation in
the pitch of the signal.
Maes [7] reports success in the extraction of pitch and formants
from speech. The speech signal is first decomposed into its
subbands using the wavelet transform and the temporal behaviour
of the speech in each subband is monitored using a ‘squeezing’
algorithm. Those components exhibiting similar temporal
behaviour are then recombined and the resulting principle
components represent the pitch and formant characteristics of the
speech signal.
In [11], Wesfried introduces a speech representation based on the
Adapted Local Trigonometric Transform.  The window size  into
which the data is partitioned is dependent upon the spectrum it
contains, and the transitions between windows is seen to be
suitable for segmentation into voiced-unvoiced portions. A
formant representaion is also introduced by carrying out the
following compression: locating and retaining the centres of mass
for the highest-value peaks of the transform. From this, the local
spectrum is said to represent the formant of the speech signal.

2.3 Phoneme and Speaker Classification using
Adaptive Wavelets
The adaptive wavelet transform and the concept of the super
wavelet were developed as an alternative to existing wavelet
representation schemes [8]. Given a wavelet function of the form
shown in (2), the idea is to iteratively find the translation and
dilation parameters, τ and a respectively such that some
application-dependent energy function is minimised. With respect
to the classification problem, a set of wavelet coefficients would
normally be estimated to represent certain features of a given
signal. Classification can then be performed by using the feature
set as the input to a neural net classifier. The adaptive wavelet
based classifier is given as
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where v(n) is the output for the nth  training vector xn(t) and
σ ( ) / [ exp( )]z z= + −1 1 . For two classes, w ak k k, ,τ can be

optimised by minimising the energy function in the least squares
sense (see eq 5). In [2] then, two classification examples are

considered with application to speech; classification of unvoiced
phonemes and speaker identification.
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The system first models the phonemes using a mother wavelet
similar to Figure 2 (used because of its noise-like
characteristics)only of order 3 and then presents the wavelet
features to a 2 layer feed-forward neural network. Speaker i.d. is
similarly achieved only using a Morlet wavelet to model the
phonemes since these are voiced and hence semi-periodic and
smooth. The classifier then attempts to identify a speaker by
clustering the associated utterances into one class. Results
reported are very high accuracy, although exhaustive testing on a
larger database will be needed to evaluate the method more
accurately.
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Figure 2: Daubechies Wavelet of order 4. This type of wavelet is
used in Kadambe’s unvoiced sounds classifier because of its
suitability for modelling high frequency noise-like signals.

3. THE BEST-BASIS ALGORITHM
A generalisation of the Wavelet Transform originally designed
for signal compression is the Best-basis algorithm first described
in [1]. The idea is to do transform coding on a signal by choosing
a wavelet basis which is best suited for the given problem,
resulting in an adaptive time-scale analysis. In particular, two
possibilities are proposed, the smooth local trigonometric
transforms which essentially performs local Fourier analysis on
the signal, and its frequency domain conjugate, the wavelet
packet which similarly partitions the frequency axis smoothly.
Since these transforms operate on recursively partitioned
intervals on the respective axis, the bases whether wavelet packet
or local trigonometric are said to form a library of orthonormal
bases. If these bases are ordered by refinement, they form a tree
which can be efficiently searched to result in only those
coefficients which contain the most information.
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Figure 3: An example of a modulated smooth trigonometric
packet. A localised sine dictionary, for example, would consist of
a number of  scaled, oscillatory versions of these.

In summary, the aim is to extract the maximum information or
features from our signal by projection onto a co-ordinate system
or basis function in which that signal is best (most efficiently)
represented. What is meant by efficiency really depends on the



final object. If compression is required, then the most efficient
basis will be the one wherein most of the information is
contained in just a few coefficients. On the other hand if we are
interested in classification, a basis which most uniquely
represents a given class of signal in the presence of other known
classes will be most desirable.

Figure 4 shows the structure of the wavelet based acoustic-
phonetic feature extractor  used in the pre-classification stage.
Our library of basis contained just two dictionaries, wavelet
packets and smooth localised cosine packets, although others are
certainly possible. Thus the first stage of the system is to choose
the most suitable of these for the problem at hand. This is done in
practice by simply picking the one which gives minimum entropy
among them [10].

3.1 Experimental
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Figure 4: Wavelet-based feature extractor.

After Kadambe et al [2] who implement phonetic modelling and
classification using adaptive wavelets, we use for training  the
voiced phoneme /d/ as in had, and the two unvoiced phonemes /s/
as in ask and /z/ as in was. These phonemes were extracted from
a single male speaker in the TIMIT database. Each signal was
low-pass filtered to resemble 8Khz band-limited telephone
speech. The training features for the two layer feed-forward
neural network were then obtained via the best-basis paradigm. A
dictionary was chosen from our library of possible bases for each
phoneme, dependent on which provided the minimum of a
specified cost function, in this case entropy. As it turned out, the
LCT (Local Cosine Transform) dictionary was selected for the
voiced phoneme /d/ since these set of functions are smooth and
most suitable for representing oscillatory signals. The /s/ and /z/
phonemes which correspond to different types of noise were best
represented in terms of  the wavelet packet with basis functions
similar to Figure 2, i.e. a Daubechies wavelet of order 4.  A fast

search, (i.e. O n n p( [log ] )  where p=0,1,2 depending on the basis

type) was then performed in a binary tree similar to that of Figure
5.
The wavelet features of  the training vectors obtained using this
method are shown in Figure 6(a), (b), and (c) along with the
original signals decimated to a length of 1024 samples. A
restriction, in fact, of this method is that it requires a dyadic
length which is a power of 2. To reduce the dimensionality of the
training vectors, each signal was segmented into 4 equal parts.

Similarly to Kadambe et al [2], we added Gaussian noise with
σ = 01.  independently to the first segment of each phoneme to
give an extra ten training vectors for each class. Thus we
obtained a total of 42 training vectors all normalised to unit
norm. The neural network classifier had 5 nodes in its hidden
layer after empirically determining that this number gave
sufficient classification. When the classifier was tested on the
training data it gave 100% accuracy with a 90% confidence
threshold.
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Figure 5: Best-Basis wavelet approximations organise
themselves into a binary tree.

The next stage was to test the trained network on unseen data.
We used the same kind of phonemes from the same speaker but
uttered under different context, /d/ as in dark, /s/ as in struggle,
and /z/ as in Herb’s (see Figure 7). Overall classification was
again 100% but with a lower confidence level, about 60%.

4. EVALUATION
The acoustic-phonetic feature extraction method described here
takes advantage of  the adaptive time-frequency localisation
characteristics of the Best-Basis method to efficiently represent
perceptually relevant acoustical events. That the features
extracted are suitable for classification tasks has been illustrated
by means of a simple training and test set consisting of those
signal features contained in the wavelet coefficients. The results
at this stage are promising and warrant the testing of this method
on a larger database of speech data. It is interesting to note the
structural similarities between the transformed data sets in
Figures 6(f) and 7(a) of the contextually different phonemes /z/
used in the training and test phonemes respectively. The /s/ and
/d/ phonemes  exhibit a similar characterisitic.
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Figure 6 (a)-(c): Original training signal. (d)-(f) Transform of
respective signals.
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Figure 7: Wavelet Transforms of test data. Note the correlation
between transforms of contextually different phonemes.


