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ABSTRACT 

Region of interest (ROI) image and video compression

techniques have been widely used in visual

communication applications in an effort to deliver good

quality images and videos at limited bandwidths. Most

image quality metrics have been developed for uniform

resolution images. These metrics are not appropriate for

the assessment of ROI coded images, where space-variant

resolution is necessary. The spatial resolution of the

human visual system (HVS) is highest around the point of

fixation and decreases rapidly with increasing eccentricity.

Since the ROIs are usually the regions “fixated” by human

eyes, the foveation property of the HVS supplies a natural

approach for guiding the design of ROI image quality

measurement algorithms. We have developed an objective

quality metric for ROI coded images in the wavelet

transform domain. This metric can serve to mediate the

compression and enhancement of ROI coded images and

videos. We show its effectiveness by applying it to an

embedded foveated image coding system.

1. INTRODUCTION

Region of interest (ROI) image coding allows the

assignment of more bits to the ROIs than other parts of the

image. It is a useful tool for visual communication

applications where the available bandwidth is limited.

While there has been a large amount of work in uniform

resolution image quality measurement, little has been

done in the assessment of ROI coded images. Quality

assessment method plays an important role in ROI image

coding, because image coding is essentially an

optimization procedure that maximizes the image quality

with a limited number of bits, where the quality metric

serves as a guide for bit assignment. The development of
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ROI image quality metrics is also very important for the

postprocessing or quality enhancement of ROI coded

images. However, uniform resolution image quality

measurement approaches such as peak signal-to-noise

ratio (PSNR) are still inappropriately used for the

evaluation of ROI image coding and postprocessing [1, 2].

The motivation of this work is that the human visual

system (HVS) is highly space-variant in sampling, coding,

processing and understanding. The spatial resolution of

the HVS is the highest around the point of fixation

(foveation point) and decreases rapidly with increasing

eccentricity. This feature delivers a natural way to define

an image quality measure for the case that the human eyes

are fixating at a given point in the image. For example, a

foveated PSNR (F-PSNR) metric was proposed in [3] for

foveated video compression. By thinking of the ROIs as

collections of pixels that are possibly “fixated” by human

eyes, a natural ROI image quality metric can be designed

that utilizes a foveation model of the HVS.

In this paper, we develop a foveation-based HVS

model in the discrete wavelet transform (DWT) domain

because wavelet analysis supplies a convenient way to

simultaneously examine localized spatial as well as

frequency information. A new image quality metric called

the foveated wavelet image quality index (FWQI) is then

defined for ROI coded images.

2. FOVEATED WAVELET IMAGE QUALITY

MEASUREMENT

The photoreceptors (cones and rods) and ganglion cells

are non-uniformly distributed in the retina in the human

eye [4]. The density and sensitivity of cone receptors and

ganglion cells play important roles in determining the

ability of our eyes to resolve what we see. The resolution

is the highest around the foveation point and decreases

dramatically with increasing eccentricity. Psychological

experiments had been conducted to measure the contrast

sensitivity as a function of retinal eccentricity [5-7]. In [5],

a model that fits the experimental data was given by
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where f is the spatial frequency (cycles/degree), e is the

retinal eccentricity (degrees), CT0 is a constant minimal

contrast threshold, α is the spatial frequency decay

constant, e2 is the half-resolution eccentricity, and CT(f, e)

is the visible contrast threshold as a function of f and e.

The best fitting parameter values given in [5] are α =

0.106, e2 = 2.3, and CT0 = 1/64. It was also reported in [5]

that the same values of α and e2 provide a good fit to the

data in [6] with CT0 = 1/75, and an adequate fit to the data

in [7] with CT0 = 1/76, respectively. We use the parameter

selections as in [5]. The contrast sensitivity is defined as:
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For a given e, equation (1) can be used to find its critical

frequency or so called cutoff frequency fc by setting CT to

1.0 (the maximum possible contrast) and solving for e
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Given a pixel x in an N pixels wide image, its distance

from the foveation point xf is
2

)( fxxx −=d (pixels)

and its eccentricity is given by ( )Nvdve /)(tan),( 1 xx −= ,

where v is the viewing distance in image width. In Fig. 1,

we show the normalized contrast sensitivity as a function

of pixel position for N = 512 and v = 1 and 6, respectively.

fc as a function of pixel position is also given. The CS is

normalized so that the highest value is 1.0 at 0

eccentricity. The maximum perceived resolution is also

limited by the display resolution 180/Nvr π≈
(pixels/degree). The Nyquist display frequency is given by

2/rfd = (cycles/degree). Combining this with (3), the

cutoff frequency for x is ))),((min()( dcm fdff xx = . We

define the foveation-based error sensitivity as:
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Now let us consider the wavelet transforms. In the 1-D

DWT, the input discrete signal s is convolved with

highpass and lowpass analysis filters and downsampled by

two, resulting in transformed signals sH and sL. The signal

sL can be further decomposed and the process may be

repeated multiple times. The number of repetitions defines

the wavelet decomposition level λ. For image processing,

the horizontal and vertical wavelet decompositions are

applied alternatively, yielding LL, HL, LH and HH

subbands. The LL subband may be further decomposed

and the process repeated multiple times. Let ),( θλ

represent the subband of level λ and orientation θ , where

θ is an index representing the LL, LH, HH or HL

subband. The wavelet coefficients at different subbands

supply information of variable perceptual importance. In

[8], psychovisual measurement results were given for the

visual sensitivity in wavelet decompositions. A model that

fits the experimental data is Ylog = alog + fk(log –

2

0 )log fgθ
[8], where Y is the visually detectable noise

threshold and λ−= 2rf [8] is the spatial frequency. The

visual sensitivity in subband ),( θλ is given by:
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where θλ ,A is the basis function amplitude given in [8].

Let
θλ ,B denote the set of wavelet coefficient positions

residing in subband ),( θλ . For each
θλ ,B , we calculate

the corresponding foveation point
f

θλ ,x in it. Given a

wavelet coefficient at
θλ ,Bx ∈ , its equivalent distance

from the foveation point in the spatial domain is given by

2
,, 2)( f

d θλ
λ

θλ xxx −= . With this distance, we have
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A foveation-based visual sensitivity model in the DWT

domain is obtained by combining (5) and (6):
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where β1 and β2 are parameters used to control the

magnitudes of
wS and

fS , respectively. We use β1 = 1

and β2 = 2.5. Fig. 2 shows ),( xvS for v = 1, 3, 6 and 10,

respectively. For the evaluation of image quality, instead

of using the traditional error summation methods, we

designed a new quality index [9] by modeling any signal

distortion as a combination of three factors: loss of

correlation, mean distortion and variance distortion. For

any 2-D signal, the measurement results are a 2-D quality

map as well as an overall quality index. Readers can refer

to [9] and http://anchovy.ece.utexas.edu/~zwang/research/

quality_index/demo.html for more details and

demonstrative images of the new quality index. In this

paper, we adapt the index into the DWT domain and

define a foveated wavelet image quality index (FWQI) as:
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where M is the number of the wavelet coefficients, )( nxc

is the wavelet coefficient of the original image at location

nx , and )( nxQ is the quality value at location
nx in the

quality index map. Since ),( nxvS varies with v, FWQI of

an test image is a function of v, instead of a single value.

The above model is developed for the case of a single



foveation point. We consider the ROIs as the groups of

possibly fixated pixels. This corresponds to the case of

multiple foveation points. Our model can easily adapt to

this case. Suppose that there are P foveation points in the

image, with ),( xvSi
for Pi ,,2,1 L= , then the overall

error sensitivity should be given by the maximum value of

them: )),((max),(
1

xx vSvS i
Pi L=

= .

3. IMAGE CODING USING THE FOVEATED

QUALITY METRIC

SPIHT [10] is a very efficient progressive wavelet image

coding algorithm. We designed a modified SPIHT

algorithm and tuned it using the above FWQI model to

optimize the foveated visual quality at any given bit rate.

We call the new coding algorithm the embedded wavelet

image coding (EFIC) algorithm [11]. The encoded

bitstream can be truncated at arbitrary places to create

reconstructed images with different quality and depth of

foveation. Fig. 3 gives the FWQI comparison of the EFIC

and SPIHT compressed 8bits/pixel (bpp) “Zelda” images

at 0.015265, 0.0625 and 0.25bpp, respectively. FWQI for

each image is given as a function of the viewing distance.

It can be observed that significant quality gain is achieved

throughout the whole range of the viewing distances. Fig.

4 shows the SPIHT and EFIC decoded images. Compared

with SPIHT, EFIC provides better foveated visual quality.

When sufficient bit rate is available, the EFIC coded

image approaches uniform resolution.

4. CONCLUSIONS

We propose a foveation-based sophisticated ROI image

quality metric in the wavelet transform domain. This

metric can serve as a very useful tool for foveated ROI

image coding and quality enhancement.
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Fig. 1 Normalized contrast sensitivity (Brightness indicates the strength of contrast sensitivity) for N = 512 and v

= 1 (Left) and v = 6 (Right) times of the image width, respectively. The white curves show the cutoff frequencies.



Fig. 4 “Zelda” image (512×512, 8bpp) compression result comparison at 0.015625 (CR=512:1), 0.0625 (CR=128:1)

and 0.25bpp (CR=32:1). Upper: SPIHT coded images; Bottom: EFIC coded images.

Fig. 2 Foveation-based error sensitivity mask in the

DWT domain. The top-left, top-right, bottom-left,

and bottom-right are for v = 1, 3, 6 and 10 times of

the image width, respectively. (Brightness

logarithmically enhanced for display purpose)
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Fig. 3 FWQI comparison of EFIC and SPIHT compressed

“Zelda” image (512×512, 8bpp) at 0.015625bpp,

0.0625bpp and 0.25bpp.


