Wavelet-Based Histograms for Selectivity Estimation

Yossi Matias*
Department of Computer Science
Tel Aviv University, Israel
matias@math.tau.ac.il

Abstract

Query optimization is an integral part of relational
database management systems. One important task
in query optimization is selectivity estimation, that is,
given a query P, we need to estimate the fraction of
records in the database that satisfy P. Many com-
mercial database systems maintain histograms to ap-
proximate the frequency distribution of values in the
attributes of relations.

In this paper, we present a technique based upon a
multiresolution wavelet decomposition for building his-
tograms on the underlying data distributions, with ap-
plications to databases, statistics, and simulation. His-
tograms built on the cumulative data values give very
good approximations with limited space usage. We
give fast algorithms for constructing histograms and us-
ing them in an on-line fashion for selectivity estima-
tion. Our histograms also provide quick approximate
answers to OLAP queries when the exact answers are
not required. Our method captures the joint distribu-
tion of multiple attributes effectively, even when the at-
tributes are correlated. Experiments confirm that our
histograms offer substantial improvements in accuracy
over random sampling and other previous approaches.

*Also affiliated with Bell Laboratories, Murray Hill, NJ.

tPart of this work was done while the author was visiting Bell
Laboratories in Murray Hill, NJ. Supported in part by Army Re-
search Office MURI grant DAAH04-96-1-0013 and by National
Science Foundation research grant CCR-9522047.

fSupported in part by an IBM Graduate Fellowship and by
Army Research Office MURI grant DAAH04-96-1-0013.

Jeffrey Scott Vitter!
Department of Computer Science
Duke University
Jsv@cs.duke.edu

Min Wang?!
Department of Computer Science
Duke University
minw@cs.duke.edu

1 Introduction

Several important components in a database manage-
ment system (DBMS) require accurate estimation of
the selectivity of a given query. For example, query
optimizers use it to evaluate the costs of different query
execution plans and choose the preferred one.

The set of predicates we are going to consider in this
paper is the set of selection queries, in particular, range
predicates of the form ¢ < X < b, where X is a non-
negative attribute of the domain of a relation R and a
and b are constants. The set of equal predicates is the
subset of the range predicates that have a = b. The set
of one-side range predicates is the special case of range
predicates in which a = —o0 or b = co.

We adopt the notations in [16] to describe the data
distributions and various histograms. The domain D =
{0, 1,2, ..., N — 1} of an attribute X is the set of all
possible values of X. The value set V' C D consists of
the n distinct values of X that are actually present in
relation R. Let v; < v < -+ < v, be the n values
of V. The spread s; of v; is defined as s; = v;41 — v;.
(We take so = v; and s, = 1.) The frequency f; of v;
is the number of tuples in which X has value v;. The
cumulative frequency c; of v; is the number of tuples
t € R with t.X < wv;; that is, ¢; = 23‘21 fj- The
data distribution of X is the set of pairs 7 = {(v1, f1),
(v2, f2), -+ (Un, fn)}. The cumulative data distribu-
tion of X is the set of pairs T¢ = {(vi,c1), (v2,c2),

..y (Un,cn)}. The eatended cumulative data distribu-
tion of X, denoted by 7€', is the cumulative data dis-
tribution of 7€ extended over the entire domain D by
assigning zero frequency to every value in D — V.

2 Previous Approaches

The goal of any histogram is to accurately approxi-
mate the underlying distribution. Several different his-
tograms have been proposed in the literature. Poosala
et al [16, 13] propose a taxonomy to capture all previ-
ously proposed histograms; new histograms types can
be derived by combining effective aspects of different

histogram methods. Among the histograms discussed
in [16, 13], the MaxDiff(V,A) histogram gives best over-
all performance. MaxDiff(V,A) uses area as a “source
parameter” in order to choose the bucket boundaries;
area is defined for each value in the value set V as
the product of the value’s frequency and its spread. In
a MaxDiff(V,A) histogram with S buckets, there is a
bucket boundary between two source parameter values
that are adjacent (in attribute value order) if the dif-
ference between these values is one of the 8 — 1 largest
such differences. By using area as a source parameter,
MaxDiff(V,A) histogram achieves better approximation
than previous well-known methods like equidepth his-
tograms.

Poosala et al [16] also mention other histogram tech-
niques. For example, histograms based on minimizing
the variance of the source parameter such as area have
a performance similar to that of MaxDiff(V,A), but are
computationally more expensive to construct. They also
mention a spline-based technique, but it does not per-
form as well as does MaxDiff(V,A).

The main challenge for histograms on multidimen-
sional (multi-attribute) data is to capture the correla-
tions among different attributes. We defer discussion of
the multidimensional case to Section 5.

3 Our Wavelet-Based Technique

Wavelets are a mathematical tool for hierarchical de-
composition of functions. Wavelets represent a func-
tion in terms of a coarse overall shape, plus details that
range from broad to narrow. Regardless of whether the
function of interest is an image, a curve, or a surface,
wavelets offer an elegant technique for representing the
various levels of detail of the function in a space-efficient
manner.

At a high level, our histogram construction algorithm

works as follows:

1. In a preprocessing step, we form the extended cu-
mulative data distribution TC" of the attribute X,
from the original data or from a random sample of
the original data.

2. We compute the wavelet decomposition of TC+, ob-
taining a set of N wavelet coefficients.

3. We keep only the m most significant wavelet coeffi-
cients, for some m that corresponds to the desired
storage usage. The choice of which m coefficients
we keep depends upon the particular thresholding
method we use.

After the above algorithm, we obtain m wavelets co-
efficients. The values of these coefficients, together with
their positions (indices), are stored and serve as a his-
togram for reconstructing the approximate data distri-

bution in the on-line phase (query phase). To compute
the estimate for the number of tuples whose X value is
in the range a < X < b, we reconstruct the approxi-
mate values for b and a — 1 in the extended cumulative
distribution function and then subtract them.

One interesting observation we made during exper-
iments is that the wavelet approximation is more ef-
fective for selectivity estimation, especially for range
queries, if the decomposition is done on the extended
cumulative data distribution as described above rather
than on the raw data frequencies.

Further benefits can be obtained by quantizing the
wavelet coefficients and entropy-encoding the quantized
coefficients. In this paper, we restrict ourselves to choos-
ing m complete coefficients, so as to facilitate direct
comparisons with previous work.

3.1 Preprocessing

In the preprocessing step, we compute 7. The extended
cumulative data distribution 7€ can be easily com-
puted from 7.

Exact computation of 7 requires that a counter be
maintained for each distinct attribute value in V. When
the cardinality of V' is small, we can keep a hash table
in memory and 7 can be obtained in one complete scan
through the relation.

When the cardinality of V' becomes very big, such a
hash table will not fit in memory, and multiple passes
through the relation will be required to obtain 7T, re-
sulting in excessive I/O cost. We can instead use an
I/O-efficient external merge sort to compute 7 and min-
imize the I/O cost [22]. The merge sort process here is
different from the traditional one: During the merging
process, records with the same attribute value can be
combined by summing the frequencies. After several
passes in the merge sort, the lengths of the runs will
stop increasing; the length of each run is bounded by
the cardinality of V', whose size, although too large to
fit in memory, is typically small in comparison with the
relation size.

In this paper, we do not consider the I/O complexity
of the wavelet decomposition and of thresholding, since
the data size after preprocessing is generally not large
and can fit in internal memory, in which case, the pre-
processing to compute 7 can be done in a single pass
over the data. If for any reason it’s necessary to further
reduce the I/O and CPU costs of the precomputation, a
well-known approach is to use random sampling [12, 11].
The idea is to sample s tuples from the relation ran-
domly and compute 7 for the sample. The sample data
distribution is then used as an estimate of the real data
distribution. To obtain the random sample in a sin-
gle linear pass, the method of choice is the skip-based

method [24] when the number T of tuples is known be-
forehand or the reservoir sampling variant [23] when T
is unknown. A running up-to-date sample can be kept
using a backing sample approach [4]. We do not con-
sider in this paper the issues dealing with sample size
and the errors caused by sampling. Our experiments
confirm that wavelet-based histograms that use random
sampling as a preprocessing step give estimates that are
almost as good as those from wavelet-based histograms
that are built on the full data. On the other hand, as
we shall see in Section 6, the wavelet-based histograms
(whether they use random sampling in their preprocess-
ing or not) perform significantly better at estimation
than do naive techniques based on random sampling
alone.

3.2 Wavelet Decomposition

The goal of the wavelet decomposition step is to repre-
sent the extended cumulative data distribution 7¢" at
hierarchical levels of detail.

First we need to choose wavelet basis functions. Haar
wavelets are conceptually the simplest wavelet basis
functions, and for purposes of exposition in this paper,
we focus our discussion on Haar wavelets. They are
fastest to compute and easiest to implement. We also
implement a decomposition based upon linear wavelets
that gives better estimation.

To illustrate how Haar wavelets work, we start with
a simple example. A detailed treatment of wavelets can
be found in any standard reference on the subject (e.g.,
[8, 19]). Suppose that the data distribution 7 of at-
tribute X is {(0,2),(2,5),(3,2)}. We can easily derive
the cumulated values 7¢ ={(0,2),(1,2), (2,7),(3,9)}.
We perform a wavelet transform on the one-dimensional
“signal” of the extended cumulative frequencies:

S=1[2,27109]

We first average the cumulative frequencies, pairwise,
to get the new lower resolution signal with values

2, 8].

That is, the first two values in the original signal (2
and 2) average to 2, and the second two values 7 and 9
average to 8. Clearly, some information is lost in this
averaging process. To recover the original signal from
the two averaged values, we need to store some detail co-
efficients, which capture the missing information. Haar
wavelets store the pairwise differences of the original
values. It is easy to see that the original values can be
recovered from the averages and differences.

We have succeeded in decomposing the original signal
into a lower resolution (two-value) version and a pair of

detail coefficients. By repeating this process recursively
on the averages, we get the full decomposition:

Resolution | Averages | Detail Coefficients
4 [2,2,7, 9]
2 2, 8] [0, 2]
1 [5] [6]

We define the wavelet transform (also called wavelet
decomposition) of the original four-value signal to be
the single coefficient representing the overall average of
the original signal, followed by the detail coefficients in
the order of increasing resolution. Thus, for the one-
dimensional Haar basis, the wavelet transform of our
original cumulative frequencies is given by

~

S=15,6,0,2]

The individual entries are called the wavelet coeffi-
cients. The wavelet decomposition is very efficient com-
putationally, requiring only O(N) time to compute for
a signal of N frequencies.

No information has been gained or lost by this pro-
cess. The original signal has four values, and so does the
transform. The original signal S can be reconstructed
from S by the following formulas:

S0) = S50) - 351) - 18) (1)
S = 80) - 580) + 550))
S@) = 50)+ 5350 -356) ®
S@3) = §(o)+%§(1) +%§(3) (1)

One advantage of the wavelet transform is that in
many cases a large number of the detail coefficients
turn out to be very small in magnitude. Truncating
these small coefficients from the representation intro-
duces only small errors in the reconstructed signal. We
can approximate the original data distribution effec-
tively by keeping only the most significant coefficients,
determined by some thresholding method, as discussed
in the next subsection.

A better higher-order approximation for purposes of
range query selectivity, for example, can be obtained
by using linear wavelets as a basis rather than Haar
wavelets. Linear wavelets share the important proper-
ties of Haar wavelets that we exploit for efficient process-
ing. It is natural in conventional histograms to interpo-
late the values of items within a bucket in a uniform
manner. Such an approximation corresponds to a lin-
ear function between the endpoints of the bucket. The
approximation induced when we use linear wavelets is

a piecewise linear function, which implies exactly this
sort of linear interpolation. It therefore makes sense in-
tuitively that the use of linear wavelets, in which we op-
timize directly for the best set of interpolating segments,
will perform better than standard histogram techniques.
For reasons of brevity, we defer further discussion to the
full paper.

3.3 Thresholding

Given the storage limitation for the histogram, we can
only “keep” a certain number of the N wavelet coeffi-
cients. Let m denote the number of wavelet coefficients
that we have room to keep; the remaining wavelet co-
efficients will be implicitly set to 0. Typically we have
m < N. The goal of thresholding is to determine which
are the “best” m coefficients to keep, so as to minimize
the error of approximation.

We can measure the error of approximation made by
histograms in several ways. Let S; be the actual size of
a query g; and let S;" be the estimated size of the query.
We use the following three different error measures for
the error e; of query g;:

1. The absolute error of a query:

e = |5; — 5.

2. The relative error of a query:

abs R
gelz%:wls%‘s’”, fOI‘Si>O-

3. The combined error of a query:

comb __
i =

e min{a x e2**, B x e},

where a and § are positive constants. (If S; = 0,
then we set e$o™P = o x €2P5.)

The combined error reflects the importance of having
either a good relative error or a good absolute error for
each estimation. For example, for very small frequen-
cies, it may be good enough if the absolute error is small
even if the relative error is large, and for large frequen-
cies, the absolute error may not be as meaningful as the
relative error.

Once we choose which of the above measures to use
in order to represent the errors of individual queries, we
need to choose a norm by which to measure the error
of a collection of queries. Let e = (e1, €2, ..., €Q)
be the vector of errors over a sequence of () queries.
We assume that one of the above three error measures
is used for each of the individual query errors e;. For
example, for absolute error, we can write ¢ = (e, e2,
., eQ) = s = (e8P, edPs, ... e2P%). We define the
overall error for the @@ queries by one of the following
€rTor measures:

1. The I-norm average error:

Ly
lellh = =) _ e
Q i=1

2. The 2-norm average error:

1
lele =[5 3 e
1<i<@

3. The infinity-norm average error:

ellco = max {e;}.
lelloo = max {ei}
These error measures are special cases of the p-norm
average error, for p > 0:

lell, = (% 3 eip)l/p.

1<i<Q

The first step in thresholding is weighting the coef-
ficients in a certain way (which corresponds to using a
particular basis, such as an orthonormal basis, for ex-
ample). In particular, for the Haar basis, normalization
is done by dividing the wavelet coefficients §(2j)
S(29+1 — 1) by V27, for each 0 < j < log N — 1. Given
any particular weighting, we propose the following dif-
ferent thresholding methods:

1. Choose the m largest (in absolute value) wavelet

coefficients.

2. Choose m wavelet coefficients in a greedy way. For
example, we might choose the m largest (in abso-
lute value) wavelet coefficients and then repeatedly
do the following two steps m times:

(a) Choose the wavelet coefficient whose inclusion
leads to the largest reduction in error.

(b) Throw away the wavelet coefficient whose
deletion leads to the smallest increase in er-
ror.

Another approach is to do the above two steps re-
peatedly until a cycle is reached or improvement is
small.

Several other variants of the greedy method are possible:

3. Start with the m/2 largest (in absolute value)

wavelet coefficients and choose the next m/2 co-
efficients greedily.

4. Start with the 2m largest (in absolute value)
wavelet coefficients and throw away m of them
greedily.

The straightforward method of performing each iter-
ation of the greedy method requires O(N?) time, and
thus the total time is O(mN?). By maintaining a spe-
cial dynamic programming tree structure, we can speed
up the preprocessing significantly.

Theorem 1 We can greedily choose m coefficients
for any of the standard error measurements in
O(N(log N)logm) time and O(N) space. If Method 4
is used, it can be done in O(N log®m) time and O(N)
space.

Proof Sketch: For simplicity, we consider the case when
Method 4 is used. The proofs for other methods are
similar.

We build an “error tree” of the wavelet transform.
The leaves of the tree correspond to the original signal
values, and the internal nodes correspond to the wavelet
coefficients. Figure 1 is the error tree for NV = 8; each
node is labeled with the wavelet coefficient or signal
value that it corresponds to. The wavelet coefficient
associated with an internal node in the error tree con-
tributes to the signal values at the leaves in its subtree.
For each of the 2m nodes that correspond to the 2m
largest wavelet coefficients, we store the error change
introduced by deleting this coefficient.

At the ith (1 < i < m) step of the greedy threshold-
ing, we throw away the wavelet coefficient whose dele-
tion causes the smallest increase in error. Suppose this
coefficient corresponds to node n; in the error tree. We
need to update the error information of all the “rele-
vant” nodes after the deletion. The relevant nodes fall
into two classes: (a) the wavelet coefficients in the sub-
tree rooted at n; and (b) the wavelet coefficients on the
path from n; up to the root of the error tree.

Suppose the subtree rooted at n; has k' leaves and
m' class (a) wavelet coefficients. The maximum number
of class (b) wavelet coefficients is at most log % The
important point is that the time to update a wavelet
coefficient is proportional to the number of leaves in its
subtree that change value. By a convexity argument,
the worst-case locations for the m' class (a) wavelet co-
efficient are in the top logm/' levels of n;’s subtree. The
resulting time to update the m' class (a) wavelet coeffi-
cients is O(k'logm’). The time to update the class (b)
wavelet coefficients is O(k'log £7).

By a convexity argument, over the m deletions, the
worst case is for the m deleted wavelet coefficients to be
in the top logm levels of the error tree. In this case, the
m terms of k'logm’ and the m terms of k'log & sum
to O(N log® m). O

We can use dynamic programming techniques to get
further improvements for the p-norm average error for
even p:

Theorem 2 For the p-norm average error measure for
any even p, we can reduce the time bound in Theorem 1
to O(N logm); for Method 4, the time is O(N).

It is well known if the wavelet basis functions are
orthonormal that Method 1 is provably optimal for

S0 SO S S®) S4) S6) (6) S0

Figure 1: Error tree for N =8

the 2-norm average error measure. However, for non-
orthogonal wavelets like our linear wavelets and for
norms other than the 2-norm, no efficient technique is
known for how to choose the m best wavelet coefficients,
and various approximations have been studied [2].

Our experiments show that Method 2 does best over-
all in terms of accuracy for wavelet-based histograms.
Method 1 is easier to compute but does not perform
quite as well.

4 On-Line Reconstruction

In the query phase, a range query a < X < b is pre-
sented. We reconstruct the approximate cumulative fre-
quencies of @ — 1 and b, denoted by ¢',_1 and ¢, using
the m wavelet coefficients. The size of the query is es-
timated to be ¢, — ¢, _;.

The time for reconstruction is crucial in the on-line
phase. The following result allows for fast reconstruc-
tion:

Theorem 3 For a given range query a < X < b, the
cumulative frequencies of a — 1 and b can be re-
constructed from the m wavelet coefficients using
an O(m)-space data structure in time O(logm +
of relevant coefficients) = O(min{m,log N}).

Proof Sketch: The method for reconstructing the fre-
quency for a given domain element from the wavelet co-
efficients consists of identifying the O(log V) coefficients
that are involved in the reconstruction. Each wavelet
coefficient contributes to the reconstruction of the fre-
quencies in a contiguous set of the domain. In a Haar
wavelet, for example, each coefficient contributes a pos-
itive additive term to the reconstructed frequency for
each domain value within a certain interval in the do-
main, and it contributes the opposite (negative) term for
each value within an adjacent interval in the domain. In
particular, as demonstrated in formulas (1)—(4) for the
case N = 4 and by Figure 1 for the case N = 8, the

wavelet coefficient S(0) contributes as a positive addi-
tive term to each value in the domain S(0), S(1), ...,
S(N —1). The wavelet coefficient S(1) contributes as
a negative term to S(0), ..., S(§ — 1) and as a posi-
tive term to S(&), ..., S(N —1). The wavelet coeffi-
cient S(2) contributes as a negative term to S(0), ...,
S(Z —1) and as a positive term to S(§), ..., S(§ - 1).
The wavelet coefficient S(3) contributes as a negative
term to S(5), ..., S(2¥ —1) and as a positive term to
S(%) ooy S(N —1).

For higher-order wavelets (like linear wavelets), the
contribution of a given wavelet coefficient can be rep-
resented by a constant number of adjacent intervals in
the domain; unlike in the Haar case, the contribution
of a given wavelet coefficient varies from point to point
within each interval, but its contribution within an in-
terval is specified by a polynomial function (which is
linear in the case of linear wavelets). These intervals
can be stored in linear space in an interval tree data
structure. Given a domain element, the wavelet coeffi-
cients corresponding to the element’s frequency can be
found in O(logm) by a stabbing query on the intervals
stored in the interval tree. The reconstructed frequency
is then the sum of the contributions of each of those
wavelet coefficients. O

Often it is useful to represent the histogram as an
explicit piecewise smooth function rather than as m
wavelet coefficients. For Haar wavelets the resulting
function is a step function with at most 3m steps in
the worst case, and for linear wavelets the function is
piecewise linear with at most 5m changes in slope in
the worst case. In real-life data, we can expect that
the number of steps or segments is very close to m (in
many cases exactly m). This property has been con-
firmed by an extensive set of experiments. Previous
methods for expressing the histogram as a piecewise
smooth function required O(N) time, although some
researchers suspected that O(m log N)-time algorithms
were possible [20]. We have developed an efficient and
practical technique using priority queues that offers a
substantial speedup:

Theorem 4 The wavelet-based histogram can be trans-
formed into a standard piecewise smooth representation
in time O(m x min{logm,loglog N}) and using O(m)
space.

Proof Sketch: By the reasoning behind the proof of
Theorem 3, the reconstructed frequency is a polynomial
function (which is constant for Haar wavelets and lin-
ear for linear wavelets) as long as the interval boundaries
associated with the wavelet coefficients are not crossed.
There are at most three interval boundaries per Haar
wavelet coefficient and at most five interval boundaries

per linear wavelet coefficient. We refer to the domain
values where such boundaries occur for a given wavelet
coefficient as the coefficient’s event points.

We group the coefficients into the log N levels corre-
sponding to the multiresolution wavelet decomposition.
Let A be the maximum number of wavelet coefficients
that can overlap another wavelet coefficient from the
same level. We say that two coefficients overlap if there
is a domain value whose frequency they both contribute
to. For Haar wavelets we have A = 0, and for any fixed
order wavelet we have A = O(1). We construct the his-
togram by inserting into a priority queue the first event
point for the first A+1 wavelet coefficients at each level.
The polynomial function describing the reconstructed
frequency does not change until the domain value cor-
responding to an event point is reached. We can find the
next event point by performing a delete_min operation
on the priority queue, at which point we insert into the
priority queue the next event point for the coefficient
involved in the delete_min. The polynomial function
represented by the histogram is updated at each event
point.

The desired time bound follows because each
delete_min and insert operation takes time logarithmic
in the size of the priority queue, which consists of at
most min{m, (A + 1) log N}) values at any time. O

5 Multi-Attribute Histograms

We extend the definitions in Section 1 to the mul-
tidimensional case in which there are multiple at-
tributes. Suppose the number of dimensions is d
and the attribute set is {Xi, Xa2,...,X4}. Let Dy =
{0,1,..., N, — 1} be the domain of attribute Xj. The
value set Vi of attribute X, is the set of nj values
of Xj that are present in relation R. Let v;; <
Vg2 < '+ < Uy, be the individual nj values of Vj.
The data distribution of X}, is the set of pairs T, =
{(wr,15 fr1)s Wk 25 fr2)s - - - (Vkng frong)} The joint fre-
quency f(i1,...,iq) of the value combination (v,
..y V4,i,) is the number of tuples in R that contain
v;,,,k in attribute Xy, for all 1 < k < d. The joint data
distribution T1,. q is the entire set of (value combina-
tion, joint frequency) pairs. The joint frequency matrix
Fi,..,a 18 amng x -+ x ng matrix whose [i1,...,iq] en-
try is f(i1,...,74). We can define the cumulative joint
dzstrzbutwn 7'1 _a and eztended cumulative joint distri-
bution T by analogy with the one-dimensional case.
The extended cumulative joint frequency F cr g for the
d attributes Xy, Xo, ..., Xgis a N1 X Ny X e x Ny
matrix p defined by

Tq] = Z Z"'Zf(ilai%---,id)-

i1=0i2=0 ig=0

plry, xa,. ..,

When a query involves multiple attributes in a rela-
tion, the selectivity depends on these attributes’ joint
data distribution, that is, the frequencies of all com-
bination of attribute values. To simplify the estima-
tion of the query result size, most commercial DBMSs
make the attribute value independent assumption. Un-
der such an assumption, a system maintains histograms
only on individual attributes, and the joint probabilities
are derived by multiplying the individual probabilities.
Real-life data rarely satisfy the attribute value indepen-
dent assumption. Functional dependencies and various
types of correlations among attributes are very common.
Making the attribute value independent assumption in
these cases results in very inaccurate estimation of the
joint data distribution and poor selectivity estimation.

5.1 Previous Approaches

Muralikrishna and DeWitt [11] use an interesting spatial
index partitioning technique for constructing equidepth
histograms for multidimensional data. One drawback
with this approach is that it considers each dimension
only once during the partition. Poosala and Ioanni-
dis [15] propose two effective alternatives. The first ap-
proach partitions the joint data distribution into mutu-
ally disjointed buckets and approximates the frequency
and the value sets in each bucket in a uniform man-
ner. Among this new class of histograms, the multi-
dimensional MaxDiff(V,A) histograms computed using
the MHIST-2 algorithm are most accurate and perform
better in practice than previous methods [15]. The sec-
ond approach uses the powerful singular value decom-
position (SVD) technique from linear algebra, which is
limited to handling two dimensions. Its accuracy de-
pends largely on that of the underlying one-dimensional
histograms.

5.2 Using Multidimensional Wavelets

A very nice feature of our wavelet-based histograms is
that they extend naturally to multiple attributes by
means of multidimensional wavelet decomposition and
reconstruction. The procedure of building the multi-
dimensional wavelet-based histogram is similar to that
of the one-dimensional case except that we approximate
the extended cumulative joint distribution T a Instead
of TC¢7.

In the preprocessing step, we obtain the joint fre-
quency matrix Fi,.. 4 and use it to compute the ex-
tended cumulative joint frequency matrix]—'C .- We
then use the multldlmenswnal wavelet transform to de-
compose Fj c* _a- Finally, thresholding is performed to
obtain the Wavelet based histogram.

In the query phase, in order to approximate the se-
lectivity of a range query of the form (aq < X; <
bi)A---A(ag < X4 < bg), we use the wavelet coefficients
to reconstruct the 2¢ cumulated counts p[zy, 2o, . .., Z4],
for z; € {a; —1,b;}, 1 < j < d. The following theorem
adopted from [7] can be used to compute an estimate S’
for the result size of the range query:

Theorem 5 ([7]) For each 1 < j <d, let

N 1 ifmj:bj;
5(3)—{ ~1 ifz;=a;— 1.

Then the approzimate selectivity for the d-dimensional
range query specified above is

S = Z Hs

zj€{a;—1,b;}1 =1
1<j<d

prlam%"':md]‘

By convention, we define plzi,zs,...,
=1 forany 1 <j <d.

:L‘d] =0 if:L‘j =

6 Empirical Results

In this section we report on some experiments that com-
pare the performance of our wavelet-based technique
with those of Poosala et al [16, 13, 15] and random sam-
pling. Our synthetic data sets are those from previous
studies on histogram formation and from the TPC-D
benchmark [21]. They correspond to studies on typi-
cal data found on the web. For simplicity and ease of
replication, we use method 1 for thresholding in all our
wavelet experiments.

6.1 Experimental Comparison of One-
Dimensional Methods

In this section, we compare the effectiveness of wavelet-
based histograms with MaxDiff(V,A) histograms and
random sampling. Poosala et al [16] characterized the
types of histograms in previous studies and proposed
new types of histograms. They concluded in their ex-
periments that the MaxDiff(V,A) histograms perform
best overall.

Random sampling can be used for selectivity estima-
tion [5, 6, 10, 9]. The simplest way of using random
sampling to estimate selectivity is, during the off-line
phase, to take a random sample of a certain size (de-
pending on the catalog size limitation) from the rela-
tion. When a query is presented in the on-line phase,
the query is evaluated against the sample, and the selec-
tivity is estimated in the obvious way: If the result size
of the query using a sample of size t is s, the selectivity
is estimated as sT'/t, where T is the size of the relation.

Our one-dimensional experiments use the many syn-
thetic data distributions described in detail in [16]. We
use T' = 100,000 to 500,000 tuples, and the number n of
distinct values of the attribute is between 200 and 500.
The distributions from [16] subsume the types of one-
dimensional distributions from the TPC-D benchmark.

We use eight different query sets in our experiments:
{X<b|be D}.

{X<b|beV}.

{a<X<bla,be D, a<b}.

{a<X<bla,beV,a<b}.

{a <X <b|la€eD,b=a+ A}, where A is a

positive integer constant.

F:{a <X <b|laeV,b=a+ A}, where A is a
positive integer constant.

G: {X=b|be D}.

H: {X=0b|beV}

Different methods need to store different types of in-
formation. For random sampling, we only need to store
one number per sample value. The MaxDiff(V,A) his-
togram stores three numbers per bucket: the number of
distinct attribute values in the bucket, the largest at-
tribute value in the bucket, and the average frequency
of the elements in the bucket. Our wavelet-based his-
tograms store two numbers per coefficient: the index of
the wavelet coefficient and the value of the coefficient.

In our experiments, all methods are allowed the same
amount of storage. The default storage space we use in
the experiments is 42 four-byte numbers (to be in line
with Poosala et al’s experiments [16], which we repli-
cate); the limited storage space corresponds to the prac-
tice in database management systems to devote only a
very small amount of auxiliary space to each relation
for selectivity estimation [17]. The 42 numbers corre-
spond to using 14 buckets for the MaxDiff(V,A) his-
togram, keeping m = 21 wavelet coefficients for wavelet-
based histograms, and maintaining a random sample of
size 42.

The relative effectiveness of the various methods is
fairly constant over a wide variety of value set and fre-
quency set distributions. We present the results from
one experiment that illustrates the typical behavior of
the methods. In this experiment, the spreads of the
value set follow the cusp_maz distribution with Zipf pa-
rameter z = 1.0, the frequency set follows a Zipf distri-
bution with parameter z = 0.5, and frequencies are ran-
domly assigned to the elements of the value set.! The
value set size is n = 500, the domain size is N = 4096,

BIQW >

IThe cusp_maz and cusp_min distributions are two-sided Zipf
distributions. Zipf distributions are described in more detail
in [13]. Zipf parameter z = 0 corresponds to a perfectly uni-
form distribution, and as z increases, the distribution becomes
exponentially skewed, with a very large number of small values
and a very small number of large values. The distribution for
z = 2 is already very highly skewed.

and the relation size is T = 10°. Tables 1-5 give the
errors of the methods for query sets A, C, E, G, and H.
Figure 2 shows how well the methods approximate the
cumulative distribution of the underlying data.

Wavelet-based histograms using linear bases perform
the best over almost all query sets, data distributions,
and error measures. The random sampling method does
the worst in most cases. Wavelet-based histograms us-
ing Haar bases produce larger errors than MaxDiff(V,A)
histograms in some cases and smaller errors in other
cases. The reason for Haar’s lesser performance arises
from the limitation of the step function approximation.
For example, in the case that both frequency set and
value set are uniformly distributed, the cumulative fre-
quency is a linear function of the attribute value; the
Haar wavelet histogram produces a sawtooth approxi-
mation, as shown in Figure 2b. The Haar estimation can
be improved by linearly interpolating across each step
of the step function so that the reconstructed frequency
is piecewise linear, but doing that type of interpolation
after the fact amounts to a histogram similar to the one
produced by linear wavelets (see Figure 2a), but without
the explicit error optimization done for linear wavelets
when choosing the m coefficients.

We also studied the effect of storage space for differ-
ent methods. Figure 3 plots the result of one set of our
experiments for queries from query set A. In these ex-
periments, the value set follows cusp_maz distribution
with parameter z = 1.0, the frequency set follows a Zipf
distribution with parameter z = 1.0, and frequencies
are assigned to value set in a random way. The value
set size is n = 500, the domain size is N = 4096, and
the relation size is T' = 10°.

In addition to the above experiments we also tried a
modified MaxDiff(V,A) method so that only two num-
bers are kept for each bucket instead of three (in par-
ticular, not storing the number of distinct values in
each bucket), thus allowing 21 buckets per histogram
instead of only 14. The accuracy of the estimation
was improved. The advantage of the added buckets
was somewhat counteracted by less accurate modeling
within each bucket. The qualitative results, however,
remain the same: The wavelet-based methods are sig-
nificantly more accurate. Further improvements in the
wavelet techniques are certainly possible by quantiza-
tion and entropy encoding, but they are beyond the
scope of this paper.

6.2 Experimental Comparison of Multi-
dimensional Methods

In this section, we evaluate the performance of his-
tograms on two-dimensional (two-attribute) data. We
compare our wavelet-based histograms with the MaxD-

Error Norm Linear Wavelets | Haar Wavelets | MazDiff(V,A) | Random Sampling
ller]|1 0.6% 4.5% 8% 20%

|le?s||, /T 0.16% 0.8% 3% 8%

|le2s||2/T 0.26% 0.64% 3.2% 10%

|le2’®]|o0 /T 1.5% 5.6% 11% 13%

llec™P||;, a=1,3=100 | 0.6 4.4 8 20

[lec™P|y, a=1,3=1000 | 5 30 80 200

le°™P|ls, @ =1,3=100 | 5.1 70.4 12.8 19

|lec™Pl2, a=1,8=1000 | 19 224 192 243

Table 1: Errors of various methods for query set A.

Error Norm | Linear Wavelets | Haar Wavelets | MazDiff(V,A) | Random Sampling
™[], /T | 0.2% 1.1% 5% 3.5%
|le2Ps||2 /T 0.035% 0.18% 0.71% 0.6%
€)oo /T | 2.4% 10% 20% 16%
Table 2: Errors of various methods for query set C.

Error Norm | Linear Wavelets | Haar Wavelets | MazDiff(V,A) | Random Sampling
™[, /T | 01% 0.42% 0.15% 0.35%

|le2Ps||2 /T 0.19% 0.96% 0.26% 0.64%

e /T | 1.5% 6% 3% 4.6%

Table 3: Errors of various methods for

query set E with A = 10.

Error Norm | Linear Wavelets | Haar Wavelets | MazDiff(V,A) | Random Sampling
le2Ps|, /T 0.03% 0.04% 0.04% 0.04%
|le2Ps||2 /T 0.077% 0.32% 0.096% 0.24%
le”||oo/T | 1.6% % 2% 4.6%
Table 4: Errors of various methods for query set G.

Error Norm | Linear Wavelets | Haar Wavelets | MazDiff(V,A) | Random Sampling
le2Ps||, /T 0.03% 0.42% 0.2% 0.4%
|lexPs||2 /T 7.7% 16.1% 25.6% 38%
le?™||o/T | 0.2% % 2% 5%

Table 5: Errors of various methods for query set H.

Data Range | Linear Wavelets | Haar Wavelets | MHIST-2
255 0.3% 1.5% %
511 0.3% 1.6% 8%
1023 0.3% 1.6% 6%
2047 0.3% 1.6% 6%

Table 6: ||e2P%||; /T errors of various two-dimensional histograms for TPC-D data.

iff(V, A) histograms computed using the MHIST-2 algo-
rithm [15] (which we refer to as MHIST-2 histograms).

In our experiments we use the synthetic data de-
scribed in [15], which is indicative of various real-life

100000 100000
real data real data
800004 _ . approximation using linear wavelets 800004 _ _. approximation using Haar wavelets
o) o)
g g
g 60000 g 60000
i iy
[[
= =
® ®
£ 40000 £ 40000
£ £
=1 =]
(@] (@]
20000 — 20000 - 4
0 T T T 0 T T T T
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Attribute Value Attribute Value
(a) Linear Wavelets (b) Haar Wavelets
100000 100000
real data /) real data .
800007 _ _. approximation using MaxDiff(V, A) J 800004 _ _. approximation using random sampling !
o) / o)
@ : /
@' 60000 — Py g— 60000 - /,
Iy s i ;
[[1
2 — 2 i
© © e
£ 40000 £ 40000
£ / g —
o i o _r
/]
20000 [/ 20000 /1’
.II 2
f
’/
0 T T T T 0 T T T T
0 1000 2000 3000 4000 0 1000 2000 3000 4000

Attribute Value

(c) MaxDiff(V, A)

Attribute Value

(d) Random Sampling

Figure 2: Approximation of the cumulative data distribution using various methods.

data [1], and the TPC-D benchmark data [21]. Our
query sets are obtained by extending the query sets A—
H defined in Section 6.1 to the multidimensional cases.

The main concern of the multidimensional methods
is the effectiveness of the histograms in capturing data
dependencies. In the synthetic data we used, the de-
gree of the data dependency is controlled by the z value
used in generating the Zipf distributed frequency set.
A higher z value corresponds to fewer very high fre-
quencies, implying stronger dependencies between the
attributes. One question raised here is what is the rea-
sonable range for that z value. As in [15], we fix the
relation size T to be 10° in our experiments. If we as-
sume our joint value set size is n; X no, then in order
to get frequencies that are at least 1, the z value can-
not be greater than a certain value. For example, for
ny = ny = 50, the upper bound on z is about 1.67. Any
larger z value will yield frequency values smaller than 1.

10

In our experiments, we choose various z in the range
0 <z <1.5. The value z = 1.5 already corresponds to a
highly skewed frequency set; its top three frequencies are
388747, 137443, and 74814, and the 2500th frequency
is 3. In [15], larger z values are considered; most of the
Zipf frequencies are actually very close to 0, so they are
instead boosted up to 1, with the large frequencies corre-
spondingly lowered, thus yielding semi-Zipf distributed
frequency sets [14]. The relative effectiveness of dif-
ferent histograms is fairly constant over a wide variety
of data distributions and query sets that we studied.
Figure 4 depicts the effect of the Zipf skew parameter z
on the accuracy of different types of histograms for one
typical set of experiments. In these experiments, we
use N1 = Ny = 256 and ny = ns = 50; the value set
in each dimension follows cusp_maz distribution with
zs = 1.0. The storage space is 210 four-bytes num-
bers (again, to be in line with the default storage space

10

.. ---m--- Random Sampling
" ---a--- MaxDiff(V, A)
X —— Haar Wavelets

— —e— - Linear Wavelets

Average Absolute Error Divided by T (%)

Stor age Space (# of stored values)

Figure 3: Effect of storage space for various one-
dimensional histograms using query set A.

60

---a--- MHIST-2
— —e— - Linear Wavelets
—+— Haar Wavelets

Average Relative Error (%)

T T
0.5 1.0
z Parameter s of Fregency Sets

1.5

Figure 4: Effect of frequency skew, as reflected by the
Zipf z parameter for the frequency set distribution.

---4-- MHIST-2
—+— Haar Wavelets
— - Linear Wavelets

---4-- MHIST-2
—+— Haar Wavelets
— - Linear Wavelets

@

8
I

@

8
I

Average Relative Error (%)
3
L
Average Relative Error (%)
3
L

»-

S
I

=

S
I

R Y

0
T T T T T T T
50 100 150 200 250 50 100 150 200 250

Storage Space (# of stored values) Storage Space (# of stored values)

(a) Zipf parameter 2=0.5 (b) Zipf parameter z=1.0

Figure 5: Effect of storage space on two-dimensional
histograms.

in [15]). It corresponds to using 30 buckets for MHIST-
2 histogram (seven numbers per bucket) and keeping 70
wavelet coefficients for wavelet-based based histogram
(three numbers per coefficient). The queries used are
those from query set A.

11

In other experiments we study the effect of the
amount of allocated storage space upon the accuracy
of various histograms. As we mentioned above, the
amount, of storage devoted to a catalog is quite lim-
ited in any practical DBMS. Even without strict restric-
tions on the catalog size, a big catalog means that more
buckets or coefficients need to be accessed in the on-line
phase, which slows down performance. Figure 5 plots
the effectiveness of the allocated storage space on the
performance of various histograms. In the experiments,
we use the same value set and query set as for Figure 4.
The frequency skew is z = 0.5 for (a) and z = 1.0 for (b).

We conducted experiments using TPC-D data [21].
We report the results for a typical experiment here.
In this experiment, we use the L_SHIPDATA and
L_RECEIPDATA columns in the LINEITEM table, de-
fined as follows:

L_SHIPDATA = O_ORDERDATA + random(121)
L-RECEIPTDATA = L_SHIPDATA + random(30),

where O_ORDERDATA is uniformly distributed
between STARTDATA and ENDDATA — 151 and
random(n) returns a random value between 1 and n.
We fix the table size to be T = 10% and vary the size n
of the value set V' by means of changing data range,
the difference between ENDDATA and STARTDATA.
Table 6 shows the |[e*||;/T errors of the different
histogram methods for Set A queries.

7 Conclusions

In this paper we have proposed a method to build ef-
ficient and effective histograms using wavelet decompo-
sition. Our histograms give improved performance for
selectivity estimation compared with random sampling
and previous approaches.

In [25], a new thresholding method based on a log-
arithm transform is proposed that dramatically re-
duces the errors in wavelet-based approximation of high-
dimensional data, such as in OLAP data cubes. Ex-
periments show that by applying the new threshold-
ing method in building wavelet-based histograms, we
can achieve much better accuracy even for the low-
dimensional data considered in Section 6; the relative
errors reported in Section 6 can be cut dramatically by
a factor of 3 in typical cases, and the absolute errors are
usually reduced by more than half.

High-dimensional data can often be much larger than
the low-dimensional data considered in this paper, and
I/O communication can be a bottleneck. I/O efficient
techniques for computing the wavelet transform and
thresholding for high-dimensional data are discussed
in [25].

Ongoing work deals with improved space-accuracy
tradeoffs by quantizing coefficients using, for example,
a generalized zero-tree [18] followed by entropy encod-
ing of the quantized coefficients. It may be that other
wavelet bases perform better in practice than do the
Haar and linear wavelet bases we have considered in
this paper, and those possibilities will be considered on
real-life data.

Wavelet-based histograms should serve as an effective
synopsis data structure for selectivity estimation in the
context of the on-line summary mechanism of [3]. We
are developing efficient algorithms for maintaining the
wavelet-based histograms given insertions and deletions
in the underlying relation.

Acknowledgments. We gratefully acknowledge ear-
lier discussions with Christos Faloutsos, Suleyman Cenk
Sahinalp, Wim Sweldens, and Brani Vidacovic. We
especially thank Vishy Poosala for much useful back-
ground and information on histogram techniques.

References

[1] Census Bureau Databases. http://www.census.gov/.

[2] D. L. Donoho. Unconditional bases are optimal bases
for data compression and statistical estimation. Tech-
nical report, Department of Statistics, Stanford Univer-
sity, 1992.

P. B. Gibbons and Y. Matias. New sampling-based sum-
mary statistics for improving approximate query an-
swers. In Proceedings of the 1998 ACM SIGMOD Inter-
national Conference on Management of Data, Seattle,
Washington, June 1998.

P. B. Gibbons, Y. Matias, and V. Poosala. Fast incre-
mental maintenance of approximate histograms. In Pro-
ceedings of the 23rd VLDB Conference, Athens, Greece,
August 1997.

P. Haas and A. Swami. Sequential sampling procedures
for query size estimation. In Proceedings of the 1992
ACM SIGMOD Conference, 1992.

P. Haas and A. Swami. Sampling-based selectivity for
joins using augmented frequent value statistics. In Pro-
ceedings of the 1995 ACM SIGMOD International Con-
ference on Management of Data, March 1995.

C.-T. Ho, R. Agrawal, N. Megiddo, and R. Srikant.
Range queries in OLAP data cubes. In Proceedings of
the 1997 ACM SIGMOD International Conference on
Management of Data, Tucson, Arizona, May 1997.

B. Jawerth and W. Sweldens. An overview of wavelet
based multiresolution analyses. STAM Rev., 36(3):377—
412, 1994.

R. Lipton and J. Naughton. Query size estimation by

adaptive sampling. J. of Comput. Sys. Sci., 51:18-25,
1985.

12

[10] R. Lipton, J. Naughton, and D. Schneider. Practical
selectivity estimation through adaptive sampling. In
Proceeding of the 1990 ACM SIGMOD International
Conference on Management of Data, pages 1-11, 1990.

M. Muralikrishna and D. J. DeWitt. Equi-depth his-
tograms for estimating selectivity factors for multi-
dimensional queries. In Proceedings of the 1988 ACM
SIGMOD International Conference on Management of
Data, pages 28-36, 1988.

G. Piatetsky-Shapiro and C. Connell. Accurate estima-
tion of the number of tuples satisfying a condition. In
Proceedings of the 1984 ACM SIGMOD International
Conference on Management of Data, pages 256-276,
1984.

V. Poosala. Histogram-Based Estimation Techniques in
Database Systems. Ph. D. dissertation, University of
Wisconsin-Madison, 1997.

V. Poosala. Personal communication, 1997.

[11]

[12]

[13]

[14]
[15] V. Poosala and Y. E. Ioannidis. Selectivity estimation
without the attribute value independence assumption.
In Proceedings of the 23rd VLDB Conference, Athens,

Greece, August 1997.

V. Poosala, Y. E. Ioannidis, P. J. Haas, and E. Shekita.
Improved histograms for selectivity estimation of range
predicates. In Proceedings of the 1996 ACM SIG-
MOD International Conference on Management of
Data, Montreal, Canada, May 1996.

P. G. Selinger, M. M. Astrahan, D. D. Chamberlin,
R. A. Lorie, and T. G. Price. Access path selection in a
relational database management system. In Proceedings
of the 1979 ACM SIGMOD International Conference
on Management of Data, pages 23-34, 1979.

J. M. Shapiro. An embedded wavelet hierarchical image
coder. In Proceedings of 1992 IEEE International Con-
ference on Acoustics, Speech, and Signal Processing,
volume 4, pages 657-660, San Francisco, CA, March
1992.

E. J. Stollnitz, T. D. Derose, and D. H. Salesin.
Wavelets for Computer Graphics. Morgan Kaufmann,
1996.

W. Sweldens. Personal communication, 1997.
TPC benchmark D (decision support), 1995.

D. E. Vengroff and J. S. Vitter. I/O-efficient scientific
computation using TPIE. In Proceedings of the Goddard
Conference on Mass Storage Systems and Technologies,
NASA Conference Publication 3340, Volume II, pages
553-570, College Park, MD, September 1996.

J. S. Vitter. Random sampling with a reservoir. ACM
Transactions on Mathematical Software, 11(1):37-57,
March 1985.

J. S. Vitter. An efficient algorithm for sequential ran-
dom sampling. ACM Transactions on Mathematical
Software, 13(1):58-67, March 1987.

J. S. Vitter, M. Wang, and B. Iyer. Data cube approx-
imation via wavelets. Manuscript, 1998.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

