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Abstract

Query optimization is an integral part of relational
database management systems� One important task
in query optimization is selectivity estimation� that is�
given a query P � we need to estimate the fraction of
records in the database that satisfy P � Many com�
mercial database systems maintain histograms to ap�
proximate the frequency distribution of values in the
attributes of relations�
In this paper� we present a technique based upon a

multiresolution wavelet decomposition for building his�
tograms on the underlying data distributions� with ap�
plications to databases� statistics� and simulation� His�
tograms built on the cumulative data values give very
good approximations with limited space usage� We
give fast algorithms for constructing histograms and us�
ing them in an on�line fashion for selectivity estima�
tion� Our histograms also provide quick approximate
answers to OLAP queries when the exact answers are
not required� Our method captures the joint distribu�
tion of multiple attributes e�ectively� even when the at�
tributes are correlated� Experiments con�rm that our
histograms o�er substantial improvements in accuracy
over random sampling and other previous approaches�
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� Introduction

Several important components in a database manage�
ment system �DBMS� require accurate estimation of
the selectivity of a given query� For example� query
optimizers use it to evaluate the costs of di�erent query
execution plans and choose the preferred one�
The set of predicates we are going to consider in this

paper is the set of selection queries� in particular� range
predicates of the form a � X � b� where X is a non�
negative attribute of the domain of a relation R and a
and b are constants� The set of equal predicates is the
subset of the range predicates that have a � b� The set
of one�side range predicates is the special case of range
predicates in which a � �� or b ���
We adopt the notations in �	
� to describe the data

distributions and various histograms� The domain D �
f�� 	� 
� � � � � N � 	g of an attribute X is the set of all
possible values of X � The value set V � D consists of
the n distinct values of X that are actually present in
relation R� Let v� � v� � � � � � vn be the n values
of V � The spread si of vi is de�ned as si � vi�� � vi�
�We take s� � v� and sn � 	�� The frequency fi of vi
is the number of tuples in which X has value vi� The
cumulative frequency ci of vi is the number of tuples
t � R with t�X � vi� that is� ci �

Pi
j�� fj � The

data distribution of X is the set of pairs T � f�v�� f���
�v�� f��� � � � � �vn� fn�g� The cumulative data distribu�
tion of X is the set of pairs T C � f�v�� c��� �v�� c���
� � � � �vn� cn�g� The extended cumulative data distribu�
tion of X � denoted by T C� � is the cumulative data dis�
tribution of T C extended over the entire domain D by
assigning zero frequency to every value in D � V �

� Previous Approaches

The goal of any histogram is to accurately approxi�
mate the underlying distribution� Several di�erent his�
tograms have been proposed in the literature� Poosala
et al �	
� 	�� propose a taxonomy to capture all previ�
ously proposed histograms� new histograms types can
be derived by combining e�ective aspects of di�erent

	



histogram methods� Among the histograms discussed
in �	
� 	��� the MaxDi��V�A� histogram gives best over�
all performance� MaxDi��V�A� uses area as a �source
parameter� in order to choose the bucket boundaries�
area is de�ned for each value in the value set V as
the product of the value�s frequency and its spread� In
a MaxDi��V�A� histogram with � buckets� there is a
bucket boundary between two source parameter values
that are adjacent �in attribute value order� if the dif�
ference between these values is one of the � � 	 largest
such di�erences� By using area as a source parameter�
MaxDi��V�A� histogram achieves better approximation
than previous well�known methods like equidepth his�
tograms�

Poosala et al �	
� also mention other histogram tech�
niques� For example� histograms based on minimizing
the variance of the source parameter such as area have
a performance similar to that of MaxDi��V�A�� but are
computationally more expensive to construct� They also
mention a spline�based technique� but it does not per�
form as well as does MaxDi��V�A��

The main challenge for histograms on multidimen�
sional �multi�attribute� data is to capture the correla�
tions among di�erent attributes� We defer discussion of
the multidimensional case to Section ��

� Our Wavelet�Based Technique

Wavelets are a mathematical tool for hierarchical de�
composition of functions� Wavelets represent a func�
tion in terms of a coarse overall shape� plus details that
range from broad to narrow� Regardless of whether the
function of interest is an image� a curve� or a surface�
wavelets o�er an elegant technique for representing the
various levels of detail of the function in a space�e�cient
manner�

At a high level� our histogram construction algorithm
works as follows�

	� In a preprocessing step� we form the extended cu�
mulative data distribution T C� of the attribute X �
from the original data or from a random sample of
the original data�


� We compute the wavelet decomposition of T C� � ob�
taining a set of N wavelet coe�cients�

�� We keep only the m most signi�cant wavelet coe��
cients� for some m that corresponds to the desired
storage usage� The choice of which m coe�cients
we keep depends upon the particular thresholding
method we use�

After the above algorithm� we obtain m wavelets co�
e�cients� The values of these coe�cients� together with
their positions �indices�� are stored and serve as a his�
togram for reconstructing the approximate data distri�

bution in the on�line phase �query phase�� To compute
the estimate for the number of tuples whose X value is
in the range a � X � b� we reconstruct the approxi�
mate values for b and a� 	 in the extended cumulative
distribution function and then subtract them�
One interesting observation we made during exper�

iments is that the wavelet approximation is more ef�
fective for selectivity estimation� especially for range
queries� if the decomposition is done on the extended
cumulative data distribution as described above rather
than on the raw data frequencies�
Further bene�ts can be obtained by quantizing the

wavelet coe�cients and entropy�encoding the quantized
coe�cients� In this paper� we restrict ourselves to choos�
ing m complete coe�cients� so as to facilitate direct
comparisons with previous work�

��� Preprocessing

In the preprocessing step� we compute T � The extended
cumulative data distribution T C� can be easily com�
puted from T �
Exact computation of T requires that a counter be

maintained for each distinct attribute value in V � When
the cardinality of V is small� we can keep a hash table
in memory and T can be obtained in one complete scan
through the relation�

When the cardinality of V becomes very big� such a
hash table will not �t in memory� and multiple passes
through the relation will be required to obtain T � re�
sulting in excessive I�O cost� We can instead use an
I�O�e�cient external merge sort to compute T and min�
imize the I�O cost �

�� The merge sort process here is
di�erent from the traditional one� During the merging
process� records with the same attribute value can be
combined by summing the frequencies� After several
passes in the merge sort� the lengths of the runs will
stop increasing� the length of each run is bounded by
the cardinality of V � whose size� although too large to
�t in memory� is typically small in comparison with the
relation size�

In this paper� we do not consider the I�O complexity
of the wavelet decomposition and of thresholding� since
the data size after preprocessing is generally not large
and can �t in internal memory� in which case� the pre�
processing to compute T can be done in a single pass
over the data� If for any reason it�s necessary to further
reduce the I�O and CPU costs of the precomputation� a
well�known approach is to use random sampling �	
� 		��
The idea is to sample s tuples from the relation ran�
domly and compute T for the sample� The sample data
distribution is then used as an estimate of the real data
distribution� To obtain the random sample in a sin�
gle linear pass� the method of choice is the skip�based






method �
�� when the number T of tuples is known be�
forehand or the reservoir sampling variant �
�� when T
is unknown� A running up�to�date sample can be kept
using a backing sample approach ���� We do not con�
sider in this paper the issues dealing with sample size
and the errors caused by sampling� Our experiments
con�rm that wavelet�based histograms that use random
sampling as a preprocessing step give estimates that are
almost as good as those from wavelet�based histograms
that are built on the full data� On the other hand� as
we shall see in Section 
� the wavelet�based histograms
�whether they use random sampling in their preprocess�
ing or not� perform signi�cantly better at estimation
than do naive techniques based on random sampling
alone�

��� Wavelet Decomposition

The goal of the wavelet decomposition step is to repre�
sent the extended cumulative data distribution T C� at
hierarchical levels of detail�
First we need to choose wavelet basis functions� Haar

wavelets are conceptually the simplest wavelet basis
functions� and for purposes of exposition in this paper�
we focus our discussion on Haar wavelets� They are
fastest to compute and easiest to implement� We also
implement a decomposition based upon linear wavelets
that gives better estimation�
To illustrate how Haar wavelets work� we start with

a simple example� A detailed treatment of wavelets can
be found in any standard reference on the subject �e�g��
��� 	���� Suppose that the data distribution T of at�
tribute X is f��� 
�� �
� ��� ��� 
�g� We can easily derive
the cumulated values T C��f��� 
�� �	� 
�� �
� ��� ��� ��g�
We perform a wavelet transform on the one�dimensional
�signal� of the extended cumulative frequencies�

S � �
� 
� �� ���

We �rst average the cumulative frequencies� pairwise�
to get the new lower resolution signal with values

�
� ���

That is� the �rst two values in the original signal �

and 
� average to 
� and the second two values � and �
average to �� Clearly� some information is lost in this
averaging process� To recover the original signal from
the two averaged values� we need to store some detail co�
e�cients� which capture the missing information� Haar
wavelets store the pairwise di�erences of the original
values� It is easy to see that the original values can be
recovered from the averages and di�erences�
We have succeeded in decomposing the original signal

into a lower resolution �two�value� version and a pair of

detail coe�cients� By repeating this process recursively
on the averages� we get the full decomposition�

Resolution Averages Detail Coe�cients

� �
� 
� �� ��

 �
� �� ��� 
�
	 ��� �
�

We de�ne the wavelet transform �also called wavelet
decomposition� of the original four�value signal to be
the single coe�cient representing the overall average of
the original signal� followed by the detail coe�cients in
the order of increasing resolution� Thus� for the one�
dimensional Haar basis� the wavelet transform of our
original cumulative frequencies is given by

bS � ��� 
� �� 
��
The individual entries are called the wavelet coe��

cients� The wavelet decomposition is very e�cient com�
putationally� requiring only O�N� time to compute for
a signal of N frequencies�
No information has been gained or lost by this pro�

cess� The original signal has four values� and so does the
transform� The original signal S can be reconstructed
from bS by the following formulas�

S��� � bS���� 	


bS�	�� 	



bS�
� �	�

S�	� � bS���� 	


bS�	� � 	



bS�
� �
�

S�
� � bS��� � 	


bS�	� � 	



bS��� ���

S��� � bS��� � 	


bS�	� �

	



bS��� ���

One advantage of the wavelet transform is that in
many cases a large number of the detail coe�cients
turn out to be very small in magnitude� Truncating
these small coe�cients from the representation intro�
duces only small errors in the reconstructed signal� We
can approximate the original data distribution e�ec�
tively by keeping only the most signi�cant coe�cients�
determined by some thresholding method� as discussed
in the next subsection�
A better higher�order approximation for purposes of

range query selectivity� for example� can be obtained
by using linear wavelets as a basis rather than Haar
wavelets� Linear wavelets share the important proper�
ties of Haar wavelets that we exploit for e�cient process�
ing� It is natural in conventional histograms to interpo�
late the values of items within a bucket in a uniform
manner� Such an approximation corresponds to a lin�
ear function between the endpoints of the bucket� The
approximation induced when we use linear wavelets is

�



a piecewise linear function� which implies exactly this
sort of linear interpolation� It therefore makes sense in�
tuitively that the use of linear wavelets� in which we op�
timize directly for the best set of interpolating segments�
will perform better than standard histogram techniques�
For reasons of brevity� we defer further discussion to the
full paper�

��� Thresholding

Given the storage limitation for the histogram� we can
only �keep� a certain number of the N wavelet coe��
cients� Let m denote the number of wavelet coe�cients
that we have room to keep� the remaining wavelet co�
e�cients will be implicitly set to �� Typically we have
m� N � The goal of thresholding is to determine which
are the �best� m coe�cients to keep� so as to minimize
the error of approximation�
We can measure the error of approximation made by

histograms in several ways� Let Si be the actual size of
a query qi and let Si

� be the estimated size of the query�
We use the following three di�erent error measures for
the error ei of query qi�
	� The absolute error of a query�

eabsi � jSi � Si
�j�


� The relative error of a query�

ereli �
eabsi

Si
�
jSi � Si

�j
Si

� for Si � ��

�� The combined error of a query�

ecomb
i � minf�� eabsi � � � ereli g�

where � and � are positive constants� �If Si � ��
then we set ecomb

i � �� eabsi ��

The combined error re�ects the importance of having
either a good relative error or a good absolute error for
each estimation� For example� for very small frequen�
cies� it may be good enough if the absolute error is small
even if the relative error is large� and for large frequen�
cies� the absolute error may not be as meaningful as the
relative error�
Once we choose which of the above measures to use

in order to represent the errors of individual queries� we
need to choose a norm by which to measure the error
of a collection of queries� Let e � �e�� e�� � � � � eQ�
be the vector of errors over a sequence of Q queries�
We assume that one of the above three error measures
is used for each of the individual query errors ei� For
example� for absolute error� we can write e � �e�� e��
� � � � eQ� � eabs � �eabs� � eabs� � � � � � eabsQ �� We de�ne the
overall error for the Q queries by one of the following
error measures�

	� The ��norm average error �

kek� � 	

Q

QX
i��

ei�


� The ��norm average error �

kek� �
s
	

Q

X
��i�Q

ei��

�� The in�nity�norm average error �

kek� � max
��i�Q

feig�

These error measures are special cases of the p�norm
average error� for p � ��

kekp �
� 	
Q

X
��i�Q

ei
p
���p

�

The �rst step in thresholding is weighting the coef�
�cients in a certain way �which corresponds to using a
particular basis� such as an orthonormal basis� for ex�
ample�� In particular� for the Haar basis� normalization

is done by dividing the wavelet coe�cients bS�
j��� � � �bS�
j�� � 	� by p
j � for each � � j � logN � 	� Given
any particular weighting� we propose the following dif�
ferent thresholding methods�
	� Choose the m largest �in absolute value� wavelet
coe�cients�


� Choose m wavelet coe�cients in a greedy way� For
example� we might choose the m largest �in abso�
lute value� wavelet coe�cients and then repeatedly
do the following two steps m times�

�a� Choose the wavelet coe�cient whose inclusion
leads to the largest reduction in error�

�b� Throw away the wavelet coe�cient whose
deletion leads to the smallest increase in er�
ror�

Another approach is to do the above two steps re�
peatedly until a cycle is reached or improvement is
small�

Several other variants of the greedy method are possible�
�� Start with the m�
 largest �in absolute value�
wavelet coe�cients and choose the next m�
 co�
e�cients greedily�

�� Start with the 
m largest �in absolute value�
wavelet coe�cients and throw away m of them
greedily�

The straightforward method of performing each iter�
ation of the greedy method requires O�N�� time� and
thus the total time is O�mN��� By maintaining a spe�
cial dynamic programming tree structure� we can speed
up the preprocessing signi�cantly�

�



Theorem � We can greedily choose m coe�cients
for any of the standard error measurements in
O�N�logN� logm� time and O�N� space� If Method �
is used� it can be done in O�N log�m� time and O�N�
space�

Proof Sketch� For simplicity� we consider the case when
Method � is used� The proofs for other methods are
similar�
We build an �error tree� of the wavelet transform�

The leaves of the tree correspond to the original signal
values� and the internal nodes correspond to the wavelet
coe�cients� Figure 	 is the error tree for N � �� each
node is labeled with the wavelet coe�cient or signal
value that it corresponds to� The wavelet coe�cient
associated with an internal node in the error tree con�
tributes to the signal values at the leaves in its subtree�
For each of the 
m nodes that correspond to the 
m
largest wavelet coe�cients� we store the error change
introduced by deleting this coe�cient�
At the ith �	 � i � m� step of the greedy threshold�

ing� we throw away the wavelet coe�cient whose dele�
tion causes the smallest increase in error� Suppose this
coe�cient corresponds to node ni in the error tree� We
need to update the error information of all the �rele�
vant� nodes after the deletion� The relevant nodes fall
into two classes� �a� the wavelet coe�cients in the sub�
tree rooted at ni and �b� the wavelet coe�cients on the
path from ni up to the root of the error tree�
Suppose the subtree rooted at ni has k

� leaves and
m� class �a� wavelet coe�cients� The maximum number
of class �b� wavelet coe�cients is at most log N

k� � The
important point is that the time to update a wavelet
coe�cient is proportional to the number of leaves in its
subtree that change value� By a convexity argument�
the worst�case locations for the m� class �a� wavelet co�
e�cient are in the top logm� levels of ni�s subtree� The
resulting time to update the m� class �a� wavelet coe��
cients is O�k� logm��� The time to update the class �b�
wavelet coe�cients is O�k� log N

k� ��
By a convexity argument� over the m deletions� the

worst case is for the m deleted wavelet coe�cients to be
in the top logm levels of the error tree� In this case� the
m terms of k� logm� and the m terms of k� log N

k� sum

to O�N log�m��

We can use dynamic programming techniques to get
further improvements for the p�norm average error for
even p�

Theorem � For the p�norm average error measure for
any even p� we can reduce the time bound in Theorem �
to O�N logm�� for Method �� the time is O�N��

It is well known if the wavelet basis functions are
orthonormal that Method 	 is provably optimal for
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Figure 	� Error tree for N � �

the 
�norm average error measure� However� for non�
orthogonal wavelets like our linear wavelets and for
norms other than the 
�norm� no e�cient technique is
known for how to choose them best wavelet coe�cients�
and various approximations have been studied �
��
Our experiments show that Method 
 does best over�

all in terms of accuracy for wavelet�based histograms�
Method 	 is easier to compute but does not perform
quite as well�

� On�Line Reconstruction

In the query phase� a range query a � X � b is pre�
sented� We reconstruct the approximate cumulative fre�
quencies of a� 	 and b� denoted by c�a�� and c�b� using
the m wavelet coe�cients� The size of the query is es�
timated to be c�b � c�a���
The time for reconstruction is crucial in the on�line

phase� The following result allows for fast reconstruc�
tion�

Theorem � For a given range query a � X � b� the
cumulative frequencies of a � 	 and b can be re�
constructed from the m wavelet coe�cients using
an O�m��space data structure in time O�logm �
� of relevant coe�cients� � O�minfm� logNg��
Proof Sketch� The method for reconstructing the fre�
quency for a given domain element from the wavelet co�
e�cients consists of identifying the O�logN� coe�cients
that are involved in the reconstruction� Each wavelet
coe�cient contributes to the reconstruction of the fre�
quencies in a contiguous set of the domain� In a Haar
wavelet� for example� each coe�cient contributes a pos�
itive additive term to the reconstructed frequency for
each domain value within a certain interval in the do�
main� and it contributes the opposite �negative� term for
each value within an adjacent interval in the domain� In
particular� as demonstrated in formulas �	����� for the
case N � � and by Figure 	 for the case N � �� the

�



wavelet coe�cient bS��� contributes as a positive addi�
tive term to each value in the domain S���� S�	�� � � � �

S�N � 	�� The wavelet coe�cient bS�	� contributes as
a negative term to S���� � � � � S�N

�
� 	� and as a posi�

tive term to S�N
�
�� � � � � S�N � 	�� The wavelet coe��

cient bS�
� contributes as a negative term to S���� � � � �
S�N

�
�	� and as a positive term to S�N

�
�� � � � � S�N

�
� 	��

The wavelet coe�cient bS��� contributes as a negative
term to S�N

�
�� � � � � S� �N

�
� 	� and as a positive term to

S� �N
�
� � � � � � S�N � 	��

For higher�order wavelets �like linear wavelets�� the
contribution of a given wavelet coe�cient can be rep�
resented by a constant number of adjacent intervals in
the domain� unlike in the Haar case� the contribution
of a given wavelet coe�cient varies from point to point
within each interval� but its contribution within an in�
terval is speci�ed by a polynomial function �which is
linear in the case of linear wavelets�� These intervals
can be stored in linear space in an interval tree data
structure� Given a domain element� the wavelet coe��
cients corresponding to the element�s frequency can be
found in O�logm� by a stabbing query on the intervals
stored in the interval tree� The reconstructed frequency
is then the sum of the contributions of each of those
wavelet coe�cients�

Often it is useful to represent the histogram as an
explicit piecewise smooth function rather than as m
wavelet coe�cients� For Haar wavelets the resulting
function is a step function with at most �m steps in
the worst case� and for linear wavelets the function is
piecewise linear with at most �m changes in slope in
the worst case� In real�life data� we can expect that
the number of steps or segments is very close to m �in
many cases exactly m�� This property has been con�
�rmed by an extensive set of experiments� Previous
methods for expressing the histogram as a piecewise
smooth function required O�N� time� although some
researchers suspected that O�m logN��time algorithms
were possible �
��� We have developed an e�cient and
practical technique using priority queues that o�ers a
substantial speedup�

Theorem � The wavelet�based histogram can be trans�
formed into a standard piecewise smooth representation
in time O�m �minflogm� log logNg� and using O�m�
space�

Proof Sketch� By the reasoning behind the proof of
Theorem �� the reconstructed frequency is a polynomial
function �which is constant for Haar wavelets and lin�
ear for linear wavelets� as long as the interval boundaries
associated with the wavelet coe�cients are not crossed�
There are at most three interval boundaries per Haar
wavelet coe�cient and at most �ve interval boundaries

per linear wavelet coe�cient� We refer to the domain
values where such boundaries occur for a given wavelet
coe�cient as the coe�cient�s event points�
We group the coe�cients into the logN levels corre�

sponding to the multiresolution wavelet decomposition�
Let � be the maximum number of wavelet coe�cients
that can overlap another wavelet coe�cient from the
same level� We say that two coe�cients overlap if there
is a domain value whose frequency they both contribute
to� For Haar wavelets we have � � �� and for any �xed
order wavelet we have � � O�	�� We construct the his�
togram by inserting into a priority queue the �rst event
point for the �rst ��	 wavelet coe�cients at each level�
The polynomial function describing the reconstructed
frequency does not change until the domain value cor�
responding to an event point is reached� We can �nd the
next event point by performing a delete min operation
on the priority queue� at which point we insert into the
priority queue the next event point for the coe�cient
involved in the delete min� The polynomial function
represented by the histogram is updated at each event
point�
The desired time bound follows because each

delete min and insert operation takes time logarithmic
in the size of the priority queue� which consists of at
most minfm� �� � 	� logNg� values at any time�

� Multi�Attribute Histograms

We extend the de�nitions in Section 	 to the mul�
tidimensional case in which there are multiple at�
tributes� Suppose the number of dimensions is d
and the attribute set is fX�� X�� � � � � Xdg� Let Dk �
f�� 	� � � � � Nk � 	g be the domain of attribute Xk� The
value set Vk of attribute Xk is the set of nk values
of Xk that are present in relation R� Let vk�� �
vk�� � � � � � vk�nk be the individual nk values of Vk�
The data distribution of Xk is the set of pairs Tk �
f�vk��� fk���� �vk��� fk���� � � � � �vk�nkfk�nk�g� The joint fre�
quency f�i�� � � � � id� of the value combination �v��i� �
� � � � vd�id� is the number of tuples in R that contain
vik�k in attribute Xk� for all 	 � k � d� The joint data
distribution T������d is the entire set of �value combina�
tion� joint frequency� pairs� The joint frequency matrix
F������d is a n� � � � � � nd matrix whose �i�� � � � � id� en�
try is f�i�� � � � � id�� We can de�ne the cumulative joint
distribution T C������d and extended cumulative joint distri�
bution T C�

������d by analogy with the one�dimensional case�
The extended cumulative joint frequency FC�

������d for the
d attributes X�� X�� � � � � Xd is a N� � N� � � � � � Nd

matrix p de�ned by

p�x�� x�� � � � � xd� �

x�X
i���

x�X
i���

� � �
xdX

id��

f�i�� i�� � � � � id��






When a query involves multiple attributes in a rela�
tion� the selectivity depends on these attributes� joint
data distribution� that is� the frequencies of all com�
bination of attribute values� To simplify the estima�
tion of the query result size� most commercial DBMSs
make the attribute value independent assumption� Un�
der such an assumption� a system maintains histograms
only on individual attributes� and the joint probabilities
are derived by multiplying the individual probabilities�
Real�life data rarely satisfy the attribute value indepen�
dent assumption� Functional dependencies and various
types of correlations among attributes are very common�
Making the attribute value independent assumption in
these cases results in very inaccurate estimation of the
joint data distribution and poor selectivity estimation�

��� Previous Approaches

Muralikrishna and DeWitt �		� use an interesting spatial
index partitioning technique for constructing equidepth
histograms for multidimensional data� One drawback
with this approach is that it considers each dimension
only once during the partition� Poosala and Ioanni�
dis �	�� propose two e�ective alternatives� The �rst ap�
proach partitions the joint data distribution into mutu�
ally disjointed buckets and approximates the frequency
and the value sets in each bucket in a uniform man�
ner� Among this new class of histograms� the multi�
dimensional MaxDi��V�A� histograms computed using
the MHIST�
 algorithm are most accurate and perform
better in practice than previous methods �	��� The sec�
ond approach uses the powerful singular value decom�
position �SVD� technique from linear algebra� which is
limited to handling two dimensions� Its accuracy de�
pends largely on that of the underlying one�dimensional
histograms�

��� Using Multidimensional Wavelets

A very nice feature of our wavelet�based histograms is
that they extend naturally to multiple attributes by
means of multidimensional wavelet decomposition and
reconstruction� The procedure of building the multi�
dimensional wavelet�based histogram is similar to that
of the one�dimensional case except that we approximate
the extended cumulative joint distribution T C�

������d instead
of T C� �
In the preprocessing step� we obtain the joint fre�

quency matrix F������d and use it to compute the ex�
tended cumulative joint frequency matrix FC�

������d� We
then use the multidimensional wavelet transform to de�
compose FC�������d� Finally� thresholding is performed to
obtain the wavelet�based histogram�

In the query phase� in order to approximate the se�
lectivity of a range query of the form �a� � X� �
b���� � ���ad � Xd � bd�� we use the wavelet coe�cients
to reconstruct the 
d cumulated counts p�x�� x�� � � � � xd��
for xj � faj � 	� bjg� 	 � j � d� The following theorem
adopted from ��� can be used to compute an estimate S�

for the result size of the range query�

Theorem � ����	 For each 	 � j � d� let

s�j� �

�
	 if xj � bj �
�	 if xj � aj � 	�

Then the approximate selectivity for the d�dimensional
range query speci�ed above is

S� �
X

xj�faj���bjg

��j�d

dY
i��

s�i�� p�x�� x�� � � � � xd��

By convention� we de�ne p�x�� x�� � � � � xd� � � if xj �
�	 for any 	 � j � d�

� Empirical Results

In this section we report on some experiments that com�
pare the performance of our wavelet�based technique
with those of Poosala et al �	
� 	�� 	�� and random sam�
pling� Our synthetic data sets are those from previous
studies on histogram formation and from the TPC�D
benchmark �
	�� They correspond to studies on typi�
cal data found on the web� For simplicity and ease of
replication� we use method 	 for thresholding in all our
wavelet experiments�

��� Experimental Comparison of One�

Dimensional Methods

In this section� we compare the e�ectiveness of wavelet�
based histograms with MaxDi��V�A� histograms and
random sampling� Poosala et al �	
� characterized the
types of histograms in previous studies and proposed
new types of histograms� They concluded in their ex�
periments that the MaxDi��V�A� histograms perform
best overall�
Random sampling can be used for selectivity estima�

tion ��� 
� 	�� ��� The simplest way of using random
sampling to estimate selectivity is� during the o��line
phase� to take a random sample of a certain size �de�
pending on the catalog size limitation� from the rela�
tion� When a query is presented in the on�line phase�
the query is evaluated against the sample� and the selec�
tivity is estimated in the obvious way� If the result size
of the query using a sample of size t is s� the selectivity
is estimated as sT�t� where T is the size of the relation�

�



Our one�dimensional experiments use the many syn�
thetic data distributions described in detail in �	
�� We
use T � 	������ to ������� tuples� and the number n of
distinct values of the attribute is between 
�� and ����
The distributions from �	
� subsume the types of one�
dimensional distributions from the TPC�D benchmark�
We use eight di�erent query sets in our experiments�
A� fX � b j b � Dg�
B� fX � b j b � V g�
C� fa � X � b j a� b � D� a � bg�
D� fa � X � b j a� b � V � a � bg�
E� fa � X � b j a � D� b � a � �g� where � is a
positive integer constant�

F� fa � X � b j a � V � b � a � �g� where � is a
positive integer constant�

G� fX � b j b � Dg�
H� fX � b j b � V g�
Di�erent methods need to store di�erent types of in�

formation� For random sampling� we only need to store
one number per sample value� The MaxDi��V�A� his�
togram stores three numbers per bucket� the number of
distinct attribute values in the bucket� the largest at�
tribute value in the bucket� and the average frequency
of the elements in the bucket� Our wavelet�based his�
tograms store two numbers per coe�cient� the index of
the wavelet coe�cient and the value of the coe�cient�
In our experiments� all methods are allowed the same

amount of storage� The default storage space we use in
the experiments is �
 four�byte numbers �to be in line
with Poosala et al�s experiments �	
�� which we repli�
cate�� the limited storage space corresponds to the prac�
tice in database management systems to devote only a
very small amount of auxiliary space to each relation
for selectivity estimation �	��� The �
 numbers corre�
spond to using 	� buckets for the MaxDi��V�A� his�
togram� keepingm � 
	 wavelet coe�cients for wavelet�
based histograms� and maintaining a random sample of
size �
�
The relative e�ectiveness of the various methods is

fairly constant over a wide variety of value set and fre�
quency set distributions� We present the results from
one experiment that illustrates the typical behavior of
the methods� In this experiment� the spreads of the
value set follow the cusp max distribution with Zipf pa�
rameter z � 	��� the frequency set follows a Zipf distri�
bution with parameter z � ���� and frequencies are ran�
domly assigned to the elements of the value set�� The
value set size is n � ���� the domain size is N � ���
�

�The cusp max and cusp min distributions are two�sided Zipf
distributions� Zipf distributions are described in more detail
in �	
�� Zipf parameter z � � corresponds to a perfectly uni�
form distribution� and as z increases� the distribution becomes
exponentially skewed� with a very large number of small values
and a very small number of large values� The distribution for
z � � is already very highly skewed�

and the relation size is T � 	��� Tables 	�� give the
errors of the methods for query sets A� C� E� G� and H�
Figure 
 shows how well the methods approximate the
cumulative distribution of the underlying data�
Wavelet�based histograms using linear bases perform

the best over almost all query sets� data distributions�
and error measures� The random sampling method does
the worst in most cases� Wavelet�based histograms us�
ing Haar bases produce larger errors than MaxDi��V�A�
histograms in some cases and smaller errors in other
cases� The reason for Haar�s lesser performance arises
from the limitation of the step function approximation�
For example� in the case that both frequency set and
value set are uniformly distributed� the cumulative fre�
quency is a linear function of the attribute value� the
Haar wavelet histogram produces a sawtooth approxi�
mation� as shown in Figure 
b� The Haar estimation can
be improved by linearly interpolating across each step
of the step function so that the reconstructed frequency
is piecewise linear� but doing that type of interpolation
after the fact amounts to a histogram similar to the one
produced by linear wavelets �see Figure 
a�� but without
the explicit error optimization done for linear wavelets
when choosing the m coe�cients�
We also studied the e�ect of storage space for di�er�

ent methods� Figure � plots the result of one set of our
experiments for queries from query set A� In these ex�
periments� the value set follows cusp max distribution
with parameter z � 	��� the frequency set follows a Zipf
distribution with parameter z � 	��� and frequencies
are assigned to value set in a random way� The value
set size is n � ���� the domain size is N � ���
� and
the relation size is T � 	���
In addition to the above experiments we also tried a

modi�ed MaxDi��V�A� method so that only two num�
bers are kept for each bucket instead of three �in par�
ticular� not storing the number of distinct values in
each bucket�� thus allowing 
	 buckets per histogram
instead of only 	�� The accuracy of the estimation
was improved� The advantage of the added buckets
was somewhat counteracted by less accurate modeling
within each bucket� The qualitative results� however�
remain the same� The wavelet�based methods are sig�
ni�cantly more accurate� Further improvements in the
wavelet techniques are certainly possible by quantiza�
tion and entropy encoding� but they are beyond the
scope of this paper�

��� Experimental Comparison of Multi�

dimensional Methods

In this section� we evaluate the performance of his�
tograms on two�dimensional �two�attribute� data� We
compare our wavelet�based histograms with the MaxD�

�
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Table 
� Errors of various methods for query set C�
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Table �� Errors of various methods for query set G�
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Table �� Errors of various methods for query set H�
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Table 
� keabsk��T errors of various two�dimensional histograms for TPC�D data�

i��V� A� histograms computed using the MHIST�
 algo�
rithm �	�� �which we refer to as MHIST�
 histograms��

In our experiments we use the synthetic data de�
scribed in �	��� which is indicative of various real�life

�
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Figure 
� Approximation of the cumulative data distribution using various methods�

data �	�� and the TPC�D benchmark data �
	�� Our
query sets are obtained by extending the query sets A�
H de�ned in Section 
�	 to the multidimensional cases�

The main concern of the multidimensional methods
is the e�ectiveness of the histograms in capturing data
dependencies� In the synthetic data we used� the de�
gree of the data dependency is controlled by the z value
used in generating the Zipf distributed frequency set�
A higher z value corresponds to fewer very high fre�
quencies� implying stronger dependencies between the
attributes� One question raised here is what is the rea�
sonable range for that z value� As in �	��� we �x the
relation size T to be 	�� in our experiments� If we as�
sume our joint value set size is n� � n�� then in order
to get frequencies that are at least 	� the z value can�
not be greater than a certain value� For example� for
n� � n� � ��� the upper bound on z is about 	�
�� Any
larger z value will yield frequency values smaller than 	�

In our experiments� we choose various z in the range
� � z � 	��� The value z � 	�� already corresponds to a
highly skewed frequency set� its top three frequencies are
������� 	������ and ���	�� and the 
���th frequency
is �� In �	��� larger z values are considered� most of the
Zipf frequencies are actually very close to �� so they are
instead boosted up to 	� with the large frequencies corre�
spondingly lowered� thus yielding semi�Zipf distributed
frequency sets �	��� The relative e�ectiveness of dif�
ferent histograms is fairly constant over a wide variety
of data distributions and query sets that we studied�
Figure � depicts the e�ect of the Zipf skew parameter z
on the accuracy of di�erent types of histograms for one
typical set of experiments� In these experiments� we
use N� � N� � 
�
 and n� � n� � ��� the value set
in each dimension follows cusp max distribution with
zs � 	��� The storage space is 
	� four�bytes num�
bers �again� to be in line with the default storage space
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Figure �� E�ect of storage space for various one�
dimensional histograms using query set A�
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Figure �� E�ect of frequency skew� as re�ected by the
Zipf z parameter for the frequency set distribution�

50 100 150 200 250

Storage Space (# of stored values)

0

10

20

30

40

A
ve

ra
ge

 R
el

at
iv

e 
E

rr
or

(%
)

MHIST-2
Haar Wavelets
Linear Wavelets

�a� Zipf parameter z����

50 100 150 200 250

Storage Space (# of stored values)

0

10

20

30

40

A
ve

ra
ge

 R
el

at
iv

e 
E

rr
or

(%
)

MHIST-2
Haar Wavelets
Linear Wavelets

�b� Zipf parameter z�	��

Figure �� E�ect of storage space on two�dimensional
histograms�

in �	���� It corresponds to using �� buckets for MHIST�

 histogram �seven numbers per bucket� and keeping ��
wavelet coe�cients for wavelet�based based histogram
�three numbers per coe�cient�� The queries used are
those from query set A�

In other experiments we study the e�ect of the
amount of allocated storage space upon the accuracy
of various histograms� As we mentioned above� the
amount of storage devoted to a catalog is quite lim�
ited in any practical DBMS� Even without strict restric�
tions on the catalog size� a big catalog means that more
buckets or coe�cients need to be accessed in the on�line
phase� which slows down performance� Figure � plots
the e�ectiveness of the allocated storage space on the
performance of various histograms� In the experiments�
we use the same value set and query set as for Figure ��
The frequency skew is z � ��� for �a� and z � 	�� for �b��
We conducted experiments using TPC�D data �
	��

We report the results for a typical experiment here�
In this experiment� we use the L SHIPDATA and
L RECEIPDATA columns in the LINEITEM table� de�
�ned as follows�

L SHIPDATA � O ORDERDATA� random�	
	�

L RECEIPTDATA � L SHIPDATA� random�����

where O ORDERDATA is uniformly distributed
between STARTDATA and ENDDATA � 	�	 and
random�n� returns a random value between 	 and n�
We �x the table size to be T � 	�� and vary the size n
of the value set V by means of changing data range�
the di�erence between ENDDATA and STARTDATA�
Table 
 shows the keabsk��T errors of the di�erent
histogram methods for Set A queries�

� Conclusions

In this paper we have proposed a method to build ef�
�cient and e�ective histograms using wavelet decompo�
sition� Our histograms give improved performance for
selectivity estimation compared with random sampling
and previous approaches�
In �
��� a new thresholding method based on a log�

arithm transform is proposed that dramatically re�
duces the errors in wavelet�based approximation of high�
dimensional data� such as in OLAP data cubes� Ex�
periments show that by applying the new threshold�
ing method in building wavelet�based histograms� we
can achieve much better accuracy even for the low�
dimensional data considered in Section 
� the relative
errors reported in Section 
 can be cut dramatically by
a factor of � in typical cases� and the absolute errors are
usually reduced by more than half�
High�dimensional data can often be much larger than

the low�dimensional data considered in this paper� and
I�O communication can be a bottleneck� I�O e�cient
techniques for computing the wavelet transform and
thresholding for high�dimensional data are discussed
in �
���

		



Ongoing work deals with improved space�accuracy
tradeo�s by quantizing coe�cients using� for example�
a generalized zero�tree �	�� followed by entropy encod�
ing of the quantized coe�cients� It may be that other
wavelet bases perform better in practice than do the
Haar and linear wavelet bases we have considered in
this paper� and those possibilities will be considered on
real�life data�
Wavelet�based histograms should serve as an e�ective

synopsis data structure for selectivity estimation in the
context of the on�line summary mechanism of ���� We
are developing e�cient algorithms for maintaining the
wavelet�based histograms given insertions and deletions
in the underlying relation�
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