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Abstract

This paper describes WBIIS (Wavelet-Based Image
Indexing and Searching), a new image indexing and
retrieval algorithm with partial sketch image search-
ing capability for large image databases. The algorithm
characterizes the color variations over the spatial extent
of the image in a manner that provides semantically-
meaningful image comparisons. The indexing algo-
rithm applies a Daubechies' wavelet transform for each
of the three opponent color components. The wavelet
coe�cients in the lowest few frequency bands, and their
variances, are stored as feature vectors. To speed up
retrieval, a two-step procedure is used that �rst does
a crude selection based on the variances, and then re-
�nes the search by performing a feature vector match
between the selected images and the query. For better
accuracy in searching, two level multiresolution match-
ing may also be used. Masks are used for partial-
sketch queries. This technique performs much better in
capturing coherence of image, object granularity, local
color/texture, and bias avoidance than traditional color
layout algorithms. When tested on a database of more
than 10,000 general-purpose images, WBIIS is much
faster and more accurate than traditional algorithms.

I Introduction

Searching a digital library [18] having large number
of digital images or video sequences has become more

�Work supported in part by the Stanford University Li-
braries and Academic Information Resources. For orig-
inal color �gures in this paper, check out the URL:
http://www-db.stanford.edu/�wangz/project/imsearch/ADL97/

yDepartment of Mathematics and Department of Computer
Science, Stanford University. Email: wangz@cs.stanford.edu

zDepartment of Computer Science, Stanford University.
Email: gio@cs.stanford.edu

xDepartment of Computer Science, Stanford University.
Email: oscar@db.stanford.edu

{Stanford University Libraries, Stanford University. Email:
xinwei@jessica.stanford.edu

and more important in this multimedia age. Every
day, large numbers of people are using the Internet for
searching and browsing through di�erent multimedia
databases. To make such searching practical, e�ective
image coding and searching base on image semantics is
becoming increasingly important.

In current real-world image databases, the preva-
lent retrieval techniques involve human-supplied text
annotations to describe image semantics. These text
annotations are then used as the basis for searching,
using mature text search algorithms that are available
as freeware. However, there are many problems in us-
ing this approach. For example, di�erent people may
supply di�erent textual annotations for the same im-
age. This makes it extremely di�cult to reliably an-
swer user queries. Furthermore, entering textual anno-
tations manually is excessively expensive for large-scale
image databases.

Image feature vector indexing has been developed
and implemented in several multimedia database sys-
tems such as the IBM QBIC System [7, 13] developed
at the IBM Almaden Research Center, the Virage Sys-
tem developed by the Virage Inc., and the Photobook
System developed by the MIT Media Lab [14, 15]. For
each image inserted into the database, a feature vec-
tor on the order of 500 elements is generated to accu-
rately represent the content of the image. This vector
is much smaller in size than the original image. The
di�cult part of the problem is to construct a vector
that both preserves the image content and yet is e�-
cient for searching. Once the feature vectors are gen-
erated, they are then stored in permanent storage. To
answer a query, the image search engine scans through
the previously computed vector indexes to select those
with shortest distances to the image query vector. The
distance is computed by a measure such as the vector
distance in Euclidean space. For partial sketch queries,
usually a mask is computed and applied to the feature
vector.

In the WBIIS project, we developed a new algo-
rithm to make semantically-meaningful comparisons of
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images e�ciently and accurately. Using wavelet and
statistical analysis, the algorithm produces feature vec-
tors that provide a much better frequency localization
than other traditional color layout coding algorithms.
The localization of wavelets can be �ne-tuned to de-
liver high resolution for higher frequencies and lower
resolution for lower frequencies. We use a novel multi-
step metric to compute the distance between two given
images. Promising results have been obtained in ex-
periments using a database of 10,000 general-purpose
images.

II Preprocessing the Images in the
Database

Many color image formats are currently in use, e.g.,
GIF, JPEG, PPM and TIFF are the most widely used
formats. Because images in an image database can
have di�erent formats and di�erent sizes, we must �rst
normalize the data. A rescaled thumbnail consisting of
128 � 128 pixels in Red-Green-Blue (i.e., RGB) color
space is adequate for the purpose of computing the
feature vectors. Since color distances in RGB color
space do not reect the actual human perceptual color
distance, we convert and store the image in another
color space. We de�ne the new values at a color pixel
based on the RGB values of an original pixel as follows:

8<
:

C1 = (R+G+ B)=3
C2 = (R+ (max �B))=2
C3 = (R+ 2 � (max �G) + B)=4

(1)

Here max is the maximumpossible value for each color
component in the RGB color space. For a standard
24-bit color image, max = 255. Clearly, each color
component in the new color space ranges from 0 to 255
as well. This color space is similar to the opponent
color axes

8<
:

RG = R� 2 �G+ B
BY = �R �G+ 2 �B
WB = R+G+ B

(2)

de�ned in [1] and [17].

Besides the neurological correlation properties [9] of
such an opponent color space, one important advan-
tage of this alternative space is that the C1 axis, or the
intensity, can be more coarsely sampled than the other
two axes on color correlation. This reduces the sen-
sitivity of color matching to a di�erence in the global
brightness of the image, and it reduces the number of
bins and subsequent storage in the color histogram in-
dexing.

III Multiresolution Color Layout Im-
age Indexing using Wavelets and
the Fast Wavelet Transform

Many end-users are interested in searching an im-
age database for images having similar image seman-
tics with respect to a given query image or a hand-
drawn sketch. Although it is not yet possible to fully
index the image semantics via computer vision ap-
proach, there are several ways to index the images so
that semantically-meaningful queries can be performed
by comparing the indexes. The color histogram is one
of the many ways to index color images and it pre-
serves the color information contained in images very
well. However, a global histogram does not preserve
the color locational information within the images. Us-
ing this measure, two images may be considered to be
very close to each other even though they have com-
pletely unrelated semantics. Shape and texture-based
detection and coding algorithms are other technique of
indexing images. They both have substantial limita-
tions for general-purpose image databases. For exam-
ple, current shape detection algorithms only work e�ec-
tively on images with relatively uniform backgrounds.
Texture coding is not appropriate for non-textural im-
ages.

Storing color layout information is another way to
describe the contents of the image. It is especially use-
ful when the query is a partial sketch rather than a full
image. In traditional color layout image indexing, we
divide the image into equal-sized blocks, compute the
average color on the pixels in each block, and store the
values for image matching using Euclidean metric or
variations of the Euclidean metric. It is also possible to
compute the values based on statistical analysis of the
pixels in the block. Both techniques are very similar to
image rescaling or subsampling. However, they do not
perform well when the image contains high frequency
information such as sharp color changes. For example,
if there are pixels of various colors ranging from black
to white in one block, an e�ective result value for this
block cannot be predicted using these techniques.

The work done by the University of Washington [10]
applies Haar wavelet to multiresolution image query-
ing. Forty to sixty of the largest magnitude coe�-
cients are selected from the 1282 = 16; 384 coe�cients
in each of the three color channels. The coe�cients
are stored in a three-value representation, namely +1,
-1, along with their locations in the transform matrix.
As demonstrated in the cited paper, the algorithm per-
forms much faster than traditional algorithms, with an
accuracy comparable to traditional algorithms when
the query is a hand sketch or a low-quality image
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scan. However, fundamental mathematical drawbacks
of this approach make it incapable of e�ectively han-
dling queries in which the image has frequent sharp
changes. First, due to the normalization of functional
space in the wavelet basis design, the wavelet coe�-
cients in the lower frequency bands, i.e., closer to the
upper-left corner in a transform matrix, tend to be
more dominant (are of larger magnitude) than those
in the higher frequency bands. Coe�cients obtained
by sorting and truncating will most likely be in the
lower frequency bands. For the Haar case,

F0(x(n)) =
1p
2
(x(n) + x(n+ 1)) (3)

F1(x(n)) =
1p
2
(x(n)� x(n+ 1)) (4)

coe�cients in each band are expected to be 2p
2
times

larger in magnitude than those in the next higher fre-
quency band, i.e., those in one level previous to the
current level. For a 128 � 128 image, we expect the
coe�cients in the transform to have a added weight
varying from 1 to 8 before the truncation process. As
indicated in Eq.( 3), the low frequency band in a Haar
wavelet transform is mathematically equivalent to the
averaging color block or image rescaling approach in
traditional layout algorithms mentioned above. Thus,
the accuracy is not improved when the query image
or the images in the database contain high frequency
color variation. Moreover, Haar's wavelet basis is not
suitable for natural images or signals. As discussed
below, it creates much more redundant noise for nat-
ural signals compared to more advanced Daubechies'
wavelets.

Although the U of Washington approach can achieve
much faster comparison by storing only 40 to 60 coe�-
cients for each color channel as a feature vector, much
useful information about the image is discarded. Thus,
it is possible for two images having the same feature
vector to di�er completely in content. In addition, two
pictures with similar content but di�erent locations of
sharp edges may have feature vectors that are far apart
in feature space. This is why the U of Washington al-
gorithm had a sharp decrease in performance when the
query image consisted of a small translation of the tar-
get image.

We have developed a color layout indexing scheme
using Daubechies' wavelet transforms that better rep-
resents image semantics, namely, object con�gura-
tion and local color variation, both represented by
Daubechies' wavelet coe�cients. For large databases,
feature vectors obtained frommulti-level wavelet trans-
forms are stored to speed up the search. We ap-
ply a fast wavelet transform (FWT) with Daubechies'

wavelet to each image in the database, for each of
the three color components. Some coe�cients of the
wavelet transform, and their standard deviations, are
stored as feature vectors. Given a query image, the
search is carried out in two steps. In the �rst step, a
crude selection based on the standard deviations stored
is carried out. In the second step, a weighted version of
the Euclidean distance between the feature coe�cients
of an image selected in the �rst step and those of the
querying image is calculated, and the images with the
smallest distances are selected and sorted as matching
images to the query. We will show below that this algo-
rithm can be used to handle partial hand-drawn sketch
queries by modifying the computed feature vector.

III.1 Daubechies’ Wavelets and Fast Wavelet
Transform

Figure 1: Plots of some analyzing wavelets. First
row: father wavelets, �(x). Second row: mother
wavelets,  (x)

When processing signals, the prime consideration is
the localization, i.e., the characterization of local prop-
erties, of a given basis function in time and frequency.
In our case, the signals we are dealing with are 2-D
color images, for which the time domain is the spatial
location of certain color pixels and the frequency do-
main is the color variation around a pixel. Thus, we
seek a basis function that can e�ectively represent the
color variations in each local spatial region of the im-
age. In this subsection, we examine the various trans-
forms and their properties to arrive at a transform that
has attractive properties for the image retrieval prob-
lem.

Spline-based methods are e�cient in analyzing the
spatial localization for signals that contain only low
frequencies. Traditional Fourier-based methods [4, 8],
such as the Discrete Cosine Transform (DCT) aim to
capture the frequency content of the signal. The Dis-
crete Fourier Transform and its inverse are de�ned as

F [k] =
N�1X
n=0

f [n]e�j2�nk=N (5)
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original image 1-level wavelet 3-level wavelet
(256� 256) transform transform

Figure 2: Multi-scale structure in the wavelet

transform of an image. Dots indicate non-zero
wavelet coe�cients after thresholding. Daubechies-8
wavelet is used for this transform.

f [n] =
1

N

N�1X
k=0

F [k]ej2�nk=N: (6)

Discrete Fourier Transforms are currently used e�ec-
tively in signal and image processing because of the fre-
quency domain localization capability. They are ideal
for analyzing periodic signals because the Fourier ex-
pansions are periodic. However, they do not have the
spatial localization property because of their in�nite
extensibility.

Two mathematical methods are available for non-
periodic signals, the Windowed Fourier Transform
(WFT) and the wavelet transform. The WFT ana-
lyzes the signal in both spatial and frequency domains
simultaneously by encoding the signal through a scaled
window related to both location and local frequency.
Therefore, signals are easily underlocalized or over-
localized in spatial domain if the spatial behavior is
inconsistent with the frequency of the signal. Wavelets
are basis functions that have some similarities to both
splines and Fourier series. They have advantages when
the aperiodic signal contains many discontinuities or
sharp changes.

Wavelets, developed in mathematics, quantum
physics, and statistics, are functions that decompose
signals into di�erent frequency components and ana-
lyze each component with a resolution matching its
scale. Applications of wavelets to signal denoising, im-
age compression, image smoothing, fractal analysis and
turbulence characterization are active research topics.

Wavelet analysis can be based on an approach devel-
oped by Haar [12]. Haar found an orthonormal bases
de�ned on [0; 1], namely h0(x); h1(x); ::::::; hn(x); :::,
other than the Fourier bases, such that for any con-
tinuous function f(x) on [0; 1], the series

1X
j=1

< f; hj > hj(x) (7)

converges to f(x) uniformly on [0; 1]. Here, < u; v >

Figure 3: Two images with the upper-left corner

submatrices of their fast wavelet transforms in

(C1; C2; C3) color space. The standard deviations we
stored for the �rst image are �C1

= 215:93, �C2
=

25:44, and �C3
= 6:65 while means of the coe�cients

in the lowest frequency band are �C1
= 1520:74, �C2

=
2124:79, and �C3

= 2136:93. The standard deviations
we stored for the second image are �C1

= 16:18, �C2
=

10:97, and �C3
= 3:28 while means of the coe�cients

in the lowest frequency band are �C1
= 1723:99, �C2

=
2301:24 and �C3

= 2104:33.
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denotes
R 1
0
u(x)v(x)dx and v is the complex conjugate

of v.
One version of Haar's construction [12, 2, 3] can be

written as follows:

h(x) =

8<
:

1; x 2 [ 0; 0:5 )
�1; x 2 [ 0:5; 1 )
0; elsewhere

(8)

hn(x) = 2j=2h(2jx� k) (9)

where n = 2j+k, k 2 [ 0; 2j ), x 2 [ k2�j; (k+1)2�j ).
There are problems with Haar's construction. For

example, Haar's base functions are discontinuous step
functions and are not suitable for analyzing continuous
functions with continuous derivatives. If we consider
images as 2-D continuous surfaces, we know that Haar's
base functions are not appropriate for image analysis.

Another basis for wavelets is that of Daubechies. For
each integer r, Daubechies' orthonormal basis [5, 6, 11]
for L2(R) is de�ned as

�r;j;k(x) = 2j=2�r(2
jx� k); j; k 2Z (10)

where the function �r(x) in L2(R) has the property
that f�r(x� k)jk 2Zg is an orthonormal sequence in
L2(R).

Then the trend fj , at scale 2�j , of a function f 2
L2(R) is de�ned as

fj(x) =
X
k

< f; �r;j;k > �r;j;k(x): (11)

The details or uctuations are de�ned by

dj(x) = fj+1(x)� fj(x): (12)

To analyze these details at a given scale, we de�ne an
orthonormal basis  r(x) having properties similar to
those of �r(x) described above.
�r(x) and  r(x), called the father wavelet and the

mother wavelet, respectively, are the wavelet prototype
functions required by the wavelet analysis. Figure 1
shows some popular mother wavelets. The family of
wavelets such as those de�ned in Eq.( 10) are gener-
ated from the father or the mother wavelet by change
of scale and translation in time (or space in image pro-
cessing).

Daubechies' orthonormal basis has the following
properties:

�  r has the compact support interval [0; 2r+ 1];

�  r has about r=5 continuous derivatives;

� R1�1  r(x)dx = ::: =
R1
�1 xr r(x)dx = 0.

(a) (b) (c) (d)

Figure 4: Comparison of Haar's wavelet and

Daubechies wavelets on a 1-D signal. (a) orig-

inal signal (xe�x
2

) of length 1024 (b) coe�cients in
high-pass bands after a 4-layer Haar transform (c) co-
e�cients in high-pass bands after a 4-layer Daubechies-
3 transform (d) coe�cients in high-pass bands after a
4-layer Daubechies-8 transform

(a) (b) (c)

Figure 5: Comparison of Haar's wavelet and

Daubechies-8wavelet. (a) original image (128�128)
(b) saved Haar's coe�. (16 � 16) and its image recon-
struction (c) saved Daubechies' coe�. (16�16) and its
image reconstruction

Daubechies' wavelets give remarkable results in im-
age analysis and synthesis due to the above properties.
In fact, a wavelet function with compact support can
be easily implemented by �nite length �lters. This �-
nite length property is important for spatial domain
localization. Furthermore, functions with more con-
tinuous derivatives analyze continuous functions more
e�ciently and avoid the generation of edge artifacts.
Since the mother wavelets are used to characterize de-
tails in the signal, they should have a zero integral so
that the trend information is stored in the coe�cients
obtained by the father wavelet. A Daubechies' wavelet
representation of a function is a linear combination of
the wavelet function elements.

Daubechies' wavelets are usually implemented in nu-
merical computation by quadratic mirror �lters [12].
Multiresolution analysis of trend and uctuation is
implemented using convolution with a low-pass �lter
and a high-pass �lter that are versions of the same
wavelet. For example, if we denote the sampled sig-
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nals as x(n); n 2 Z, then Eq.( 3) and Eq.( 4) are
quadratic mirror �lters for Haar's wavelet. In fact,
average color block layout image indexing is equiva-
lent to the Haar transform with high-pass �ltering ne-
glected. Daubechies' wavelets transform is more like
a weighted averaging which better preserves the trend
information stored in the signals if we consider only the
low-pass �lter part. Various experiments and studies
have shown Daubechies' wavelets are better for dealing
with general-purpose images. In fact, Figures 4 and 5
show comparison of the Haar wavelet, which is equiva-
lent to average color blocks, and Daubechies' wavelets.
In Figure 4, we notice that the signal with a sharp
spike is better analyzed by Daubechies' wavelets be-
cause much less energy or trend is stored in the high-
pass bands. Daubechies' wavelets are better suited for
natural signals or images than a at Haar wavelet. In
layout image indexing, we want to represent as much
energy in the image as possible in the coe�cients of
the feature vector. When using the Haar wavelet, we
lose much trend information in the discarded high-pass
bands. Figure 5 shows the reconstruction of two im-
ages based only on the feature vectors of traditional
layout indexing (same as Haar) and those of WBIIS
using Daubechies' wavelets. Clearly, the latter is bet-
ter.

Because the original signal can be represented in
terms of a wavelet expansion using coe�cients in a lin-
ear combination of the wavelet functions, similar to
Fourier analysis, data operations can be performed us-
ing just the corresponding wavelet coe�cients. If we
truncate the coe�cients below a threshold, image data
can be sparsely represented.

The wavelet transform o�ers good time and fre-
quency localization. Information stored in an image
is decomposed into averages and di�erences of nearby
pixels. The information in smooth areas is decomposed
into the average element and near-zero di�erence ele-
ments. The wavelets approach is therefore a suitable
tool for data compression, especially for functions with
considerable local variations. In fact, the basis func-
tions are very exible with respect to both scale index
j and position index k. We may decompose the image
even further by applying the wavelet transform several
times recursively. Figure 2 shows the multi-scale struc-
ture in the wavelet transform of an image.

III.2 Wavelet Image Layout Indexing in WBIIS

The discrete wavelet transform (DWT) we described
can be directly used in image indexing for color layout
type queries. Our algorithm is as follows:

For each image to be inserted to the database, ob-
tain 128� 128 square rescaled matrices in (C1; C2; C3)

                                    

histogram of �C1
histogram of �C2

histogram of �C3

Figure 6: Histogram of the standard deviations of

the wavelet coe�cients in the lowest frequency

band. Results were obtained from a database of more
than 10,000 general purpose images.

components following Eq.( 1) in Section II. Com-
pute a 4-layer 2-D fast wavelet transform on each of
the three matrices using Daubechies' wavelets. De-
note the three matrices obtained from the transforms
as WC1

(1 : 128; 1 : 128), WC2
(1 : 128; 1 : 128) and

WC3
(1 : 128; 1 : 128)1. Then the upper-left 8�8 corner

of each transform matrix, WCi
(1 : 8; 1 : 8), represents

the lowest frequency band of the 2-D image in a partic-
ular color component for the level of wavelet transform
we used. The lower frequency bands in the wavelet
transform usually represent object con�gurations in the
images and the higher frequency bands represent tex-
ture and local color variation. The three 8� 8 subma-
trices (namely, WCi

(1 : 8; 9 : 16), WCi
(9 : 16; 1 : 8)

and WCi
(9 : 16; 9 : 16)) closest to the 8 � 8 corner

submatrix WCi
(1 : 8; 1 : 8) represent detailed informa-

tion in the original image to some extent, though most
of the uctuation information is stored in the thrown-
away higher frequency band coe�cients. Extracting
a submatrix WCi

(1 : 16; 1 : 16) of size 16 � 16 from
that corner, we get a semantic-preserving compression
of 64:1 over the original thumbnail of 128� 128 pixels.
We store this as part of the feature vector.

Then we compute the standard deviations, denoted
as �c1 ; �c2; �c3 , of the 8�8 corner submatrices WCi

(1 :
8; 1 : 8). Three such standard deviations are then
stored as part of the feature vector as well. Figure 3
shows two images with the upper-left corner submatri-
ces of their 2-D fast wavelet transforms in (C1; C2; C3)
color space. Notice that the standard deviation of the
coe�cients in the lowest frequency band obtained from
the �rst image di�ers considerably from that obtained
from the second image. Since the standard devia-
tions are computed based on the wavelet coe�cients in
the lowest frequency band, we have eliminated distur-
bances arising from detailed information in the image.

We also obtain a 5-level 2-D fast wavelet transform
using the same bases. We extract and store a subma-
trix of size 8� 8 from the upper-left corner. Thus, we

1Here we use MATLAB notation. That is, A(m1 : n1 ;m2 :
n2) denotes the submatrix with opposite corners A(m1;m2) and
A(n1 ; n2).
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commercial algorithm

WBIIS

Figure 7: Comparisons with a commercial algo-

rithm on a galaxy-type image. The upper-left cor-
ner image in each block of images is the query. The
image to the right of that image is the best matching
image found. And so on. Results were obtained from
a database of approximately 10,000 images.

have stored a feature index using the multiresolution
capability of the wavelet transform.

Because the set of wavelets is an in�nity set, dif-
ferent wavelets may give di�erent performance for dif-
ferent types of image. One should take advantage of
this characteristic in designing an image retrieval sys-
tem. To match the characteristics of the signal we
are analyzing, we used a Daubechies-8 or Symmlet-8
wavelet for the DWT process. Symmlets were designed
by Daubechies [6] to be orthogonal, smooth, nearly
symmetric, and non-zero on a relatively short inter-
val (compact support). Wavelet subclasses are distin-
guished by the number of coe�cients and by the level
of iteration. Most often they can be classi�ed by the
number of vanishing moments. The number of vanish-
ing moments is weakly linked to the number of oscilla-
tions of the wavelet, and determines what the wavelet
does or does not represent. The number of vanishing
moments for the subclass of our Symmlet wavelet is 8,
which means that our wavelet will ignore linear through
eighth degree functions.

Wavelets perform better than traditional layout cod-
ing because the coe�cients in wavelet-created compres-
sion data actually contain su�cient information to re-
construct the original image at a low loss rate using an
inverse wavelet transform. This is analogous to using
just one Fourier coe�cient to represent an exact sin(x)
curve. However, you need many more sample values to
plot a good sin(x) curve.

III.3 Wavelet Image Layout Matching in WBIIS

When a user submits a query, we must compute the
feature vector for the querying image and match it to
the pre-computed feature vectors of the images in the
database. This is done in two phases.

In the �rst phase, we compare the standard devia-
tions stored for the querying image with the standard
deviations stored for each image in the database.

Figure 6 demonstrates the histograms of the stan-
dard deviations we computed for general-purpose im-
ages. Studying the three histograms, we found that
the standard deviations on the intensity component is
a lot less condensed than those on the other two. We
would consider �C1

equally as dominant as �C2
and

�C3
. Also, more images in this general-purpose image

database have lower standard deviations. For any given
standard deviation computed for the query, we want to
�nd roughly the same number of images having stan-
dard deviations close to those of the query. Based on
the trends shown in the histograms, we have developed
the following selection criterion for the �rst step.

Denote the standard deviation information com-
puted for the querying image as �c1 , �c2 and �c3 . De-
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algorithm by University of Washington WBIIS

Figure 8: Comparisons with the algorithm developed by University of Washington. Results were
obtained from a database of approximately 10,000 images.

note the standard deviation information stored in the
database indexing for an image as �0

c1
, �0

c2
and �0

c3
.

If the condition2

((�0
c1
> (100=(100� percent) � �c1)) j j

(percent < 100 � (�c1 � �0
c1)=�c1)) j j

( ((�0
c2 > (100=(100� percent) � �c2)) j j

(percent < 100 � (�c2 � �0
c2)=�c2)) &&

((�0
c3
> (100=(100� percent) � �c3)) j j

(percent < 100 � (�c3 � �0
c3)=�c3)) )

holds, then we set the distance of the two images to 1,
which means that the image will not be further consid-
ered in the matching process. Here, a threshold vari-
able percent is set to control the number of images
passing the �rst matching phase. Usually it is set to
around 50.

Having a �rst fast and rough cut and then a more re-
�ned pass keeps the quality of the results while improv-
ing the speed of the matching. Usually about one �fth
of the images in the whole database passes through the
�rst cut. That means, we obtain a speed up of about
�ve by doing this step. For a database of 10,000 images,
about 2000 images will still be listed in the queue for
the Euclidean distance comparison. Although it is pos-
sible that the �rst pass may discard some images that
should be in the result list, in most cases the quality of
the query is slightly uplifted due to this �rst pass. In
fact, an image with almost the same color is very un-
likely to have the same semantics with an image with
very high variation.

A weighted variation of Euclidean distance is used
for the second phase comparison. If an image in the

2Here we use standard C notation. That is, j j denotes OR
and && denotes AND.

database di�ers from the querying image too much
when we compare the 8 � 8 � 3 = 192 dimensional
feature vector, we discard it. The remaining im-
age vectors are used in the �nal matching, using the
16�16�3 = 768 dimensional feature vector with more
detailed information considered. Let w1;1, w1;2, w2;1,
w2;2, wc1 , wc2 and wc3 denote the weights. Then our
distance function is de�ned as

Dist(Image; Image0 )

= w1;1

3X
i=1

( wci kWCi;1;1 �W 0
Ci;1;1

k )

+ w1;2

3X
i=1

( wci kWCi;1;2 �W 0
Ci;1;2 k )

+ w2;1

3X
i=1

( wci kWCi;2;1 �W 0
Ci;2;1

k )

+ w2;2

3X
i=1

( wci kWCi;2;2 �W 0
Ci;2;2 k )

where

WCi;1;1 = WCi
(1 : 8; 1 : 8)

WCi;1;2 = WCi
(1 : 8; 9 : 16)

WCi;2;1 = WCi
(9 : 16; 1 : 8)

WCi;2;2 = WCi
(9 : 16; 9 : 16)

and k u � v k denotes the Euclidean distance. If we
let wj;k = 1, then the function Dist(I1; I2) is the Eu-
clidean distance between I1 and I2. However, we may
raise w2;1, w1;2 or w2;2 if we want to emphasize more in
vertical, horizontal or diagonal edge details in the im-
age. We may also raise wc2 or wc3 to emphasize more
in the color variation than in the intensity variation.
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III.4 Wavelet Partial Query Layout Matching in
WBIIS

algorithm by University of Washington
            

commercial algorithm

WBIIS

Figure 9: Comparison on a texture image. Results
were obtained from a database of approximately 10,000
images.

A partial image query can be based on an image of
low resolution, a partial image, a very low resolution
block sketch or a hand-drawn sketch. Figure 10 shows
di�erent types of partial image queries our system is de-
signed to handle. We assume that the users do not care
about the non-speci�ed areas, but are only interested
in �nding images in the database that best match the
speci�ed areas of the query image. This kind of query

low partial block hand-drawn
resolution image sketch sketch

Figure 10: Types of partial sketch queries our

WBIIS system aims to handle. Black areas in a
query image represent non-speci�ed areas.

is very useful in real-world digital libraries. For exam-
ple, if a user wants to �nd all images with a racing car
of any color in the center of an image, the user may
simply form a query by cutting o� the center area of
an image with a white car.

To handle partial image queries, spatial localization
of the feature vector is crucial. For example, if we use
some variations of the color moments to represent im-
ages, we would not be able to answer partial sketch
queries because each element in a feature vector is a
function of all pixels in the image. Due to the spa-
tial localization properties of our wavelet-based image
indexing, we can implement a retrieval algorithm for
partial sketch queries with ease.

When a user submits a partial image query, we �rst
rescale the query image into a 128�128 rescaled image.
At the same time, the non-speci�ed areas are rescaled
to �t in the 128� 128 rescaled image. A binary mask,
denoted initially as M0(1 : 128; 1 : 128) is created to
represent the speci�ed areas. Then we compute the
feature vector of the rescaled query image using the
wavelet-based indexing algorithm we discussed above
with the non-speci�ed areas being assigned as black.
Here, the standard deviations are computed based on
the wavelet coe�cients within an 8 � 8 mask M4(1 :
8; 1 : 8) which is a subsample of M0(1 : 128; 1 : 128).

Comparison of the query feature vector with the
stored vectors for the image database is done in two
phases.

In the �rst phase, we compare the standard devia-
tions computed for the querying image with the stan-
dard deviations within the mask for the wavelet coef-
�cients stored for each image in the database. That
is, we need to �rst re-compute the standard deviations
of the wavelet coe�cients in the masked areas for each
image in the database. In cases where the users specify
a majority of pixels in the query, we may simply use
the pre-computed and stored standard deviation infor-
mation. Then a similar distance measure is used to
compare the standard deviation information.

A masked weighted variation of the Euclidean dis-

9



Figure 11: Partial sketch queries in di�erent res-

olutions. The upper-left corner image in each block
of images is the query. Black areas in a query image
represent non-speci�ed areas. Results were obtained
from a database of approximately 10,000 images.

WBIIS

algorithm by University of Washington

Figure 12: Query results on a hand-drawn query

image. Black areas in a query image represent non-
speci�ed areas. Equivalent query for the two systems.
Results were obtained from a database of approxi-
mately 10,000 images.
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tance is used for the second phase comparison. The
distance function is de�ned as3

Dist(Image; Image0)

= w1;1

3X
i=1

( wci kM4 : �WCi;1;1 �M4 : �W 0
Ci;1;1 k )

+ w1;2

3X
i=1

( wci kM4 : �WCi;1;2 �M4 : �W 0
Ci;1;2

k )

+ w2;1

3X
i=1

( wci kM4 : �WCi;2;1 �M4 : �W 0
Ci;2;1 k )

+ w2;2

3X
i=1

( wci kM4 : �WCi;2;2 �M4 : �W 0
Ci;2;2

k )

If an image in the database di�ers from the querying
image too much when we compare the 8� 8� 3 = 192
dimensional feature vector, we discard it. The remain-
ing image vectors are used in the �nal matching, using
the 16� 16� 3 = 768 dimensional feature vector. The
measure is the same as discussed in the previous subsec-
tion except that we usually assign di�erent weights in
the three color components for partial queries with low
resolution. In fact, when the resolution in the partial
sketch is low, we need to emphasize the color variation
rather than the intensity variation. For example, a red
block (i.e. R=255, G=0, B=0) shows the same color
intensity with a green block (i.e. R=0, G=255, B=0).
As a result, we raise wc2 and wc3 to about twice the
setting for wc1.

IV Performance Issues

This algorithm has been implemented within the
setting of the IBM QBIC multimedia database system.
The discrete fast wavelet transforms are performed on
IBM RS/6000 workstations. To compute the feature
vectors for the 10,000 color images of size 640� 480 in
our database requires approximately 2 hours of CPU
time.

The matching speed is very fast. Using a SUN
Sparc-20 workstation, a fully-speci�ed query takes
about 3.3 seconds of response time with 1.8 seconds
of CPU time to select the best 100 matching images
from the 10,000 image database using our similarity
measure. It takes about twice the time to answer a
partially speci�ed query.

There are many ways to further speed up the sys-
tem for very large image databases. For example, we

3Here we use standard MATLAB notation. That is, ` .* '
denotes component-wise product.

Figure 13: Another query example using WBIIS.

may pre-sort and store the standard deviation infor-
mation within the feature vectors of the images in the
database because we must compare this information for
each query. Also, we may use a better algorithm to �nd
the �rst k matching images if k is smaller than log2(n)
if the database contains n images. In fact, an algorithm
of execution time of O(kn) can be constructed for this
task to replace the quick-sort algorithm with run time
O(n log(n)) we are currently using.

Figure 7, 9 and 8 show accuracy comparisons of
our wavelet algorithm with the color layout algorithms
in two of the most popular commercial multimedia
databases and the system developed by University of
Washington. In general, our wavelet-based algorithm
outperforms both of them, especially when the image
contains large local color variations. Figures 11 and 12
show the query results obtained from partial sketch im-
age queries.

V Conclusions and Future Work

In this paper, we have explored some alternatives for
improving both the speed and accuracy of traditional
color layout image indexing algorithms used in large
multimedia database systems. An e�cient wavelet-
based multi-scale indexing and matching system using
Daubechies' wavelets developed by us has been demon-
strated.

It is possible to improve the searching accuracy by
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�ne-tuning the algorithm, e.g., using a perceptually-
comparable color space and adjusting weights for dif-
ferent wavelet coe�cients when computing the distance
between two images. It is also possible to make the
searching faster by developing a better algorithm for
storing and matching the feature vectors. We are also
working on shape-based image indexing and searching
algorithms using only the high-pass wavelet �lters. Ex-
periments with our algorithm on a video database sys-
tem could be another interesting study.

Finally, we are working on applying this technique
to di�erent types of image databases such as medical
images and scanned art images. We are actively work-
ing with the Stanford University Libraries to integrate
our image querying system into digital library systems
such as the MediaWeaver system [16]. Our wavelet-
based image search engine is currently being used at
the Stanford University Library to assist teaching and
research projects in liberal art departments.
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