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Abstract Changing the resolution of digital images and
video is needed image processing systems. In this paper,
we present nonlinear interpolation schemes for still im-
age resolution enhancement. The proposed neural net-
work interpolation method is based on wavelet
reconstruction. With the wavelet decomposition, the
image signals can be divided into several time–frequency
portions. In this work, the wavelet decomposition signal
is used to train the neural networks. The pixels in the low-
resolution image are used as the input signal of the neural
network to estimate all the wavelet sub-images of the
corresponding high-resolution image. The image of in-
creased resolution is finally produced by the synthesis
procedure of wavelet transform. In the simulation, the
proposed method obtains much better performance than
other traditional methods. Moreover, the easy imple-
mentation and high flexibility of the proposed algorithm
also make it applicable to various other related problems.

Keywords Interpolation Æ Image resampling Æ Neural
network Æ Wavelet transform Æ Subband filtering

1 Introduction

Interpolation is the process of estimating the interme-
diate sample values of a continuous function from
known discrete sample values and is used extensively in
digital image processing to magnify images and correct
spatial distortions. Image interpolation is used for sev-
eral different purposes, such as image resolution
enhancement, multiresolution pyramidal compressing,
position computing for rotated image pixels, etc. An
efficient interpolation method is essential for digital

image processing. Sampling theory dictates that a band-
limited analog image can be perfectly reconstructed from
its discrete samples if it is sampled at a frequency above
the Nyquist rate. An ideal low-pass filter can provide the
reconstruction of the image. However, the ideal low-pass
filter is not attainable and many approximated interpo-
lation techniques do not give satisfactory performance.

Many linear and nonlinear interpolation techniques
have been proposed for image zooming. In the linear
methods, the nearest-neighbor, bilinear, cubic B-spline
[1] and cubic convolution interpolation methods [2–4]
are widely used to increase the resolution of images.
Both the nearest-neighbor and bilinear methods provide
the interpolation function with a very small computation
time. However, these methods cause conspicuous
annoying artifacts. Although the cubic interpolation
algorithms can reduce the annoying effects, it always
blurred the reconstructed image and produced some
ringing effects in the edge regions. With the rapid in-
crease in available computing power, the nonlinear
techniques for image interpolation have received
increasing attention. Median filtering interpolation
methods [5] preserve approximately the sharpness of
isolated image transitions. However, these methods are
difficult to prevent the blurring effects in the interpolated
image. Because the characteristics of the edges in a digital
image can be reserved for many scales of resolution and
the edges are always important for human vision, most of
the nonlinear interpolation algorithms tend to focus on
the edge information. In edge preserving interpolation
methods [6–11], the local edge structure of the original
image is preserved to prevent the blurring and blocking
effects. These techniques determine the edge localization
or classification by exploiting an edge fitting technique
within small overlapping windows of the original image.
We notice that the interpolation schemes utilize different
reconstruction rules that are decided by the edge pattern.
However, if the window size is larger or the edges in a
window are irregular, the implementation will become
complex and inefficient, and the schemes will produce
poor performance for image resolution enhancement.
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As in [12, 13], the multiresolution interpolation
methods exploit the regularity of edges across resolution
scales to estimate the high-frequency information. These
methods estimate the regularity of edges by measuring
the rate of decay of wavelet transform coefficients across
scales and attempt to preserve the underlying regularity
by extrapolating a new high-frequency sub-image. And
then, the high-frequency sub-image is used in high-reso-
lution image reconstruction. Another class of interpola-
tionmethods is that based on neural networks. In [14–16],
these methods employ the neural networks for interpo-
lation, providing advantages of high speed and good
image reproduction quality. We found that the multi-
resolution and neural network interpolation techniques
improve image interpolation. Hence, we present a novel
interpolation method of low implementation complexity
by the effective combination of the wavelet multiresolu-
tion reconstruction and the neural network techniques.

Artificial neural network (ANN) techniques have
been applied to solve complex problems in the field of
image processing. One class of neural networks, multi-
layer perceptron (MLP), has been found to be particu-
larly effective for problems that can make use of
supervised training [17–19]. An MLP enables to extract
higher-order statistics by adding one or more hidden
layers. This model has become extremely popular for
both classification and prediction. Many details on its
implementation and uses are given in [19]. In 1987,
Lippmann [20] shows that an MLP with two hidden
layers are enough to form arbitrary decision regions. This
paper employs the two-hidden-layers MLP model as the
predictor to increase image resolution. In the interpola-
tion phase, only the wavelet transform reconstruction is
used for increasing the resolution of images. The wavelet
decomposition is used to produce training samples for
the MLP learning process. The proposed interpolation
method exploits the nonlinearity property of the MLP
neural network to estimate wavelet sub-images.

The rest of this paper is organized as follows. Sec-
tion 2 reviews the main features of wavelet transform
and the MLP neural networks. Section 3 presents the
structure of the MLP interpolation scheme based on
wavelet transform and subband decomposition. Exper-
imental results are given in Sect. 4 for the still images
and image sequence outside the training set. Finally, the
conclusions are drawn in Sect. 5.

2 Wavelets and MLP neural networks

In this paper, the bi-orthogonal wavelet decomposition
and reconstruction methods are used for MLP training
and interpolation, respectively. The bi-orthogonal
wavelet filtering requires a few tapes, unlike standard
subband QMF (quadrature mirror filter) filtering. The
detailed properties and construction of regular bi-
orthogonal wavelet transform are described in [21].
Furthermore, the MLP network, which is the standard
neural network model, is also performed in the proposed

method. The original description of MLP can be found
in [22]. In general, the error back-propagation algorithm
reported in [23, 24] is the most widely used and is a
powerful learning algorithm for the MLP network. For
completeness, we review the concepts of the bi-orthog-
onal wavelet analysis and the MLP neural networks with
learning algorithm in the following sections.

2.1 Bi-orthogonal wavelet transform

In practice, the wavelet transform is implemented with a
perfect reconstruction filter bank. The idea is to
decompose the image signals into sub-images corre-
sponding to different frequency contents. Let H(x) and
G(x) be the low-pass and high-pass filters of a perfect
reconstruction filter bank, respectively. In the one-
dimensional (1-D) case with one-level decomposition,
the input signal x[n] is filtered by h[n] and g[n]. Then, the
resulted sub-image signals are down-sampled by a factor
of two. For the bi-orthogonal wavelet transform used
here, the decomposition procedure takes the form:

xL n½ � ¼
X

k

h k½ �x 2n� k½ � and ð1Þ
xH n½ � ¼

X

k

g k½ �x 2n� k½ �

where xL[n] and xH[n] denote the approximation and
detailed sub-image signals, respectively. The perfect
reconstruction is performed by the complementary
synthesis filters ~h n½ � and ~g n½ � as follows:

x n½ � ¼
X

k

~h 2k � n½ �xL n½ � þ
X

k

~g 2k � n½ �xH n½ � ð2Þ

In the two-dimensional (2-D) case, the 1-D decom-
position procedure is first applied to each row of an im-
age signal. The decomposition results in two intermediate
sub-images. Then, the same procedure is applied to each
column of the intermediate sub-images. For a one-level
decomposition, this results in four sub-images LL, LH,
HL, and HH. In hierarchical wavelet decomposition, the
sub-image LL is further decomposed into other four sub-
images. Similarly, the reconstruction for the image is
done one level at a time by using the 1-D reconstruction
procedure. The one-level decomposition and recon-
struction of the image is presented in Fig. 1. Based on the
wavelet theory, the original image signals can be perfectly
reconstructed through the wavelet transform if the sub-
images are reserved without any degradation.

2.2 Multilayer perceptron (MLP) model

An MLP model contains one or more hidden layers, and
the function of neurons in the hidden layer is to arbitrate
between the input and the output of the neural network.
First, the input feature vector is fed into the source
nodes in the input layer of the neural network. The
neurons of the input layer constitute the input signals
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applied to the neurons of the first hidden layer. The
output signals of the hidden layer can be used as inputs
to the second hidden layer. Finally, the output layer
produces the output result and terminates the neural
computing process.

Among the algorithms used to design the MLPs, the
back-propagation algorithm is the most popular. In
general, there are two different phases in the back-
propagation system; the forward phase and the back-
ward phase. In the forward phase, the input signals are
computed and passed through the neural network layer
by layer. Then, the neurons in the output layer product
the output signals of the neural network. In this time,
comparing the output response of the neural network
with the desired response can generate the error signals.
In the backward phase of the back-propagation algo-
rithm, some free parameters can be adjusted by referring
the error signals. This work can be used to minimize the
distortion of the neural network. We notice that the
MLP model has the properties of high learning capa-
bility and efficiency. In this work, the back-propagation
learning algorithm is iteratively executed for the training
set and then produces the synaptic weight vectors. By
inputting the final synaptic weight vectors into the MLP,
it is used to predict the unknown pixels in our image
interpolation schemes.

3 Neural network interpolation using wavelet transform

By using the wavelet decomposition, the solution space
of the interpolation problem can be decomposed into its
approximation subspace and the complementary detail

subspaces. In the frequency domain, this vector space
decomposition is equivalent to dividing the spectrum
into a high frequency portion and a low frequency
portion [25–26]. Empirically, neural networks would
obtain better performance when the solution space is
reduced. With this, we develop the wavelet MLP inter-
polation (WMI) scheme that utilizes the property of
dividing the image spectrum to augment the interpola-
tion accuracy of the MLP neural networks. WMI does
not use the traditional edge classification algorithm to
enhance or reserve the detail portion of interpolated
image. In general, the 2-D wavelet transform splits the
image spectrum into four sub-images LL, LH, HL, and
HH. Only the lowest frequency sub-image, LL, is further
split into four smaller sub-images. In this paper, we
consider the one-level synthesis procedure of wavelet
transform for increasing the image resolution by a factor
of two.

As shown in Fig. 2, the signal in the overlapping
windows of the low-resolution image is used as the input
vector of MLP, and then the output signal of the ex-
pected wavelet sub-image LL is generated. The same
structure is also employed for the reconstruction of the
higher-frequency sub-images. Figure 3 shows the rela-
tional diagram between the wavelet analysis/synthesis
procedure and the MLP modules that are used to esti-
mate the high-resolution image. We employ four MLP
modules in the proposed WMI method. Also, all of these
four modules are used to estimate the wavelet subband
signals. The final synaptic weight vectors (wLL, wLH,
wHL, and wHH) for the corresponding wavelet subband
image predictors, i.e., MLPLL, MLPLH, MLPHL, and
MLPHH, are generated using the back-propagation
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learning algorithm with the images in the training set
and its sub-image signals that are generated by the
one-level wavelet decomposition. The neural network
predictors utilize the low-resolution image signals to
estimate the signals in the wavelet subband images of the
high-resolution image. Then, the estimated wavelet

subband images are performed to compose the inter-
polated high-resolution image through the 2-D wavelet
synthesis operator. The interpolation algorithm for an
M·N low-resolution image with the desired resolution
increasing factor of Z is described as follows:

Step 1 Initially store the evaluated final synaptic weight
vectors into the corresponding MLP model. Set the
width m and height n of the high-resolution image; for

LL sub-image 
MLP predictor

Final synaptic 
weight vectors wLL

Expected LL 
sub-image 

Low-resolution image 
Fig. 2 Block diagram of the
LL wavelet sub-image
estimation in the WMI scheme

Wavelet reconstruction

Low-resolution
image with size n×n

Interpolated image 
with size 2n×2n

MLPLL

estimation for LL
subband image 

MLPLH

estimation for LH
subband image

MLPHL

estimation for HL
subband image

MLPHH

estimation for HH
subband image

Four
estimated 
subband 

images with 
size n×n

Fig. 3 Block diagram of the WMI algorithm with resolution
increasing by a ratio of two
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example, m ‹ 2·M and n ‹ 2·N, therefore, set i ‹ 1.
Step 2 The MLP with the synaptic weight vectors wLL is
used to estimate all of the signals in the LL sub-image of
the high-resolution image. The signals in the low-reso-
lution image are used as the input vector of the neural
network predictor. Similarly, the LH, HL, and HH sub-
images can be produced by the corresponding sub-image
MLP predictors.
Step 3 Boundary pixels of the LL sub-image, that are
incalculable for the LL sub-image predictor, will be filled
directly into the low-resolution image in the corre-
sponding position. The incalculable signals in the esti-
mated LH, HL, and HH sub-images are set to 0.
Step 4 Use the 2-D wavelet synthesis procedure to
compose the estimated wavelet sub-images. That will
result in an m·n interpolated image with the original
resolution increasing by factor 2i.
Step 5 If Z/2i>1, then set i ‹ i+1; set m ‹ 2·m and
n ‹ 2·n; go to step 2.

In the WMI scheme, the MLP predictors are used to
estimate the wavelet sub-images. Furthermore, the WMI
scheme supports a progressive interpolation. The
reconstructed high-resolution image with acceptable
quality can be obtained by only estimating the lowest
frequency sub-image. Adding one or more estimated
detail sub-images can enhance the fine regions in the
image. Furthermore, we find that the proposed algo-
rithm works well for subband reconstruction without
any structural modification.

The architecture of the proposed interpolation
scheme is simple, redressing easily, and is suitable for
hardware design. The MLP neural networks are not
only fast, but they are also intrinsically parallel. The
Adaptive Connected Network of Adaptive ProcessorS
(CNAPS) digital system [27, 28, 29] and the Analog
Neural Network Arithmetic and logic unit (ANNA)
chip are especially suited to the MLP model. Their
simulation results show that both the Adaptive CNAPS
digital system [28] and the ANNA chip [29] obtain a
speedup factor of 500 over the software implementation
on SUN SPARC 1+ workstation. Note that the pro-
posed interpolation scheme only uses one manner of
neural network model, i.e., the MLP. Consequently,
WMI is potentially fast for the real-time computation of
image interpolation.

4 Simulations and results

In the simulations, we use the two-hidden-layer MLP as
nonlinear predictors to estimate the spatial signals and

the wavelet sub-image in the proposed schemes. The
16-10-5-1 MLP model is used for the WMI scheme. The
final synaptic weights of the neural networks are pro-
duced by the back-propagation learning algorithm from
the training set of five different images; ‘‘Boat’’, ‘‘Pep-
pers’’, ‘‘Sailboat’’, ‘‘Tiffany’’, and ‘‘Toys’’. The high-
resolution images both inside and outside the training
set are monochrome still images of size 512·512 pixels
with 256 gray levels. The still images are down sampled
as low-resolution test images of size 256·256 pixels. The
image sequence ‘‘Football’’ (352·288 pixels, 30 frames)
is also used to evaluate the performance of the proposed
approach. To evaluate the performance of the interpo-
lation scheme numerically, the peak signal-to-noise ratio
(PSNR) between the two images has been calculated,
where the PSNR is defined as:

PSNR ¼ 10 log10
2552

MSE
dB ð3Þ

Note that the mean squared error (MSE) for an n·n
image is defined as:

MSE ¼ 1

n

� �2Xn

i¼1

Xn

j¼1
xij � x̂ij
� �2 ð4Þ

where xij and x̂ij denote the original and quantized gray
levels, respectively.

The proposed interpolation methods and other pop-
ular existing interpolation approaches are implemented
in this study. Up to now, there has been no such efficient
neural-network-based interpolation algorithm proposed.
Thus, we compare six interpolation methods: the 2-D bi-
directional linear interpolation (denoted by ‘‘Bilinear’’),
the cubic B-spline interpolation (denoted by ‘‘Cubic’’),
and the proposed WMI interpolation schemes in the
simulations. We also implement a simple version of
WMI (denoted by ‘‘WMILL’’), which only uses the
estimated sub-image LL to reconstruct the high-resolu-
tion image. Moreover, a subband MLP interpolation
(denoted by ‘‘SMI’’) is constructed by using the same
structure as WMI only the analysis/synthesis procedure
adopted the subband filter bank. The bi-orthogonal 9/7
filters proposed in [30] are used for the WMI scheme. In
the SMI, we use the filter coefficients of the 1-D 32-tap
QMF designated as 32C in [31].

Table 1 shows the PSNR values (dB) of the simula-
tion results for the reconstructed still images with the
resolution increasing by a factor of two outside the
training set. Table 2 and Fig. 4 show the simulation
results for interpolated images of the ‘‘Football’’ se-
quence. From the simulation results, we found that the

Table 1 The PSNR values
(in dB) of the images with
increasing resolution outside
the training set

Bilinear Cubic WMILL WMI SMI

Lena 35.7690 36.9666 37.3936 37.8914 38.0228
Family 35.3849 36.9337 37.3418 37.7566 37.9422
F-16 31.4266 33.0702 33.2233 33.4504 33.8368
Baboon 24.4977 25.3423 25.7059 25.8838 25.8470
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proposed algorithm achieves a better quality of inter-
polated images than the conventional interpolation
methods. We also compare the computation time for the
interpolation methods. The programs are performed
using C++ language and complied using the Microsoft
Visual C++ package. All simulations are made on a
single-CPU Intel Pentium III-1 GHz personal computer
with the Windows XP operating system. Table 3 shows

the average execution time and the average learning time
for the test images. Notice that te (execution time) is
evaluated for the images outside the training set and tl
(learning time) is evaluated for the images inside the
training set. The magnified portions of the interpolated
images ‘‘Lena’’ outside the training set are shown in
Fig. 5a–e. It can be easily seen that the proposed algo-
rithm can obtain the better image quality and the better
visual quality about the edge region. Figure 6a, g are the
original low-resolution frames 10 and 20 of the ‘‘Foot-
ball’’ sequence, respectively. Figure 6b–f and h–l are the
interpolated images for the low-resolution frames 10 and
20 using the Bilinear, Cubic, SMI, WMILL, and WMI
methods. To show the differences clearly, the portion in
the original low-resolution image and the interpolated
images ‘‘F-16’’ that contain some fine texts are given in
Fig. 7a–d. Besides, the difference between the original
high-resolution image and the interpolated images that
are generated by the Cubic and WMI algorithm are
shown in Fig. 8a, b, respectively. In all simulation re-
sults, the images resulting from the interpolation with
the new algorithm using wavelet reconstruction obtains
the better image quality and faster computation than
those obtained with other approaches.

5 Conclusions

In this paper, we proposed an efficient scheme for
digital image interpolation. The proposed algorithm
increases the resolution of a low-resolution image by
using neural networks. In order to estimate the inter-
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Fig. 4 The simulation results
for the interpolated images of
the ‘‘Football’’ sequence with
resolution increasing by a factor
of two

Table 2 The PSNR values (in dB) of the simulation results for the
interpolated images of the ‘‘Football’’ sequence with resolution
increasing by a factor of two

Frame no. Bilinear Cubic WMILL WMI SMI

1 29.18 31.70 32.17 32.39 32.40
2 28.61 31.11 31.59 31.84 31.87
3 28.32 30.78 31.22 31.46 31.49
4 27.84 30.26 30.73 30.97 31.02
5 27.49 29.89 30.36 30.66 30.73
6 27.52 29.99 30.46 30.80 30.91
7 27.50 30.16 30.62 30.94 31.04
8 26.98 29.76 30.23 30.57 30.62
9 27.16 30.01 30.54 30.86 30.90
10 26.97 29.66 30.15 30.38 30.43
11 27.18 29.90 30.40 30.67 30.66
12 27.48 30.25 30.72 31.02 31.04
13 27.24 29.93 30.38 30.65 30.72
14 27.09 29.87 30.38 30.60 30.66
15 27.05 29.79 30.29 30.55 30.62
16 27.20 29.93 30.42 30.72 30.78
17 26.80 29.48 29.95 30.19 30.27
18 26.08 28.81 29.28 29.56 29.66
19 25.91 28.65 29.14 29.37 29.44
20 25.98 28.84 29.37 29.59 29.66
21 25.83 28.68 29.18 29.41 29.49
22 25.93 28.71 29.21 29.46 29.52
23 25.89 28.59 29.06 29.30 29.36
24 25.76 28.29 28.72 28.96 29.02
25 25.94 28.58 29.08 29.33 29.38
26 25.95 28.63 29.09 29.37 29.42
27 25.92 28.47 28.92 29.18 29.24
28 25.76 28.39 28.84 29.10 29.17
29 25.86 28.38 28.84 29.09 29.16
30 26.05 28.63 29.13 29.40 29.49
Average 26.82 29.47 29.95 30.21 30.27

Table 3 The average execution time (te) and the average learning
time (tl) of the interpolation schemes

Bilinear Cubic WMILL WMI SMI

te (ms) 10 160 28 71 213
tl (s) – – 24 77 80
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polated image more accurately, the WMI scheme
adopts the MLP class of neural networks to predict the
expected wavelet sub-images of a high-resolution im-
age. The back-propagation learning algorithm is used
to construct the synaptic weights for the MLP predic-
tors. The wavelet analysis/synthesis procedure and
MLP can be implemented easily by using very large

scale integration (VLSI) techniques. Thus, the hard-
ware design for the proposed interpolation schemes is
simple and efficient. From the experimental results, the
proposed schemes can obtain superior image quality
and visual quality about the edge region. We find that
the proposed schemes are expected to be useful inter-
polation schemes for digital images.

Fig. 5a–e The magnified
portions of the interpolated
image ‘‘Lena.’’ a Bilinear.
b Cubic. c WMILL. d WMI.
e SMI
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Fig. 6a–l Interpolation results
for the images of the
‘‘Football’’ sequence. a and
g Original frames 10 and 20.
b and h Bilinear. c and i Cubic.
d and j WMILL. e and k WMI.
f and l SMI
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