
I.J. Image, Graphics and Signal Processing, 2012, 7, 47-53 
Published Online July 2012 in MECS (http://www.mecs-press.org/) 

DOI: 10.5815/ijigsp.2012.07.05 

Copyright © 2012 MECS                                                        I.J. Image, Graphics and Signal Processing, 2012, 7, 47-53 

Wavelet Based Lossless DNA Sequence 

Compression for Faster Detection of Eukaryotic 

Protein Coding Regions 
 

J. K. Meher 
 
Computer Science and Engineering, Vikash College of Engineering for Women, Bargarh, Odisha, India. 

e-mail: jk_meher@yahoo.co.in 

 

M. R. Panigrahi 

Chemical Engineering, Vikash College of Engineering for Women, Bargarh, Odisha, India. 
e-mail: madhaba_r@yahoo.com 

 
G. N. Dash 

School of Physics, Sambalpur University, Odisha, India 

e-mail: gndash@ieee.org 

 

P. K. Meher 

Institute for Infocomm Research, Singapore 

e-mail: pkmeher@i2r.star.edu.sg 

 

 

Abstract— Discrimination of protein coding regions 

called exons from noncoding regions called introns or 

junk DNA in eukaryotic cell is a computationally 

intensive task. But the dimension of the DNA string is 

huge; hence it requires large computation time. Further 

the DNA sequences are inherently random and have vast 

redundancy, hidden regularities, long repeats and 

complementary palindromes and therefore cannot be 

compressed efficiently. The objective of this study is to 

present an integrated signal processing algorithm that 

considerably reduces the computational load by 

compressing the DNA sequence effectively and aids the 

problem of searching for coding regions in DNA 

sequences. The presented algorithm is based on the 

Discrete Wavelet Transform (DWT), a very fast and 

effective method used for data compression and 

followed by comb filter for effective prediction of 

protein coding period-3 regions in DNA sequences. This 

algorithm is validated using standard dataset such as 

HMR195, Burset and Guigo and KEGG.  

 

Index Terms— Discrete Wavelet Transform, Comb 

filter, Indicator sequence, Protein coding regions  

I. INTRODUCTION 
DNA sequences can be considered as strings made of 

symbols drawn from the alphabet {A, C, G, T}.It is 

made of coding and non-coding regions. Coding regions 

are also called exons, code for proteins where as non-

coding regions called introns or “junk” DNA [1]. In 

eukaryotes, the exons are found to be separated by 

introns, whereas in prokaryotes they are placed 

continuously without any introns in between. 

Computational gene prediction is based on sequence 

similarity searches and signal-based searches [2]. Exon 

detection deals with content sensors, which refer to the 

patterns of codon usage that are unique to a species, and 

allow coding sequences to be distinguished from the 
surrounding non-coding sequences by statistical 

detection algorithms. Many algorithms are applied for 

modeling gene structure, such as dynamic programming, 

linear discriminant analysis, Linguist methods, Hidden 

Markov Model and neural network. Based on these 

models, a great number of gene prediction programs 

have been developed [3]. The signal processing 

approach has played a major role in gene prediction 

using period-3 property. 

It is known that the protein coding regions of DNA 

sequences exhibit a period-3 behavior which results 

specifically from the existence of the codon sequences. 
Identification of period-3 regions therefore helps in 

predicting the gene locations; and allows the prediction 

of specific exons within the genes of eukaryotic cells [4]. 

In order to predict the location of protein coding region, 

a sliding data frame (sliding window) with a small step 

size is employed. The existence of three-base periodicity 

exhibited by the genomic sequence as a sharp peak at 

frequency f=1/3 in the power spectrum in the protein 

coding regions helps in the prediction of exons [5]. 

The first step in signal processing based gene 

prediction involves numerical representation of DNA 
string. The most fundamental representation involves 

the substitution of binary numbers to get four indicator 

sequences. Other methods have been adopted using z-

curve [6], quaternion [7], complex numbers [8], EIIP [9], 

Gailos field assignment [10], frequency of nucleotide 
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occurrence [11], paired numeric [12] to make indicator 

sequence in DSP methods to improve the sensitivity and 

selectivity.  

The existing DSP tools for the identification of 

protein coding regions of DNA sequences based on the 

period-3 behavior are Discrete Fourier transform (DFT) 

and digital filter. DFT is used to detect period-3 

property in DNA sequences [13] in which the DFT of 
length N for input indicator sequence is defined for four 

bases and the absolute value of power of DFT 

coefficients is plotted to get period-3 peak at coding 

regions. The digital filtering techniques such as the 

antinotch filter and multistage filter have been used to 

identify period-3 property in DNA sequences [14]. In 

digital filtering method for each indicator sequence of 

the respective base corresponding filter output is 

computed and the sum of the square of filter outputs is 

plotted to extract the period-3 region of the DNA 

sequence effectively. In order to reduce the 

computational complexity, comb filter has been used by 

J. K. Meher et al. [15] and better selectivity and 

sensitivity have been obtained.  

Gene prediction in eukaryotes based on the DFT by 

spectral rotation measure is presented by Koltar and 

Lavner [16]. The 3-periodicity is explained in more 

detail by Tuqan and Rushdi [17] as related to the codon 

bias using two stage digital filter and multirate DSP 

model. Modified Gabor-Wavelet transform is used by 

Jesus et al. [18] for the identification of protein coding 

regions having advantage of being independent of the 

window length. The spectrum for DNA sequences is 

discussed based on an entropy minimization criterion by 
Galleani and Garello [19].  

The dimension of the DNA string is huge; hence it 

requires large computation time. Newly determined 

genomes have to be stored and compressed in an 

efficient manner. For related species, they have to be 

organized in such a way that simple cross-referencing is 

possible. Efficient compression may also reveal some 

biological functions, aid in phylogenic tree 

reconstruction.  

Xin Chen et al. have presented a lossless compression 

algorithm, GenCompress, for genetic sequences, based 

on searching for approximate repeats [20]. In 2004 Neva 

Cherniavsky and Richard Ladner have explored the 

utility of grammar-based compression of DNA 

sequences [21]. Grammar-based compression algorithms 

infer context-free grammars to represent the input data. 

The grammar is then transformed into a symbol stream 

and finally encoded in binary. There have been 

developed several special-purpose compression 

algorithms for DNA sequences such as Grumbach and 

Tahi [22], Lanctot, Li and Yang [23]. These algorithms 

use the structures and can achieve high compression 
ratio.  Two characteristic structures of DNA sequences 

are known. One is called palindromes or reverse 

complements and the other structure is approximate 

repeats. Several specific algorithms for DNA sequences 

that use these structures can compress them less than 

two bits per symbol. Toshiko Matsumoto, Kunihiko 

Sadakane and Hiroshi Imai [24] have improved the 

Context Tree Weighting Method (CTW) so that 

characteristic structures of DNA sequences are available. 

The DNA compression has been performed by Don 

Adjeroh et al. in 2002 based on Burrows-Wheeler 

Transform (BWT) [25]. Repetition analysis is performed 

based on the relationship between the BWT and 

important pattern matching data structures, such as the 

suffix tree and suffix array. 1 2005 13 / 38Be Be 

DNA sequences are inherently random and therefore 

cannot be compressed efficiently. The methods used so 

far for compression do not capture the intricate structure 

of DNA sequences because of its vast redundancy, 

hidden regularities, long repeats and complementary 

palindromes. The exon identification task carried out by 

existing methods has its own limitations as it is observed 

in signal processing tools. Due to this gene prediction 

problem still remains a challenging task in terms of 

better sensitivity, selectivity and speed using existing 

tools. In such situations shortcomings of the previous 

approaches motivate to develop new approaches to have 

improved accuracy, speed and less computational 

complexity. 

In this paper an efficient method using wavelet 

transform has been used for compression of DNA string 

without loss of any information that reduces the 

computational load effectively and the resulting reduced 

sequence is subjected to signal processing tool namely 

the comb  filter that effectively use the period-3 property 

in a genomic sequence for the prediction of protein 

coding regions and has lower computational complexity 

In order to validate the results of the proposed predictor, 

prediction measures such as discriminating factor, 

sensitivity and specificity are evaluated with HMR195, 
Burset and Guigo and KEGG standard data sets. 

The rest of the paper is organized as follows. Section-

2 presents the proposed computationally method for 

compression of DNA string and method for the 

identification of protein coding regions. Section-3 

presents the simulation and result analysis of the 

proposed methods and Section-4 presents the 

conclusions of this paper. 

II. PROPOSED ALGORITHM 

The objective of this paper is to compress the DNA 

sequence without loss of information of the coding 

regions to reduce the computational load. We are only 

interested in lossless compression algorithms. The 

motivation is using less memory to store reduced DNA 

sequence and reduce the computational time.  

The overall process is represented in the form of a 

flow chart as shown in Figure.1. DNA sequence 
consisting of four bases is encoded with numerical 

values of respective dipole moments. Now the DNA 

sequence is converted to numerical sequence. The 
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resulting sequence is compressed by using wavelet 

transform. Now in one level decomposition using db7 

the sequence of detailed coefficients is subjected to a 

digital filter that can effectively detect the period-3 

regions in the DNA sequence. Comb filter is chosen for 

its low computational complexity.    

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.1 Overall process for detection of protein coding regions with 

lossless compression. 

A. N umerical Presentation   

The DNA sequence is a string of consisting of four 

nucleotides such as A, T, C and G. But genomic signal 

processing deals with numerical sequence. There are 

various numerical representations, but the methods 

having high sensitivity and specificity is obtained by 

using dipole moment of nucleotides. It is known that 
dipole moment of nucleotides helps in the detection of 

exon in a DNA sequence effectively [26]. If  we  

substitute the dipole moments  for  A=0:4629, G=6:488,  

C=3.943  and  T=1.052,  we  get  a  numerical sequence 

which represents the distribution of polarity of a 

chemical bond within a molecule along the DNA 

sequence.  

For a DNA sequence of an organism, x = 
TATGAATAC, then substituting the values dipole 

moment of the corresponding nucleotide, we get y = 

[1.052 0.4629 1.052 6.488 0.4629 0.4629 1.052 0.4629 

3.943]. Now the resulting numerical representation is 

subjected for compression. 

B. Wavelet  transform for compression of  DNA string 

Wavelets are a family of basis functions that can be 

used to approximate other functions by expansion in 

orthonormal series. They combine such powerful 
properties as orthonormality, compact support, varying 

degrees of smoothness, localization both in time or 

space and scale (frequency), and fast implementation. 

One of the key advantages of wavelets is their ability to 

spatially adapt to features of a function such as 

discontinuities and varying frequency behavior [27]. 

The compact support means that each wavelet basis 

function is supported on a finite interval and it 

guarantees the localization of wavelets. That is, a region 

of the data can be processed without affecting the data 

outside this region. 

A wavelet transform is a lossless linear 

transformation of a signal or data into coefficients on a 

basis of wavelet functions. In signal processing, a 

transformation technique is used to project a data in one 

domain into another where hidden information can be 
extracted. A wavelet transform decomposes a signal into 

several groups of coefficients. These coefficient vectors 

contain information about characteristics of the data at 

different scales. Fine scales capture local details of 

coefficients and coarse scales capture global features of 

a signal. Performing the discrete wavelet transform 

(DWT) of a signal x is passing it through low pass filters 

(scaling functions) and high pass filters simultaneously. 

The result at each pass of the filtering of the signal is a 

convolution of the impulse response g of the filter and 

the signal. Mathematically, this result can be represented 

as 

 

                (1) 

 

The frequency of the signal is halved after passing the 

signal through a filter. So, by Nyquist‟s rule, half of the 

samples can be discarded. This is achieved by down-

sampling or decimation by a factor 2, that is, removing 

every alternative coefficient in y(n). Hence, after 

simultaneously passing a signal through high pass and 

low pass filters and the subsequent down-sampling, the 

number of coefficients will be equal to half the length of 

the original input for each filter. Therefore, the wavelet 

transform of a signal for both high pass filters and low 

pass filters can be represented by the following two 

equations 

 

                (2) 

 

                (3) 

In matrix form, wt =WX where W =[L;H] where L 

and H are impulse responses of low pass and high pass 

filters and wt is wavelet transform of the input signal X. 
The two filters used at each stage of decomposition must 

be related to each other by g[L -1- n] = (1)n.h[n] where 

g and h are the impulse responses of the two filters and 

L is such that 0 ≤ n < L . These filters are known as 

quadrature mirror filters. The wavelet coefficients vector 

resulted from applying wavelet transform to a signal 

consists of both Yhigh(n) (also called detailed coefficients) 

and Ylow(n) (also called approximation coefficients) 

coefficients in order. DWT proceeds further by 

recursively applying two convolution functions each 

producing an output stream that is half of the length of 

the original input, until the resolution (number of 

approximation coefficients) becomes one  or resolution 

level zero. Number of detailed coefficients at each level 

j is equal to n/2j. The term „scale‟ used in the context of 

Wavelet 

Transform 

Comb Filter 

DNA Sequence 

Numerical 

representation 
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wavelet transform at a level j is given by =2/j-1. The 

maximum level of decomposition depends on the 

wavelet function used for transformation. For example, 

the maximum level of decomposition of a signal x for 

Haar wavelet is given by log2(x). Figure.2 depicts the 

entire process of DWT. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.2 A two level DWT for N data. 

 

The number of data is halved after every filtering and 

down sampling operation. A wavelet transform is 

applied on output of high pass filter recursively keeping 

the output coefficients of each low pass filtering 

operation at each stage. The wavelet transform of a data 

at any level n of decomposition consists of 

approximation coefficients only at nth level and all 

detailed coefficients up to nth level.  

A number of wavelet families like symlet, coiflet, 

daubechies and biorthogonal wavelets are already in use. 

They vary in various basic properties of wavelets like 

compactness. Among them, Haar wavelets belonging to 

daubechies wavelet family are most commonly used 

wavelets in database literature because they are easy to 

comprehend and fast to compute. The db7 is used for 

one level decomposition of input query signal sequence. 

In this process the sequence is compressed to 50%. The 

resulting sequence of detailed coefficients is subjected 

to comb filter that exhibit period-3 property. 

C. Prediction of protein coding regions 

It is known that the protein coding region of DNA 

sequence exhibit period-3property. The existing signal 

processing methods such as discrete Fourier transform, 

digital filter  such as notch filter and comb filter can 

effectively predict these regions. The comb filter has 

been choosen in this paper for its low computational 

complexity and better sensitivity and specificity [15]. 

Amplitude response of comb filter is comprised of a 

series of regularly spaced spikes of interleaved 

passbands and stopbands which looks like a hair comb. 

A comb filter can also be viewed as a notch filter in 

which the notches or the nulls occur periodically across 

the frequency band [28].  

The difference equation of a comb filter can be 

written in a general form: 
  

                                                                             (4) 

where b1 and a, respectively, denote the feed-forward 

and feedback gain coefficients, n1 and n2 are fixed 

delays, x(n) denotes the nth sample of the input signal, 

y(n) is the output at time instant n. Taking the z-

transform we can get the transfer function of comb filter 

to be 

 

                  (5) 

 

where b = b1/b0.  

 

 

 

 

 

 

 

Figure.3 The signal flow graph for a comb filter defined by the 

difference equation of (4). 

 

A generalized comb filter with both feedforward and 

feedback coefficients as shown in Figure.3 can 

effectively recognize protein coding regions.  

III. SIMULATION AND RESULT ANALYSIS 

The standard sequences have been extracted 

from a variety of sources that include the important 
genomes of Homo sapiens. Mainly, three data sets are 
used as bench mark for this purpose such as KEGG gene 

sequence database prepared by M. Kanehisa and S. Goto 

[29], the dataset prepared by Burset and Guigo [30] and 

HMR195 prepared by Sanja Rogic [31]. The single 

indicator sequence using dipole moment property of 

nucleotides is used as numerical representation [26]. 

These sequences are subjected to the proposed 
wavelet-based lossless compression scheme using one 

level of decomposition. In this work, we focus on 

lossless compression of DNA sequence. The resulting 

compressed sequence is subjected to comb filter which 
exhibit period-3 property and also it is computationally 

efficient.  

In order to validate the results of the proposed 

predictor, prediction measures such as discrimination 

factor D [9],  sensitivity (SN), specificity (SP) [32] which 

are defined as follows. In a good number of cases all the 

proposed methods performed well.  
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                                                                                  (8) 

 
where TP=true positive, FP=false positive and 

FN=false negative. TP corresponds to those genes that 

are correctly predicted by the algorithm and also exist in 

the GenBank annotation. FP corresponds to the coding 

regions identified by a given algorithm which are not 

present in the standard annotation. FN is coding region 

that is present in the GenBank annotation but not 

predicted to be coding by the algorithm being used. 
Higher the value of D better is the discrimination. If D is 

more than one (D>1), all exons are identified without 

ambiguity. High sensitivity and specificity are desirable 

for higher accuracy.  

The list of genes under study of different datasets and 

the performance analysis of various DSP approaches are 
shown in Table.1. It summarizes the simulation results 

of genes from different datasets. In all the examples 

cited the proposed encoding methods show better 

discrimination compared to the existing methods. The 

simulation result shows high discriminating factor, 

sensitivity and specificity for the proposed methods. The 

proposed method shows high peak at exon locations in 

compared to existing methods as shown in figures. 

Figure.4 shows the exon prediction results for gene 

F56F11.4a with accession no: AF099922 in the C. 

elegans chromosome-III without compression and with 

compression using wavelet transform. In both the cases 

the five peaks corresponding to the exons can be seen at 

the respective locations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.4 Gene F56F11.4a of C.Elegans chromosome III showing 5 

exons using wavelet based compressed DNA. 

 
The integrated approach using wavelet transform for 

reduction of DNA string and comb filter for effective 

detection of protein coding region can sense the exons 

effectively by showing high peak at gene locations with 

lower computation. Thus there is no loss of information.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. CONCLUSION 

Given the amount of data typically generated by DNA 
based experiments and gene prediction problem in 

particular, there is need to find methods to compress the 

data efficiently. In this work, starting with the nature of 

DNA sequence, we have proposed a simple model that 

captures both the Structure and the general statistics in 

DNA sequence. This work presents a computationally 

efficient method based on the wavelet transform 

designed for reduction of DNA string without loss of 

information that can be used for prediction of protein 

coding region efficiently using comb filter. The result 

shows that the proposed method can effectively detect 

the protein coding region. Ultimately the lossless 

compressed DNA sequence reduces the computational 

time effectively. 
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