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Abstract—We develop an algorithm to reconstruct the wavelet
coefficients of an image from the Radon transform data. The
proposed method uses the properties of wavelets to localize the
Radon transform and can be used to reconstruct a local region of
the cross section of a body, using almost completely local data that
significantly reduces the amount of exposure and computations in
X-ray tomography. The property that distinguishes our algorithm
from the previous algorithms is based on the observation that for
some wavelet bases with sufficiently many vanishing moments,
the ramp-filtered version of the scaling function as well as the
wavelet function has extremely rapid decay. We show that the
variance of the elements of the null-space is negligible in the
locally reconstructed image. Also, we find an upper bound for
the reconstruction error in terms of the amount of data used in
the algorithm. To reconstruct a local region 16 pixels in radius in
a 256 � 256 image, we require 22% of full exposure data.

Index Terms—Local tomography, multiresolution tomography,
wavelet.

I. INTRODUCTION

I
T IS WELL KNOWN that in dimension two and in fact

in any even dimension, the Radon transform is not local,

that is, the recovery of an image at any fixed point requires

the knowledge of all projections of the image. This means

that a patient would have to be exposed to a relatively large

amount of X-rays even if it was desired to view only a small

part of the patient’s body. Thus, searching for a means to

reduce exposure, and at the same time to be able to perfectly

reconstruct the region of interest (ROI), has been of great

interest recently [6]–[11].

The application of wavelet theory to the inversion of the

Radon transforms was first proposed in [3] and [4]. An

inversion formula based on the continuous wavelet transform

was proposed in [1]. This formula was based on an intertwin-

ing between the one-dimensional (1-D) continuous wavelet

transform of the projection data at each angle and the two-

dimensional (2-D) wavelet transform of the original image.

The fundamental observation was that the admissibility or

vanishing moment condition that is characteristic of a wavelet
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is preserved under the Hilbert transform. Moreover (as was

noted in [2] and [8]), the Hilbert transform of a function

with many vanishing moments should decay very rapidly.

This is related to the notion that certain singular integral

operators are almost diagonalized by wavelets [20]. In [2], the

intertwining formula of [1] was used for local recovery, and

explicit error estimates on the recovered image within the ROI

were obtained. It was noted that high-frequency features of an

image can be recovered locally using the wavelet transform.

The first numerical algorithm using wavelets for local

reconstruction was implemented by DeStefano and Olson

in [8]. This algorithm reconstructs the local values of a

function directly from the 1-D wavelet transform of

at each angle In [9], Delaney and Bresler compute the 2-

D separable wavelet transform of a function directly from

the projection data as a means to do local recovery from

local measurements. Both algorithms take advantage of the

observation that the Hilbert transform of a function with

many vanishing moments has rapid decay; and both algorithms

recover the high-resolution parts of the image locally (that is,

by exposing the ROI plus a small extra margin) and obtain the

low-resolution parts by global measurements at a few angles.

In this sense, these algorithms cannot accurately be described

as local tomography algorithms. Both of these algorithms

exhibit similar savings in exposure and similar quality of

the reconstructed image in the ROI. Recently, Olson [11]

has improved his algorithm by replacing the usual wavelet

transform with the local trigonometric transform of Coifman

and Meyer [14] and has reduced the exposure still further.

In this paper, we implement a wavelet-based algorithm to

reconstruct a good approximation of the low-resolution parts of

the image as well as the high-resolution parts using only local

measurements. The algorithm is based on the observation that

in some cases, the Hilbert transform of a compactly supported

scaling function also has essentially the same support as

the scaling function itself. This phenomena is related to the

number of vanishing moments of the scaling function of an

orthonormal or biorthonormal wavelet basis. That is, if is

such a scaling function, and if for

for some large then the Hilbert transform of will have

rapid decay. This gives substantial savings in exposure and

computation compared to the methods in [8] and [9], and

somewhat greater exposure (though still fewer computations)

than the algorithm in [11]. Our algorithm reconstructs a region

of radius 16 pixels in a 256 256 image to within 1% average

error using 22% of the data, and to within 1% maximum error

using 30% of the data. The methods proposed in [8] and [9]

require a higher exposure of 40% of the data for the same
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size region and 1% maximum error, and the method in [11]

uses 20% for the same case. Since the algorithm in [11] is not

truly local, we believe that our algorithm is valuable even if

the exposure is somewhat higher.

It should be noted that the goal of the algorithm described

in this paper is to reconstruct the function locally from

local measurements up to the nullspace of the interior Radon

transform. That is, the problem of recovery of local values

of a function from local projections only is not uniquely

solvable [22]–[25]. In [23], an example is given of functions

that are nonzero on a disk but whose projections on all lines

intersecting that disk are zero (Fig. 7). Such a function is

said to be an element of the nullspace of the interior Radon

transform. Any algorithm that uses only local measurements

cannot reconstruct these nullspace elements. The advantage

is that taking only local measurements is much easier to

implement in hardware. It has been shown that the elements

of the null-space of the interior Radon transform do not vary

much in the ROI [23]. In our algorithm this phenomenon

appears as a constant bias in the reconstructed image. Such a

bias is commonly observed in the local reconstruction problem

[23], [25].

The algorithms of DeStefano/Olson [8], Delaney/Bresler

[9], and Olson [11] are not true local tomography algorithms

in that they use measurements far from the ROI to recover

the function exactly on the ROI. The algorithm described

in this paper is more closely related to the technique of

-tomography, which is used to reconstruct the function

rather than the density function [5], [6]. The

function has the same singularities as and is cupped

where is constant. The addition of the cup correction factor

results in good qualitative reconstructions of [7].

In this paper, we will present an algorithm to reconstruct

the wavelet and scaling coefficients of an image directly

from its projections. This is useful in applications where the

wavelet coefficients of the reconstructed image are used, in

that it saves the computations required to obtain the wavelet

coefficients from the reconstructed image. We also show how

this reconstruction technique leads to a local tomography

algorithm that uses the projections of the image on lines

intersecting the local ROI plus a small number of projections,

in the immediate vicinity, to obtain a very good approximation

of the image in the ROI.

The main features of our algorithm are as follows.

• It has reduced exposure compared to previous algorithms

(cf. [8], [9]), though the exposure is increased when com-

pared to [11]. In our algorithm there is no need to obtain

a rough estimate of the global properties of the Radon

transform by sparsely sampled full exposure projections.

We just compute a small number of projections on lines

passing close to the ROI to reconstruct the local values

of the image up to a constant bias. Moreover, the number

of pixels in the margin is independent of the size of

the ROI and is also independent of the resolution of

the measurements taken. Therefore, for the same ROI,

a high resolution computerized tomography (CT) scan

would have a smaller region of exposure than a lower

resolution scan (see Figs. 13 and 14).

• It is computationally more efficient than other algorithms,

because it uses fewer projections overall to locally recon-

struct the image.

• It offers uniform exposure at all angles, which allows

for easier implementation in hardware. (In the algorithms

proposed in [8]–[11], different amount of projections have

to be computed with variable lengths for different angles.)

• It offers the ability to reconstruct off-center or even multi-

ple regions of interest, as well as centered reconstruction.

• It is applicable to the cases where the wavelet basis is not

separable and there exists no multiresolution approach to

obtain the wavelet coefficients. (The method proposed in

[9] can only be used for separable wavelet bases.)

• It allows for reconstruction of the wavelet coefficients of

the image with the same complexity as the conventional

filtered backprojection method.

This paper is organized as follows. In Section II, we will

briefly introduce the Radon transform, discuss the nonlocality

of the Radon transform and the conventional reconstruction

technique, i.e., the filtered backprojection method. In Section

III after reviewing the basics of the wavelet transform, we

will introduce a full-data reconstruction technique based on the

wavelet transform. We will discuss the locality property of the

proposed algorithm in Section IV. Section V then discusses

the implementation of this method, and in Section VI the

simulation results will be presented.

II. PRELIMINARIES AND NOTATIONS

In this section, we will briefly introduce the terminology

and definitions required in the subsequent discussions. In this

paper, we use the following notations. The dimensional

Euclidean space is denoted by Given a set

denotes the indicator function of We define the Fourier

transform in by The in-

verse Fourier transform is defined by

Both continuous and discrete convo-

lution operators are denoted by

A. Radon Transform

In CT, a cross section of a human body is scanned by

a nondiffracting thin X-ray beam whose intensity loss is

recorded by a set of detectors. The Radon transform (RT)

is a mathematical tool that is used to describe the recorded

intensity losses as averages of the tissue density function

over hyperplanes which, in dimension two, are lines. Given

restricted to a disc of radius one, we define the Radon

transform of by

where and is the

subspace perpendicular to

The interior Radon transform [24], [25] is the Radon trans-

form restricted to lines passing through the ROI, which is a

circle of radius about the origin. It is defined by
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(a) (b)

Fig. 1. (a) Wavelet analysis filterbank. (b) Wavelet synthesis filterbank.

The problem of recovery of from the interior Radon trans-

form is called the interior problem or region of interest

tomography. The interior problem in dimension two is not

uniquely solvable, i.e., there are functions that are not zero in

the ROI but whose projections on lines intersecting that region

are zero. However, these functions do not vary much inside

the ROI, and in fact a crude approximation to the missing

projections suffices to approximate well inside the region of

interest up to an additive constant [23].

B. Reconstruction

The basic formula for inverting the Radon transform is

based on the fact that the Fourier transform of the Radon

transform with respect to the variable is the Fourier transform

of the function along a line passing through the origin. This

property is known as the projection theorem or Fourier slice

theorem, as follows:

Thus, the Fourier transform of the projections at enough angles

could in principle be assembled into a complete description

of the 2-D Fourier transform of the image and then simply

inverted to arrive at the function Using the polar Fourier

inversion formula and the Fourier slice theorem, we can

reconstruct the function from the projection data by

(1)

The above formula, called the filtered backprojection formula,

can be implemented in two steps, the filtering step, which in

the Fourier domain can be written as

(2)

and the backprojection step

(3)

Because is not bounded and filtering by this filter tends to

magnify the high-frequency noise, it is expedient in practice

to multiply this operator by a smoothing window as

(4)

Therefore, the reconstruction will result in an approximation

of rather than itself. Normally the approximation has the

form where is an approximate delta function, called

the point spread function (psf) [18]. The psf is related to

by

C. Nonlocality of RT Inversion

In (2), the Radon transform data is filtered by This

operation can be formulated in the space domain as

where is the Hilbert transform on and is ordinary

differentiation. In the above equation the derivative part is a

local operator, but the Hilbert transform

(5)

introduces a discontinuity in the derivative of the Fourier

transform of a function at the origin. Hence, the Hilbert

transform of a compactly supported function can never be

compactly supported. This means that RT inversion based

on (1) can not be accomplished locally; that is, in order

to recover exactly at a point all projections of are

required and not just those on lines passing near It has

been noted that the above mentioned filtering will not increase

the essential support of a function if the function’s Fourier

transform vanishes to high order at the origin [2], [8]. Wavelets

that are in general constructed with as many zero moments as

possible are good candidates for these functions.

III. WAVELET RECONSTRUCTION

A. Continuous Wavelet Transform

The wavelet transform has been an increasingly popular tool

for signal and image processing. The transform decomposes



RASHID-FARROKHI et al.: MULTIRESOLUTION LOCAL TOMOGRAPHY 1415

Fig. 2. Wavelet reconstruction from projection data; the multiresolution reconstruction filterbank (MRFB) is the wavelet synthesis filterbank (Fig. 1).

the signal onto shifts and dilates of a function called the mother

wavelet. In two dimensions, the wavelet transform is defined

as follows. Let satisfy

(6)

Let and define the continuous wavelet

transform of on by

(7)

where and and

In order to reconstruct the function from its wavelet

transform, we use

B. Multiresolution Wavelet Representation

In practice, one prefers to write as a discrete superposition

of wavelets, therefore we define the discrete wavelet transform

by

which is derived from (7) by setting and where

and

Below we describe a multiresolution analysis approach to

recovering from its discrete wavelet transform (precise

definitions and further details can be found in [17]). Let

be the operator that approximates a measurable func-

tion with finite energy at resolution

We consider the vector space as the

set of all possible approximations at the resolution of

functions in such that For

each multiresolution approximation there exists a unique

function called a scaling function. Let

the Fourier transform of denoted

by is defined as

The Fourier transform of is given by

and

Define the function the mother wavelet, by

where It can be

shown that

if

if

Letting

(8)

forms an orthonormal basis for in a multiresolution ap-

proximation in where

The projection of

onto can therefore be computed in this case by
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The discrete approximation at resolution is defined by

(9)

where and The difference be-

tween the approximation and called

the detail signal at resolution corresponds to the projection

of on the orthogonal complement of in denoted

by Let

(10)

then the set of functions

where is an orthonormal basis

for The projection of on the vector space

is given by

The detail coefficients are given by

(11)

where and Fig. 1(a) shows

the conventional filterbank, which is usually used to obtain

approximation and details of a signal.

The discrete approximation at resolution can be ob-

tained by combining the detail and approximation at resolution

i.e.,

(12)

Therefore, in order to recover the approximation at level ,

the approximations at level are filtered by and

the detail coefficients are filtered by and

, respectively. These wavelet reconstruction filters in

the Fourier domain are given by

(13)

Fig. 1(b) shows the block diagram of the analysis fil-

ter bank which obtains the approximation at level from

the approximations and detail at level This block

diagram can be used in a pyramidal structure to recon-

struct the approximation at resolution 1, from the set

In those applications that we are

interested in namely recovering a local region of the image

from the approximate and detail coefficients, we have to

calculate these coefficients for that region plus a margin for

the support of the wavelet reconstruction filters. That margin

is equal to half of the length of the filters and

C. Wavelet Reconstruction from the Projection Data

In this section, we present an algorithm that can be used to

obtain the wavelet coefficients of a function on from its

Radon transform data. In those applications for which one is

interested in the wavelet coefficients of the function, it involves

fewer computations than first reconstructing the function and

then taking its wavelet transform. Also using this method, one

can obtain locally the wavelet coefficients of a function, which

will allow the local reconstruction of a function and can be

used in local tomography. This property will be explained

in Section IV. We first introduce the main formulas for the

reconstruction of the continuous wavelet transform directly

from the Radon transform data.

Given a real-valued, square integrable function on

that satisfies condition (6), let be given on the wavelet

transform of function can be reconstructed from its 1-D

projections by

(14)

where In the discrete case the above

equation becomes

(15)
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(a) (b)

(c) (d)

Fig. 3. Wavelet with less dissimilar lengths, l = k =
~k = 4: (a) Scaling function. (b) Wavelet basis. (c) Ramp-filtered scaling function. (d)

Ramp-filtered wavelet basis.

where The right-hand side can be evaluated in

two steps, the filtering step,

and the backprojection step

(16)

The filtering step can be implemented in Fourier domain as

where and are the Fourier trans-

forms of the functions and respectively, and

is a smoothing window. Therefore, (15) can be imple-

mented using the same algorithm as the conventional filtered

backprojection method while the ramp filter is replaced by

the wavelet ramp filter

If the wavelet basis is separable, the approximation

and detail coefficients are given by (9) and (11). These

coefficients can be obtained from the projection data by

(15), replacing by

and ,

respectively. For example, the approximation coefficients are

obtained by

(17)

These coefficients can be calculated using the standard filtered

backprojection method, while the filtering part in the Fourier

domain is given by

where The

detail coefficients can be found in a similar way as

for (18)

To get the detail coefficients, the filtering step is modified as

for

This means that the wavelet and scaling coefficients of the

image can be obtained by filtered backprojection method while
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(a) (b)

(c) (d)

Fig. 4. Wavelet with extremal phase and highest number of vanishing moments with length 4. (a) Scaling function. (b) Wavelet basis. (c) Ramp-filtered
scaling function. (d) Ramp-filtered wavelet basis.

the ramp filter is replaced by

(19)

which are called the scaling and wavelet ramp filters. In

order to obtain pyramidal wavelet coefficients, the and

are found using (18) and

(17). To reconstruct the image from these coefficients, we use

the multiresolution reconstruction formulas (12). Fig. 2 shows

the block diagram of the multiresolution reconstruction system.

The reconstruction part uses the conventional multiresolution

reconstruction filterbank (cf. Fig. 1), which appear as black

boxes in the block diagram.

IV. LOCAL RECONSTRUCTION

It has been noted [2], [8] that if a function has a large

number of vanishing moments (or, equivalently, if its Fourier

transform vanishes to high order at the origin), then its

Hilbert transform will decay very rapidly at infinity. If a

compactly supported function has this property, then the

essential support of its Hilbert transform (5) should not be

large. This phenomenon is in part a manifestation of the

observation made in [20] that an integral operator with singular

kernel of Calderon–Zygmund type is almost diagonalized in

a wavelet basis.

More specifically, the following holds.

Lemma 1: Suppose that outside the interval

and satisfies for

Then for

Proof: Assume that The argument for is

the same. Since
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Fig. 5. Normalized error (23) versus the number of remaining coefficients. (a) Biorthogonal wavelet with less dissimilar lengths ([15, Tab. III]). (b)
Orthogonal wavelet with extermal phase and highest number of vanishing moments with length 4 ([16, Tab. 6.2]).

since outside and since

Fixing and expanding in a Taylor series about

gives for some

Since so that

The significance of this observation for local tomography

is the following. If is the wavelet corresponding to the

scaling function for a multiresolution analysis, then at

least the zeroth moment of must vanish. It is possible to

design wavelets that have compact support and have many

vanishing moments. In this case, the functions

where are given by (10), will have very rapid

decay for each Numerically, even for wavelets with a few

vanishing moments, the essential support of is the

same as the support of for each This means that by

(14), the discrete wavelet coefficients (18) can be computed

locally using essentially local projections.

Rapid decay after ramp filtering is also observed in scaling

functions provided that has vanishing moments. Specif-

ically, if satisfies and for

then satisfies

Fig. 6. Exposure percentage versus the size of the ROI.

and for Therefore, as

in Lemma 1, it follows that

Even though the decay is dominated by the term, ramp-

filtered scaling functions with vanishing moments display

significantly less relative energy leakage outside the support

of the scaling function than those without vanishing moments.

In order to quantify this locality phenomenon, we define

the spread of a function with respect to an interval under

ramp-filtering to be the normalized energy of the function

outside i.e., with denoting the complement

of

The rapid decay of the ramp-filtered scaling functions is

related to the number of vanishing moments of the scaling
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(a) (b)

Fig. 7. (a) Projection of a null-space element. (b) Reconstruction of the null-space element.

function. Orthonormal wavelets corresponding to scaling

functions with vanishing moments have been called “coiflets”

by Daubechies in [6, Sec. 8.2]. For coiflets with 1 and 3

vanishing moments, supported on the intervals [0, 5], and [0,

11], respectively, we have measured spreads with respect to

these intervals of .016 and .013, respectively. These scaling

functions correspond to scaling filters with 6 and 12 taps,

respectively. Daubechies has also observed in [6, Sec. 8.3.5],

that the symmetric biorthogonal bases constructed in [15]

are numerically very close to coiflets. For the biorthogonal

“near-coiflet” scaling functions supported on the intervals [0,

4], [0, 8], and [0, 12], we have measured spreads with respect

to these intervals of .029, .016, and .0095, respectively. These

scaling functions correspond to scaling filters with 5, 9, and

13 taps, respectively. For the purposes of this paper, it is most

desirable to minimize both the spread of the scaling function

and the number of taps in the corresponding filter. Under

these criteria, the near-coiflet filter with 5 taps is near optimal

[see Fig. 3(a) and (c) and Fig. 5(a)] and is therefore used in

our simulations. The measured spreads for various compactly

supported wavelet and scaling functions are given in

Table I. We have observed that even if is replaced by scaling

function given by (8), has essentially the same support

as for each Fig. 3 shows the Daubechies’ biorthogonal

wavelet and scaling function ([15, Table III]) as well as the

ramp filtered version of these functions. Observe that the ramp-

filtered scaling functions has almost the same essential support

as the scaling function itself.1 Therefore, in order to reconstruct

the wavelet and scaling coefficients for some wavelet basis, we

only need the projections passing through the region of interest

plus a margin for the support of the wavelet and scaling ramp

filters. Moreover, in order to reconstruct the image from the

wavelet and scaling coefficients, we have to calculate these

coefficients in the ROI plus a margin for the support of the

wavelet reconstruction filters (13). Since wavelet and scaling

1 This is not the case in general, for example, in Fig. 4 we have plotted
another wavelet and scaling functions ([16, Tab. 6.2]) and their ramp-filtered
versions, for comparison. The scaling function in this basis does spread
significantly after ramp filtering.

Fig. 8. Maximum error and average error versus the amount of nonlocal
data used in the reconstruction scheme.

ramp filters and also the wavelet reconstruction filters get

wider in lower scales, we need to increase the exposure to

reconstruct the low resolution coefficients in the ROI. In our

algorithm, we can reconstruct the scaling coefficients locally,

and we use only one level of the wavelet filterbank.

A. Error Analysis

It is mentioned in [23] that the error in the interior Radon

transform is not negligible because the derivative Hilbert

transform (the impulse response of the filter is not local

in space. This means that in order to reconstruct even a small

local ROI we have to consider some data outside the region

of interest to get negligible reconstruction error. We will find

an upper bound for the reconstruction error, in terms of the

amount of nonlocal data that we consider in the reconstruction.

We will also compare the upper bound of the error in a locally

reconstructed image using our algorithm to the upper bound

of the error when we use the standard filtered backprojection

method with local data. For simplicity of notation, we assume

the ROI and region of exposure (ROE) are centered at the

center of the image. Consider the filtered backprojection
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TABLE I
SPREAD OF WAVELET AND SCALING FUNCTIONS

Filter Coefficients Support Wavelet Spread Scaling Spread

Haar 1
1

[0,1] .3837 .6900

Linear spline 0.50000000000000
1.00000000000000
0.50000000000000

[0,2] 0.09167 0.3726

Quadratic spline 0.25000000000000
0.75000000000000
0.75000000000000
0.50000000000000
0.25000000000000

[0,3] 0.01691 0.1959

Cubic spline 0.12500000000000
0.50000000000000
0.75000000000000
0.50000000000000
0.12500000000000

[0,4] 0.003767 0.1389

Degree 4 spline 0.06250000000000
0.31250000000000
0.62500000000000
0.62500000000000
0.31250000000000
0.06250000000000

[0,5] 0.0009341 0.1105

Daubechies 4 tap filter 0.68301270189222
1.18301270189222
0.31698729810778
�0.18301270189222

[0,3] 0.03391 0.3449

Daubechies 6 tap filter 0.47046720778416
1.14111691583144
0.65036500052623
�0.19093441556833
�0.12083220831040
0.04981749973688

[0,5] 0.005446 0.1929

Daubechies 8 tap filter 0.32580342805100
1.01094571509000
0.89220013842700
�0.03957026356000
�0.26450716736900
0.04650360107100
�0.01498698933040

[0,7] 0.001058 0.1232

Daubechies 10 tap filter 0.22641898258329
0.85394354270476
1.02432694425952
0.19576696134736
�0.34265671538239
�0.04560113188406
0.10970265864207
�0.00882680010864
�0.01779187010184
0.00471742793840

[0,9] 0.0002376 0.08907

Coiflet with 1 moment vanishing �0.05142972847100
0.23892972847100
0.60285945694200
0.27214054305800
�0.05142997284700
�0.01107027152900

[0,5] 0.0003069 0.01613

formula (1), while the ramp filter is replaced by a general

angle dependent filter

(20)

We assume that for each angle the projection

data is sampled with a radial sampling interval of

and the support of is a disk of radius centered at

the origin. The region of interest, a disc of radius pixels

centered at the origin, will be denoted by ROI, and the region

of exposure, a disc of radius pixels centered at the origin,

will be denoted by ROE. If is chosen to be the impulse

response of the ramp filter (2), the reconstructed function

is an approximation of the function and if it is the

impulse response of the wavelet and scaling ramp filters (19),

the reconstructed function will be the approximation

of the wavelet and scaling coefficients. The discrete version

of (20) is given by
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TABLE I
SPREAD OF WAVELET AND SCALING FUNCTIONS (continued.)

Filter Coefficients Support Wavelet Spread Scaling Spread

Coiflet with 3 moments vanishing 0.01158759673900
�0.02932013798000
�0.04763959031000
0.27302104653500
0.57468239385700
0.29486719369600
�0.05408560709200
�0.04202648046100
0.01674441016300
0.00128920335600
�0.00050950539900

[0,11] 0.000006154 0.01307

Near coiflet (5 taps) �0.05000000000000
0.25000000000000
0.60000000000000
0.25000000000000
�0.05000000000000

[0,4] 0.001682 0.02890

Near coiflet (9 taps) 0.01250000000000
�0.03125000000000
�0.05000000000000
0.28125000000000
0.57500000000000
0.28125000000000
�0.05000000000000
�0.03125000000000
0.01250000000000

[0,8] 0.00005151 0.01632

Near coiflet (12 taps) �0.00317382812500
0.00585937500000
0.01904296875000
�0.04882812500000
0.04760742187500
0.29296875000000
0.56347656250000
0.29296875000000
�0.04760742187500
�0.04882812500000
0.01904296875000
0.00585937500000
�0.00317382812500

[0,12] 0.000001515 0.009547

where is the total

number of evenly spaced angles at which the projections are

measured, is the projection and

We can divide the inner summation into two parts,

corresponding to the ROE and its complement ROE

Thus, the magnitude of error using only ROE is given by

To get an upper bound for the error we use the

Cauchy–Schwartz inequality as

If we assume that the support of is in the disc of radius

1, then Hence
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. (a) A sample projection with the Shepp–Logan head phantom. (b) Projection filtered by j!j. (c) Projection when nonlocal data is set to zero. (d)
Filtered projection. (e) Projection extrapolated outside the ROI. (f) Filtered projection. (The marked area is the ROE.)

We define the relative error as

then

(21)

In the worst case, the ROI is a single point. Thus we may

bound (21) by

We define the truncated filter, as

otherwise.
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Therefore

The inner sum can be written in the frequency domain. That is

(22)

where and are the Fourier transform of and

, respectively. In order to calculate the upper bound of the

error in standard filtered backprojection method, we replace

in (22) by the ramp filter (2). The upper bound for the

error in the reconstruction of wavelet and scaling coefficients

can be obtained by replacing in (22) with (19). In our

algorithm, the scaling and wavelet coefficients at resolution

are reconstructed directly from the projection data. The

recovered coefficients are then filtered by the reconstruction

filters (13) to obtain the original image. To consider the effect

of the wavelet reconstruction filterbank in the error upper

bound, we move these filters to the projection domain, i.e.,

(23)

where

where and

with and

being the ramped scaling and wavelet filters (19),

and the wavelet reconstruction filters

(13), and the truncated versions of the

filters and The normalized upper bound

of the relative error in the reconstructed image, versus the

amount of nonlocal data is depicted in Fig. 5. These

bounds are given by (22) and (23) for the standard filtered

backprojection method and our algorithm, respectively. The

horizontal axis in Fig. 5 shows the amount of nonlocal data

that is collected in order to reconstruct the ROI.

B. Interior Problem

The interior problem in even dimensions is not uniquely

solvable, since there are nonzero functions that have zero

projections on the ROE. Clearly, our algorithm will be unable

to reconstruct such a function. It has been noted that these

functions, which are in the null-space of the interior problem,

do not vary much well inside the ROE [23].

To illustrate this, we will reconstruct an element of the null-

space and measure the variation of this element on the ROI.

We assume that the ROI is the interior 32 pixels of the image

and ROE is the ROI plus a margin of 22 pixels in each side.

This margin shows the amount of nonlocal data used in the

reconstruction scheme. Fig. 7(b) shows a slice of a circularly

symmetric element of the null-space. The projection of this

element for each angle is shown in Fig. 7(a) . The projections

are zero inside the ROE, which is the interior 76 pixels of the

projections, and one in 16 pixels at each side of the ROE. The

measured maximum variation of the null-space on the ROI is

less than 1%. We consider two measure criteria for the error in

the local reconstruction: the maximum error and the average

error. Since, in our approach, most of the error occurs in a

small ring at the boundary of the ROI, the average error is

an order of magnitude smaller than the maximum error. The

maximum error and the average error of the null-space element

on the ROI versus the amount of nonlocal data (the difference

of the radius of the ROE and ROI) is shown in Fig. 8. Based

on the upper limit on the average error or maximum error,

we determine the size of extra margin to collect the nonlocal

data. In order to limit the maximum error to 1%, we require

a margin of 22 pixels, and in order to limit the average error

to 1%, we require a margin of 12 pixels.

In Section V, we will present a method to reduce the error

at the boundaries of the ROI. In consequence, the amount of

error is much smaller than the upper bound predicted by the

null space element energy in the ROI. In Section VI, we will

show that the reconstruction of the ROI using only 12 pixels of

extra margin results in a reconstruction with negligible error

in the ROI.

In the sequel, we calculate the amount of exposure versus

the size of ROI in our method and previous methods. Let

the support of reconstruction filters in the wavelet filterbank

be samples. And also consider an extra margin of

samples in the projection domain, and denote the radius of the

region of interest by The radius of the region of exposure

is pixels. The amount of exposure in our

algorithm normalized to the full exposure is given by

The amount of exposure in our algorithm with

pixels and pixels is plotted in Fig. 6. In the

Delaney and Bresler’s algorithm [9] the exposure is given by
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(a) (b)

Fig. 10. (a) Complexity of filtering part. (b) Total complexity.

(a) (b)

Fig. 11. (a) Wavelet coefficients. (b) Reconstruction from wavelet coefficients.

where is the number of levels in the wavelet filterbank.

Similar exposure is required in DeStefano and Olson’s algo-

rithm [8]. Fig. 6 shows the relative amount of exposure versus

the size of the region of interest in a 256 256 image for

pixels for these methods. Also the amount

of exposure for [11] is plotted for comparison. All of the

exposures in Fig. 6 are divided by two if we use interlaced

sampling.

V. IMPLEMENTATION

A. Practical Considerations

In local reconstruction, artifacts are common close to the

boundary of the ROE. To illustrate this, we consider the

Shepp–Logan head phantom and an ROE of diameter 32 pixels

at the center of the image. We set the projections outside the

ROE to zero [see Fig. 9(c)] and apply the filtering part of the

filtered backprojection formula (2) to the remaining projec-

tions. Fig. 9(d) shows the artifacts that appear at the borders

of the region of exposure. When the backprojection formula

is applied to the filtered projections, these artifacts cause

large errors at the borders of the ROE in the reconstructed

image.

In order to avoid the artifacts, we have extrapolated the

projections continuously to be constant on the missing pro-

jections. The extrapolation scheme is the same even when

the ROE is not centered. Let the ROE’s, which is the sub-

set of projections on which is given, be a circle of

radius whose center is located at polar coordinates

i.e,

(24)
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(a) (b)

(c) (d)

Fig. 12. Local wavelet reconstruction. (a) Wavelet coefficients. (b) Reconstruction from wavelet coefficients; blowup of the region of interest. (c)
Reconstruction using wavelet method (local data). (d) Reconstruction using standard filtered backprojection method (global data).

We use the constant extrapolation

(25)

Fig. 9(e) and (f) shows an extrapolated projection and its

ramp-filtered version (2), respectively. When we apply the

ramp filter to the extrapolated projection, there is no spike

at the edge of the region of exposure. The comparison with

the ramp-filtered version of the projection using global data

[see Fig. 9(b)] shows that the filtered projection has a constant

bias difference compared to the one using global data. This

is natural in local tomography and, after backprojection of

all projections, appears as a constant bias in the locally

reconstructed image [23], [25]. In [23], it is suggested to

extrapolate the data outside the ROI using a minimum norm

approach, which has the same effect on the artifacts (cf., [23],

Fig. VI.8).

B. Algorithm

We assume the support of image is a disc of radius and

the radius of the ROI is A region of radius

is exposed, where and are the extra margin due to

the support of the decomposition filters in the projection

domain and the reconstruction filters in the image domain,
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(a) (b)

Fig. 13. (a) Wavelet coefficients. (b) Reconstruction from wavelet coefficients.

respectively. Suppose the projections are sampled at evenly

spaced angles. In the following we summarize the algorithm.

1) The region of exposure of each projection is filtered by

modified wavelet filters (2), at angles. The complexity

of this part, using FFT, is

2) The bandwidth of the projections is reduced by half

after filtering with modified scaling filters. Hence, we

use of the projections at evenly spaced angles.

These projections are extrapolated to pixels, using

(25), and are then filtered by modified scaling filters.

The complexity of filtering part using the fast Fourier

transform (FFT) is

3) Filtered projections are obtained in step 1 and 2 are

backprojected to every other point, using (16), to obtain

the approximation (17) and detail (18) coefficients at

resolution The remaining points are set to zero.

The complexity of this part, using linear interpolation,

is

4) The image is reconstructed from the wavelet and scal-

ing coefficients by (12). The complexity of filtering is

We have compared the complexity of the filtering part

of our algorithm with the filtered backprojection method

and the algorithm presented in [9]. Fig. 10(a) shows the

complexity of each method as a function of the radius of

the region of interest. The complexity of our algorithm and

the algorithm proposed in [9] is less than the standard filtered

backprojection method when the size of the ROI is small. But

as the radius of the ROI is increased, the complexity of both

algorithms exceeds that of filtered backprojection, since in both

methods we have to apply filtering for different resolutions.

However, the complexity of our algorithm is smaller than

Bresler/Delaney’s algorithm because of smaller length of

projections. If we use linear interpolation at the backprojection

part, the total complexity depends on the backprojection part,

which is almost the same in all of the above methods. Fig.

10(b) shows the total complexity of different methods. If, in

the backprojection step, we use another method like the nearest

neighbor, the total complexity mostly depends on the filtering

part and our algorithm can reduce the complexity compared

to the method in [9].

VI. SIMULATION RESULTS

We have obtained the wavelet and scaling coefficients of the

256 256 pixel image of the Shepp–Logan head phantom

using global data (Fig. 11). In this decomposition, we used

the Daubechies’ biorthogonal basis [15, Tab. III]. The quality

of the reconstructed image is the same as with the filtered

backprojection method. Fig. 12 shows an example in which

a centered disk of radius 16 pixels is reconstructed using the

local reconstruction method proposed in this paper. Fig. 12(c)

and (d) shows the blow up of the ROI using both standard fil-

tered backprojection using global data and local reconstruction

for comparison. In this example the projections are collected

from a disk of radius 28 pixels, therefore the amount of

exposure is 22% of the conventional filtered backprojection

method. We have observed a constant bias in the reconstructed

image, which is natural in the interior reconstruction problem

[23], [25]. In the above example, the mean square error (MSE)

between the original image and the locally reconstructed image

after removing bias is computed over the region of interest.2

The error energy in the reconstructed image is the same as

filtered backprojection method using full exposure data.

2 The MSE is calculated using this equation

1

N
(n;m):(n;m)2ROI

(f(n;m)� f̂(n;m))2

where f is the original image, f̂ is the reconstructed image with the constant
bias removed, and N is the number of pixels in the ROI.
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(a) (b)

(c) (d)

Fig. 14. Local wavelet reconstruction. (a) Wavelet coefficients. (b) Reconstruction from wavelet coefficients; blowup of the ROI. (c) Reconstruction using
wavelet method (local data). (d) Reconstruction using standard filtered backprojection method (global data).

The proposed method is applied to the real data obtained

from a CT scanner. In the local reconstruction even with 12

pixels extra margin, the reconstructed image has the same qual-

ity as the filtered backprojection method. Fig. 13 shows a 1024

1024 scan of heart reconstructed from projections sampled

at 720 angles over 180 with each projection consisting of

1024 samples covering a recon diameter of 47.5 cm. Using

our algorithm, a local centered region of radius 128 pixels

of this scan has been reconstructed by using only 27% of

exposure (see Fig. 14). The reconstruction in the region of

interest is as good as what can be obtained using the filtered

backprojection method, which involves global data and 100%

exposure. The blow-up of the ROI reconstructed by our local

method and global standard filter backprojection is shown in

Fig. 14(c) and (d), respectively.

In order to make an accurate comparison with other meth-

ods, most notably those described in [8], [9], and [11], we

consider two measure criteria for the error in local reconstruc-

tion, the maximum relative error (21), and the average relative

error. Since most of the error in our reconstructions occurs in

a small ring at the boundary of the ROI, the average error is

an order of magnitude smaller than the maximum error. This

determination is based on the examination of a typical element

of the nullspace of the interior Radon transform. Based on the

examination of this element, and on other considerations, we

fix the size of the margin outside of the region of interest,

on which we collect data. In order to limit the maximum

error to 1%, we require a margin of 22 pixels, and in order

to limit the average error to 1%, we require a margin of

12 pixels (see Fig. 8). Since we are doing extrapolation in
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addition to collecting nonlocal data, the actual error is much

smaller than the values predicted by examining the nullspace

element. Hence, we believe that the 1% average error criterion

is the most reasonable in light of the nature of our algorithm.

Therefore, the 12-pixel margin is used in our simulations, but

we also report comparisons based on the 22-pixel margin.

VII. CONCLUSION

We have developed an algorithm to reconstruct the wavelet

and scaling coefficients of a function from its Radon transform.

Based on the observation that for some wavelet bases with

sufficiently many zero moments, the scaling and wavelet func-

tions have essentially the same support after ramp filtering, we

have developed a local reconstruction scheme to reconstruct

a local region of a cross section of a body with essentially

local data. An upper bound for the local reconstruction error

is obtained in terms of the amount of nonlocal data which

is used in the reconstruction scheme. Nonuniqueness of the

interior problem appears as a constant bias in the reconstructed

image. The measured error between the original image and the

reconstructed image after removing this bias is negligible. This

fact shows that if we use a sufficient amount of nonlocal data

in the reconstruction, this bias is reasonably constant on the

ROI.
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