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Abstract— Wavelet-based statistical signal processing often encountered in practice. These new models lead to so-
techniques such as denoising and detection typically model the phisticated processing techniques that coordinate the nonlinear
wavelet coefficients as independent or jointly Gaussian. These processing amongst coefficients to outperform current wavelet-

models are unrealistic for many real-world signals. In this paper, . . . S
we develop a new framework for statistical signal processing based algorithms. The models are designed with the intrinsic

based on wavelet-domain hidden Markov models (HMM’s) that Properties of the wavelet transform in mind.
concisely models the statistical dependencies and non-Gaussian

statistics encountered in real-world signals. Wavelet-domain

HMM’s are designed with the intrinsic properties of the A. The Discrete Wavelet Transform

wavelet transform in mind and provide powerful, yet tractable, . . .
probabilistic signal models. Efficient expectation maximization The wavelet tran.sform. IS an atoml_c decqmpOSItlon that
algorithms are developed for fitting the HMM's to observational ~ represents a one-dimensional (1-D) signét) in terms of
signal data. The new framework is suitable for a wide range of shifted and dilated versions of a prototype bandpass wavelet

applications, including signal estimation, detection, classification, fynction ¥(t), and shifted versions of a lowpass scaling

prediction, and even synthesis. To demonstrate the utility of ; ; :
wavelet-domain HMM'’s, we develop novel algorithms for signal function ¢(¢) [8], [9]. For special choices of the wavelet and

denoising, classification, and detection. scaling functions, the atoms
Index Terms—Hidden Markov model, probabilistic graph, _ _
wavelets. Py k(t) =2 2277t — K)

by k() =272 0t —K), J KeZ (1)

|. INTRODUCTION form an orthonormal basis, and we have the signal represen-

HE WAVELET transform has emerged as an excitinE;atlorl (8], [9]

new tool for statistical signal and image processing. A
The wavelet domain provides a natural setting for many £ = i St i (4 2
applications involving real-world signals, including estimation () EK:UA $a0. 5 () + Z Z wr, b, k(D) (2)
[1]-[3], detection [4], classification [4], compression [5], pre-
diction and filtering [6], and synthesis [7]. The remarkablg ., wo ke = [ O (8 db andux = [ (66 (1) dt.

properties of the wavelet transform have led to powerful signal | ihic" renresentation] indexes thescaleor reeslution of

processing methods based on simple scalar transformationg, @y «js_smalle corresponds to higher resolution analysis.

individual wavelet coefficients. These methods implicitly treaj j,qicates the coarsest scale or lowest resolution of analysis.
each wavelet coefficient as though it were independent of gl i jexes the spatial location of analysis. For a wavelet

other.s._ Methods that exploit dependencies between.wav%}} {‘) centered at time zero and frequengy, the wavelet
coefficients should perform even better. The goal of this pa efficientw; ; measures the signal content around e

is to develop new wavelet-domain probability models th%d frequenc2— f,. The scaling coefficient; measures the
match the statistical dependencies and non-Gaussian statiqgga mean around time’o K

J=—o0 K

In practice, we work with a finite-resolution representation
of z(t), replacing the semi-infinite sum in (2) with a sum
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is thus much more “peaky” at zero and heavy-tailed than the
Gaussian.
Non-Gaussian models have also been formulated, but usu-
° ° ° ° ally, the coefficients are assumed to be statistically independent
of each other. Justification for independent non-Gaussian mod-
° els is based on the primary properties plus the interpretation of
the wavelet transform as a “decorrelator” that attempts to make
each wavelet coefficient statistically independent of all others.

f
. " . However, the wavelet transform cannot completely decorrelate
Fig. 1. Tiling of the time—frequency plane by the atoms of the wavelet | Id si | idual d d -
transform. Each box depicts the idealized support of a scaling atenftop  '€@l-world signals—aresidual dependency structur@ways

row) or a wavelet atomp; (other rows) in time—frequency; the solid dot atremains between the wavelet coefficients. In words, we have

the center corresponds to the scaling coefficiept or wavelet coefficient ha foIIowing Secondary propertieef the wavelet transform.
w;. Each different row of wavelet atoms corresponds to a diffeseate or

frequency band(We run the frequency axis down rather than up for later Clustering:If a particular wavelet coefficient is large/small,
convenience.) then adjacent coefficients are very likely to also be
large/small [14].

In wavelet-based signal and image processing, we IoroCeSEersistenceLarge/smrcllI values of wavelet coefficients tend
the signalz(t) by operating on its wavelet coefficienfs; } to propagate across scales [15], [16].
and scaling coefficient§ux}. The wavelet transform has Aswe see in Fig. 2, these are striking features of the wavelet
several attractive properties that make it natural for signal att@nsform. They have been exploited with great success by the
image processing. We call these txémary propertiesof the compression community [5], [14]. Our goal is to do the same

wavelet transform. for signal processing.
Locality: Each wavelet atony; is localized simultaneously
in time and frequency. C. Modeling Framework
Multiresolution: Wavelet atoms are compressed and dilated completely modeling the joint probability density function
to analyze at a nested set of scales. of all of the wavelet coefficientsf(w) with w = {w;}
CompressionThe wavelet transforms of real-world signal§yould characterize the dependencies between the coefficients.
tend to be sparse. However, the complete joint probability density is usually

Together, the locality and multiresolution properties enabigtractable to use and impossible to estimate. At the other
the wavelet transform to efficiently match a wide range of sigxtreme, modeling the wavelet coefficients as statistically
nal characteristics, from high-frequency transients and eddedependent, withy (w) = [[. f(w;), is simple but disregards
to slowly varying harmonics. The wavelet transform’s abilithe intercoefficient dependencies. To strike a balance between
to match a wide variety of signals leads to the compressigifese two extremes, we must represent the key dependencies
property. Complicated signals can often be represented usigl only the key dependencies. The primary and secondary
only a handful of wavelet and scaling functions. As a resuliroperties of the wavelet transform suggest natural candidates:
of these properties, statistical signal modeling and processigrsistence suggests that wavelet coefficients can have strong
methods based in the wavelet domain are, in many casgspendencies across scale (vertically in Fig. 1), whereas clus-
much more effective than classical time-domain or frequenciering and locality suggest that coefficients can have strong

domain approaches. dependencies within scale (horizontally in Fig. 1).
In this paper, we introduce a new modeling framework that
B. Wavelet-Domain Statistical Models neatly summarizes the probabilistic structure of the coefficients

In this paper, we adopt a statistical approach to waveldf the wavelet transform [17]. Our models owe their richness

based signal processing in which we regard the signal and@f flexibility to the following features:

wavelet coefficients as random realizations from a family or Mixture Densities:To match the non-Gaussian nature of
distribution of signals. To this end, our objective is to develop the wavelet coefficients, we model the marginal probability
probability models for the wavelet transform of signals that f(w;) of each coefficient as a mixture density with a hidden
are rich and flexible enough to capture the structure of a widestate variable [see Fig. 3(a)].

variety of data yet concise, tractable, and efficient for practical Probabilistic Graphs:To characterize the key dependencies
application in real-world problems. between the wavelet coefficients, we introduce Markovian

Until recently, wavelet coefficients have been modeled dependencies between the hidden state variables. These
either as jointly Gaussian [4], [6], [10], [11] or as non-Gaussian dependencies are described by a probabilistic graph or tree
but independent [2], [3], [12], [13]. Jointly Gaussian models [see Fig. 3(b)].
can efficiently capture linear correlations between waveletModels of this type, which are commonly referred to as
coefficients. However, Gaussian models are in conflict withidden Markov model$HMM’s), have proved tremendously
the compression property, which implies that the waveleseful in a variety of applications, including speech recognition
transforms of most signals are sparse, resulting in a larigé8], [19] and artificial intelligence [20].
number of small coefficients and a small number of large We will investigate three simple probabilistic graphs with
coefficients. A typical wavelet coefficient density or histograrstate-to-state connectivities shown in Fig. 3(b). Tiheepen-
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Fig. 2. Clustering and persistence illustrated, respectively, in Donoho and Johnstone’s (a) Doppler and (b) Bumps test signals [1]. The d@mals lie a
the time—frequency tiling (Fig. 1) provided by a seven-scale wavelet transform. Each tile is colored as a monotonic function of the wavelet coefficien
energy w?, with darker tiles indicating greater energy.
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Fig. 3. Statistical models for the wavelet transform. (a) Independent mixture (IM) model. To match the non-Gaussian nature of the wavelescagdficient
model each coefficient as a mixture with a hidden state variable. Each black node represents a continuous wavelet dgefieigmtvhite node represents the
mixture state variabl&; for ;. (b) To match the intercoefficient dependencies, we link the hidden states. Connecting discrete nodes horizontally across time
(dashed links) yields the hidden Markov chain model. Connecting discrete nodes vertically across scale (solid links) yields the hidden MEitdy tressiel.
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dent mixturgIM) model leaves the state variables unconnected
and, hence, ignores any intercoefficient dependencies. The
hidden Markov chairmodel connects the state variables hor-
izontally within each scale. Thhidden Markov treg HMT)
model connects the state variables vertically across scale.

We will refer to these models collectively agmvelet-domain scale J-1 /
HMMs. y 22 2

We will show that the wavelet-domain HMM framework . 2 2/
effectively captures key wavelet coefficient characteristics, —

leading to computationally efficient and statistically robustig. 4. HMT for an image quadtree. Each parent hidden state is connected

wavelet-based models for real-world signals This framewoi?(its four child states. (Some parent—child connections are omitted for visual
) clarity.) The two fields of nodes depict the wavelet coefficients at schles

provides a natural setting for exploiting the structure inheregﬁd] —1, respectively, and correspond to 2-D wavelet basis functions with a
in real-world signals for estimation, detection, classificatiospecific spatial orientation (horizontal, vertical, or diagonal). For more details

prediction and filtering, and synthesis. In Section V-A, wg" 2D wavelet systems, see [5], [8], and [9].
will apply this machinery to signal estimation and derive
a new wavelet denoising scheme that performs substantially
better than current approaches (see Fig. 10 and Table |, whiehthe four “child” wavelet states below it (see Fig. 4).
appear in V). In Section V-B, we will apply our models toHMT models form-dimensional data have a natutdl-tree
two difficult problems in detection and classification. structure.

Although, for illustrative purposes, we will focus on 1-D
signals, the results in this paper apply to wavelet-domakh Related Work
HMM'’s for images and multidimensional data as well. HMT Our approach in this paper differs considerably from pre-
models for 1-D signals have a natural binary tree structusdpus approaches to modeling wavelet transforms. In the
with each wavelet state connected to the two “child” wavelsignal estimation arena, research has concentrated primarily
states below it [see Fig. 3(b)]. HMT models for images havean modeling the non-Gaussianity of the wavelet coefficients
natural quadtree structure, with each wavelet state connectather than their interdependencies [2], [3], [12], [13]. How-
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Fig. 5. Organization of a wavelet transform as a forest of binary trees. Tilings of the time—frequency plane and tree structures for (a) full iizcdoneosi
tree) and (b) decomposition with two fewer scale bands (four trees). A scaling coefficient sits above the root of each tree. Associated with ©iach fradex
of nodes representing the wavelet coefficiiit (black node) and its state variabe (white node). See Fig. 3(b) for a wavelet decomposition with two trees.

ever, in the compression arena, techniques incorporating bottfter dispensing with definitions and notation in Section II,
coefficient non-Gaussianity and intercoefficient dependencevie turn to wavelet transform modeling using HMM’s in
at the heart of the state-of-the-art compression systems.Section Ill. We discuss the training of these models in
particular, the zerotree coder of Shapiro [5] has revolutionizégction V. (Details of a new EM training algorithm for the
wavelet image compression, significantly improving comprestMT model are provided in the Appendix.) In Section V, we
sion performance by exploiting dependencies between wavedgply this machinery to several problems in signal estimation
coefficients. Recently, new compression algorithms have bedtd detection and classification. We close in Section VI with
developed that combine the idea of exploiting dependencigliscussion and conclusions.

with probabilistic models for the wavelet coefficients [21],

[22]. Although similar in spirit to the probability models pre- Il. PRELIMINARIES

sented in this paper, none of these hew compression algorithm%r‘,:lphS and trees will play a central role in this paper. An

use an HMM framework. _ _ undirectedgraph consists of a set afiodes{vy, vz, -+, vx }
Wavelet-domain HMM's also differ considerably from they 4 5 set otonnectiondinking the nodes. Apathis a set of
multiscale stochastic models developed in [6] and [10]. Ig,nnections between two nodes. A rootestis an undirected
these multiscale stochastic models, the w-avelet coeﬁmeg@chc graph. In a tree, there is a unique path linking any two
thgmselves (rather than the hlddfep state varlqbles) are modejgdes. All nodes that lie on the path from to the root are
using a Markov structure. In addition, Bassevéieal. empha- - cajledancestorsof v;; all nodes that lie on paths from away
size linear Gaussian models [6]. Wavelet-domain HMM's akgom the root are calledescendantsf v;. The parentof v;
nonlinear and non-Gaussian and do not constrain the wavelefis immediate ancestor and is denoteddyy. A node is a
coefficients to be strictly Markov. child of v; if v; is its parent. We denote the children of node
The multiscale models of [23], which are used for Seg,-i by {Uj}jec(l) A node may have several children but 0n|y
mentation, have a Markov tree of state variables similar ghe parent; nodes with no children are calledvesof the
that of the HMT model. However, these models are appligebe. In abinary tree, each node that is not itself a leaf has
directly to the signal (which is not tree-structured), rather tha@o children.
the wavelet transform of the signal (which is tree structured). When viewed in the time—frequency plane as in Fig. 1,
This distinction can be visualized as removing all the dark wavelet transforms has a natural organization derest
nodes from Fig. 3(b) except those at the bottom scale, whieh binary trees [24}. The tree(s) are rooted at the wavelet
now represent signal samples instead of wavelet coefficiendsefficients in the coarsest scale (lowest frequency) band;
Differing both in form and purpose from wavelet-domaira single scaling coefficient sits above each root. Depending
HMM'’s, these models clearly do not provide feasible wavelebn the length of the signal and the number of scale bands
domain models. computed in the transform, the forest of trees will contain
Wavelet-domain HMM’s are also distinct from the trafrom one to several distinct trees [see Figs. 3(b) and 5]. For
ditional HMM’s used in time series analysis and speedhstance, if we analyze a lengfil- discrete signal ovet.
recognition. Traditional HMM’s model local correlations of avavelet scales, we obtaiN2~% wavelet trees. In our abstract
signal across time. Wavelet-domain HMM’s model dependeindexing scheme, we will denote théh wavelet coefficient
cies in the two-dimensioanl time—frequency plane—an entirefjom the kth tree asw?.
different topology requiring new modeling techniques. In Finally, we have some additional notation: When dealing
addition, wavelet-domain HMM'’s are designed to characterixéth random quantities, we will use capital letters to denote the
properties of wavelet coefficients such as clustering, pers[gndom variable and lower case letters to refer to a realization
tence, and compression. These properties are not necess&filhis variable. We will uses(s) to denote the probability
present in time-series data and, hence, can lead to substantf@@gs function (pmf) of the discrete random varialSleand
different mOde”ng assumptions than those typically used for: Do not confuse our use of trees with so-called tree-structured filter banks
time-series data. [9].
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fw/v(@) to denote the p_robability de_nsity function (pdf) (,)f, the p(D) p,(2) = 1-p(1)

continuous random variablé”. We will use the shorthand i.i.d.

for independent and identically distributed and will denote i

vectors with boldface letters. fwls=1) fwl§=2) fw)

W
I1l. WAVELET DOMAIN PROBABILITY MODELS [:>

Recall that our objective is to develop probability models for
the wavelet transform that capture complex dependencies and

non-Gaussian statistics, yet remain tractable so that they E#n 6. Two-state, zero-mean Gaussian mixture model for a random variable
b lied to real-world problems. To this end. we devel W . We denote the state variabfewith a white node and the random variable
€ appli P ' ’ QP with a black node. The Gaussian conditional pdf's¥giS are illustrated

our model in two steps. We begin with a simple model ias well as the overall non-Gaussian pdf fdf. $ = 1 corresponds to
which the wavelet coefficients are assumed to be independgrfw-variance Gaussian pdf, ard = 2 corresponds to a high-variance
. . . .Gaussian pdf. In our application, we model each wavelet coeffi¢ignteach
of each other. This model is based on the primary propertigs., node in Fig. 1) in this way.
of the wavelet transform and motivated by the fact that the
wavelet transform nearly decorrelates a wide variety of signal.
Next, we extend the independent coefficient model in order
to account for residual dependencies that remain between
the wavelet coefficients. This extension is accomplished with
simple Markovian structures on the wavelet tree. We consider
Markov models across both time and scale to account for
the secondary properties of the wavelet transform: clustering
and persistence. Our structures reflect Markov dependencies
between the states of the wavelet coefficients rather than
the values of the wavelet coefficients themselves (as in [6]).
The tandem of marginal Gaussian mixtures and first-order

Markovian dependencies leads to practical HMM's for the , , ,

wavelet coefficients. Fig. 7. Two—‘st‘ate, zero-mean Gaussian mixture model can clogely fit real
wavelet coefficient data. Here, we compare the model pdf to a histogram of
one scale of the Daubechies-4 wavelet transform of the “fruit” image in the

A. Probabilistic Model for an Individual Wavelet Coefficient Georgia Tech database.

The compression property of the wavelet transform states

that the transform of a typical signal consists of a small numbgfve been made between wavelet coefficient mixture models
of large coefficients and a large number of small coefficien@d the fundamental parameters of Besov spaces—function
More precisely, most wavelet coefficients have small valu§Races that have proved extremely useful for characterizing
and, hence, contain very little signal information. A feW€@-world signals [12].

wavelet coefficients have large values that represent significanf ©" @y 9iven set of wavelet data, the two-state, zero-mean
signal information. This property leads to the following simpl&@ussian mixture model may not provide a fitfig (w) with
model for an individual wavelet coefficient. We model each'e desired fidelity. To improve accuracy, we can use Gaussian

coefficient as being in one of two states: “high,” correspondi:g'xwre models withi/ > 2 states or nonzero means in the
to a wavelet component containing significant contributiori@Ussian mixing densities. By increasing the number of states
of signal energy, or “low,” representing coefficients with littigAnd allowing nonzero means, we can make the_ f|t_a_1rb|trar|ly
signal energy. If we associate with each state a probabil se for densmgs with afmltr-_z number 9fd|scontmumes [.2.5].
density—say a high-variance, zero-mean density for the “higl{/c €an even mix non-Gaussian densities, such as conditional
state and a low-variance, zero-mean density for the «woufensities belonging to the exponential family of distributions

state—the result is a two-state mixture model for each waveléf]: However, the two-state, zero-mean Gaussian mixture

coefficient. model is simple, robust, and easy-to-use—attractive features
As we see from Fig. 6, the two-state, zero-mean mixtuf@r many applications. For purposes of instruction, we will

model is completely parameterized by the pmf of the staf@cus on the simple two-state model in this paper but develop

variables, ps(1), 1—ps(1), and the variances of the Gaussiafhachinery capable of handling more general mixture models.
pdf's corresponding to each state. In most applications ofm general, anV/-state Gaussian mixture model for a random

mixture models, the value of the coefficielt is observed, vanabIeW consists of the fOIIOWi”Q' .
but the value of the state variabR is not; we say that the 1) a discrete random state variabfe taking the values

w w w

value of S is hidden s €1,2,---, M according to the pmps(s);
Several factors support the model's validity. Empirical 2) the Gaussian conditional pdf$y s(w|S = s), s €
results from estimation have shown this mixture model to be 1,2, .-+, M.

simple yet effective [2], [3]. Our experience corroborates theseTo generate a realization & using the mixture model, we
results; in Fig. 7, we demonstrate the fit that this model prfirst draw a state value according tops(s) and then draw
vides for an actual signal. Furthermore, theoretical connectioms observationy according to fyys(w|S = s). The pdf of
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W is given by quickly as we move away from the local neighborhood about
o a coefficient of interest. Hence, very accurate and practical
fw(w) =Y~ ps(m) fwis(w]S = m). (3) Models can be obtained with probabilistic links between the

states of only neighboring wavelet coefficients. We will now

apply probabilistic graph theory [20], [27], [28] to develo
Although each wavelet coefficiehl is conditionally Gaussian thpe?s)e/ Fr)nodels. arap y 1201, [27], [28] P

given its state variablg, the wavelet coefficient has an overall 2) Graph Models for Wavelet Transformsrobabilistic
non-Gaussian density due to the randomnesS.of graphs are useful tools for modeling the local dependencies
Unlike wavelet coefficients, scaling coefficients typically arBetween a set of random variables [20], [27], [28]. Roughly
not zero mean. Therefore, a two-state, zero-mean GaussigRaking, a probabilistic graph associates each random
mixture model may be inappropriate. One approach is to moqgiaple with a node in a graph; dependencies between
the scaling coefficients as Gaussian with nonzero mean. Si s of variables are represented by links connecting
scaling coefficients are essentially weighted averages of a lajgg corresponding nodes. The locality and multiresolution

number signal samples, this approximation is reasonable jpyperties of the wavelet transform suggest three simple ways
light of the Central Limit Theorem. A more flexible approachy “connect the dots,” representing the wavelet coefficients
is to apply a Gaussian mixture model as before but wifyq states in Fig. 1:

nonzero-mean mixing densities.

m=1

a) a graph with no dependencies between wavelet state
variables;

b) a graph linking wavelet state variables across time using
1) Motivation: Since a Gaussian mixture model can accu- chains;

rately characterize the pdf of a single wavelet coefficient, it ¢c) a graph linking wavelet state variables across scale using

seems logical to use Gaussian mixture models to characterize trees.

the joint pdf of the entire wavelet transform. The simplesh Fig. 3, we illustrate these three simple graphs.
approach would be to model the wavelet coefficients aswe are by no means limited to just these three graphs. We
independent Gaussian mixtures. We call this approach &gn develop graphs that capture even more interdependencies
independent mixture (IM) modé¢see Fig. 3(a)]. Because thepy placing additional connections between the states. Unfor-
wavelet transform nearly decorrelates a wide variety of signajginately, the computational complexity increases substantially
this model for the wavelet tree is intuitively plausible. Morefor graphs more complicated than trees. Although we can still
over, as demonstrated by the denoising results in [2] and [&rmulate algorithms for training and applying more general
the IM model is a substantial improvement over detel’ministb}aphs [20], [28], to keep our presentation and ana|ysis Simp|e,
signal models that do not explicitly take the distribution ofve will concentrate on the three special cases described in
signal’'s wavelet coefficient values into account. Fig. 3.

Nevertheless, the clustering and persistence properties lead a) Independent Mixture (IM) ModelA mixture model
to local dependencies between wavelet coefficients. Char@fth no connections, as in Fig. 3(a), corresponds to the IM
terization of these dependencies has resulted in significgigésented in [2] and [3] and is discussed above. It treats
performance gains in compression [3], [14]. Ideally, we woul@avelet state variables (and hence wavelet coefficients) as
like a model that both matches each individual coefficient's pgdependent random variables.
and captures dependencies between coefficients. b) Hidden Markov Chain Model:Connecting the state

We motivate our approach by extending the Gaussian Miyariables S; horizontally in Fig. 3(b) specifies a Markov-1
ture model for one wavelet coefficient to jointly model twahain dependency between the state variablésn each scale
wavelet coefficients that represent components of the signe]. This model treats wavelet state variables as dependent
close in time and/or scale. We say that two such coefficientgthin each scale but independent from scale to scale.
areneighbors By clustering and persistence, if one coefficient  ¢) Hidden Markov Tree (HMT) ModelBy  connecting
is in a high-variance (low-variance) state, then its neighbor dgate variables verticallpcross scaldn Fig. 3(b), we obtain
very likely to also be in a high-variance (low-variance) state. graph with tree-structured dependencies between state
Thus, the two neighboring wavelet coefficients can be modelggriables. We call this new model a “tree model” to emphasize

as Gaussian mixtures withterdependent state variableBhis the underlying dependencies between parent and child state
two-coefficient example suggests a natural generalization\griables.

the multiple coefficients in a wavelet transform: Model each we will focus on the IM and HMT models in the seqdel.

coefficient as a Gaussian mixture, but allow probabilistic 3) HMT Model: The HMT model matches both the clus-

dependencies between the state variables of each mixtureering and persistence properties of the wavelet transform. Its
What remains is to specify an appropriate model for thes@ucture is reminiscent of the zerotree wavelet compression

dependencies between the state variables. A complete joint

Pdf taklng |r)to account all pOSSI.ble dependencu.as IS Clearl.yZThe IM and HMT models and their respective training algorithms gen-

intractable since the number of different state variable comleralize directly to multidimensional data. However, the chain model must

nations grows exponentially in the number of wavelet coefffe adapted to higher dimensions. For example, in 2-D, the chain becomes a
hidden Markov field, and more complicated training algorithms are required

cients. Fortunately’ the Iocality and multiresolution prope_rtiq& this topology. See [28] for a discussion of possible algorithms and [29] for
of the wavelet transform suggest that dependencies die affalternative modeling approach potentially useful for reducing complexity.

B. Probabilistic Models for a Wavelet Transform
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system [5], which exploits tree-structured dependencies fGonversely, given the child stat§; j € c(¢), the pair
substantial compression gains. Furthermore, this graph hagSa, W;} are independent of;’s descendants. Combining
natural parent—child dependency interpretation. State variathese properties shows us thé$;, W;} are conditionally
dependencies are modeled via state transition probabilitinsdependent of the entire tree given only the parent sfgtg
from each parent state varialfigto its children’s states, whereand the children stategS; }jc -
the two state variables are connected to it from below (if they In Fig. 5(a), we can see concrete examples of these inde-
exist). For example, in Fig. 5(a), state variabfasand S; are pendence properties. Given the parént the pair of nodes
both children ofS, and, hence, are causally dependentsen {53, W5} are conditionally independent of the subtree rooted
Dependency is not simply limited to parent—child interactionst S3. Effectively, conditioning on the parent state separates
however. State variable$, and.S; may be highly dependent {S,, W5} from the right side of the tree. Conversely, given
due to their joint interaction wittt,. the child Sy, the pair{S,, W} are conditionally independent
Moreover, if we do not restrict ourselves to zero-meawf the subtrees rooted &y and Sg; given the other child
two-state Gaussian mixture model, but rather use Gaussigy {S2, W} are conditionally independent of the subtrees
mixture models with more than two states and nonzero mearmpyted atS;o and Si;. Applying these together, we see that
this simple tree-structure is capable of approximating the joigiven the parens; and children{S4, S5}, the pair{Ss, W}
parent—child wavelet coefficient pdf to arbitrary preciston. are conditionally independent of the rest of the tree.
Using anM -state Gaussian mixture model for each wavelet It is important to note that the Markov structure is on the
coefficientWW;, the parameters for the HMT model are states of the wavelet coefficients and not on the coefficients
1) ps,(m), the pmf for the root node; themselves. This is an important distinction between our model
2) 6Zl;(i) — Psilsp(i>[m|5p(i) = 7], the conditional prob- and other multiscale Markov signal representations such as

ability that S; is in statem given S, is in state those considered in [6] and [10]. Because the states are never

- known exactly, our HMM framework does not place a Markov
3) Wi, m and 0i2 - the mean and variance, respective]y, otructure on the wavelet coefficients directly. LE(VL) denote
the wavelet coefficientV; given S, is in statem. that the scale oi¥; (and.S;) and assume that the scales are

These parameters can be grouped into a model param&f@ered from finest[ = 1) to coarsest. = L). In our model

vector #. Recall that we will primarily focus on the case

M = 2 with the means; . = 0. fwi (wiliWits>aa)) 7 fw: (Wil Wpe))- )
In the HMT model, we have the following conditional

independence relationships among the wavelet coefficiehlQWeVer, even though the wavelet coefficients are generally
{W;}. First, we observe that not Markov, signal processing using wavelet-domain HMM's

remains efficient due to the Markov nature of the wavelet state
Fov (willW;}j0,{S; = s} i, Si = 80 = fw,(wil S; = 5;).  variables.
4) The question remains of how to capture interdependencies
In words, W; is conditionally independent of all other randonin the scaling coefficients. One simple possibility is to use
variables given its states;. Hence, the conditional inde-a jointly Gaussian model for the scaling coefficients; this
pendence properties for the states also lead to conditiosaptures correlations between scaling coefficients but treats
independence properties for the wavelet coefficients. We néxem as independent of the wavelet coefficients. If, instead,
investigate the independence properties for the wavelet coef use Gaussian mixture models, then the simplest approach
ficients and wavelet states in tandem. is to treat the scaling coefficients as independent mixtures as
The tree-structured connections lead to several conditiorsélown in Fig. 5(b). To capture scaling coefficient correlations,
independence relationships for the states and wavelet coeffé can link the states of the scaling coefficients across time
cients. Given the parent stafg;), the pair of nodegS;, W;} in a hidden Markov chain model. Alternatively, to capture
are independent of the entire tree exceptdgs descendants. dependencies between wavelet and scaling coefficients, we can
. o o _ - link the states of the scaling coefficie_nt_s across scale with Fh(_)se
_ “The approximation capability improves to arbitrary precision as Wgg the coarsest scale wavelet coefficients. Other possibilities
increase the number of mixture componeffsused to model the marginal ~ . )
parent and child distributions. A sketch of the proof follows. Recall th€XiSt, but the above models are natural and straightforward
Satlosian uivariate mbang densites. and Bhwector of probabiides that. _ybec o 1he duestion of which model is best, or even
weight the densities. Condi?ioned onthe paFentstate varigble, the child wave eqether any model is nepgssary, dEpends on the'appllca}tlon
coefficient is modeled by its owd/ Gaussian univariate densities and art hand. In wavelet denoising, for example, the noisy scaling
M x M matrix of probabilities for transitions from the parent's state tcoefficients typically contain much more signal energy than

the child’s state. The joint model for parent and child is thus a mixture ; . ; ; ;
M? bivariate Gaussians, which are the Cartesian products of the univariﬁtOlse energy, hence, they can be viewed as reliable estimates

mixing densities. The mixture weights for thedd? bivariate Gaussians OFthe signal scaling coefficients and left unprocessed [1], [3].
are products of the parent state probabilities with filex M matrix of 4) Three Standard Problems of HMM'sthere are three

transition probabilities. Hence, we hawé? degrees of freedom in choosing canonical problems associated with the wavelet-domain
the mixture weights, and we can realize any weighted mixture ofMfre , . )
bivariate Gaussians we desire. Appealing to the approximation capabiliiestdMM’s we have described [18]:

Gaussian mixtures [25] (analogous to radial basis function networks [30]), asg) Training: Given one or more sets of observed wavelet
M increases, the bivariate Gaussian mixture is capable of approximating any

bivariate parent—child pdf with a finite number of discontinuities to arbitrary coefficients {w;}, determine th_e wavelet-domain HMM
precision. parameter® that best characterize the wavelet coefficients.
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b) Likelihood DeterminationGiven a fixed wavelet-domain than 3 have a chortlSince the HMM’s considered in this
HMM with parametersf), determine the likelihood of an paper do not contain cycles, they are trivially chordal and,
observed set of wavelet coefficienfs; }. hence, admit efficient EM training.

c) State EstimationGiven a fixed wavelet-domain HMM  For HMM's, the complexity of one EM iteration is linear in
with parameterd), determine the most likely sequence othe number of observations [18], [28]. With intelligent initial-
hidden state$s, } for an observed set of wavelet coefficientszation, the algorithm can converge in as few as ten iterations
{w;}. for a simple two-state HMT model. However, as the graph

This is useful for problems such as segmentation (see [23])odel underlying an HMM becomes more complicated, each
where the hidden states represent a physically meaningtgration of the EM algorithm becomes more computationally
quantity. intensive (still linear complexity but with a large constant

We next focus on training and likelihood determinatiorfactor), and the algorithm may take longer to converge. Hence,

since they are crucial for the applications that we develdpis important to keep the HMM as simple as possible. See
in Section V. [29] for a “context-based” approach that reduces complexity

in HMM’s, yet still models key wavelet-domain dependencies.
The specific EM steps for the IM and hidden Markov chain
models have been developed thoroughly in [18] and [26], so
In training, we seek the parameters of a wavelet-base@ do not include them in this paper. For more general tree
HMM that best fit a given set of data. The training datmodels, Roneret al. provide specific EM steps for discrete
w = {w;} consists of the wavelet coefficients of an observedariables in [32]. Since the observed wavelet data in the HMT
signal(s); the model parameteatsconsist of the mixture state model is continuous valued, we provide a new EM algorithm
probabilities and the mean and variance of each Gaussfanthis model in the Appendix.
component. For parameter estimation, we apply the maximum
likelihood (ML) principle. ML estimates are asymptoticallyB. Likelihood Determination
efficient, unbiased, and consistent as the number of trainin
observations increases.
Direct ML estimation of model paramete from the
observed datawv is intractable since, in estimatiry we are
characterizing the stat&s= {5;} of the wavelet coefficients

IV. TRAINING AND LIKELIHOOD VIA THE EM ALGORITHM

%he E step of the EM algorithm is useful in its own right

since it calculatedn f(w]|@), which is the log-likelihood of

the observed data given the model. This likelihood calculation

basically measures how well the mod@alescribes the data.

w, which are unobserved (hiddeh)et, given the values of Hence, i_t is us_eful for_detection and classif_ication applications,
as we will see in Section V-B. The calculation can also be used

the states, ML estimation @fis simple (merely ML estimation . . L .
. . to rg)redlct or estimate the values of wavelet coefficients given
of Gaussian means and variances). Therefore, we employtﬁl

iterative expectation maximizatiofEM) approach [31], which ¢ model.
jointly estimates both the model parametgand probabilities

for the hidden stateS, given the observed wavelet coefficient
w. In the context of HMM's, the EM algorithm is also known HMM'’s are very rich models; thus, we must ensure that

L. Robust Training via Tying

as theBaum-Welchalgorithm. we have enough training data to prevent “overfitting.” By
averaging over only one or very few signal observations, we
A. EM Algorithms for Training cannot expect to robustly estimate the marginal densities of

. . . _the wavelet coefficients, let alone a joint density for the entire
Our discussion of EM algorithms focuses on the specif J y

\Wavelet transform. This brings us to a key problem: If limited
problem of parameter estimation in wavelet-based HMM's; g yp

ST ?r’aining data are available, how can we make our modeling
for a more gene_ral treatment see [31]. V_\/e_ begin with SOMfore robust? We do so by modeling random variables that
terminology. Theincompletedata is our training datsv, and

. . ... have similar properties using a common density or a common
the completedata(w, s) is our training data augmented with brop g y

the hidd tates. O lis t imize the | let set of density parameters. For example, if we expect two
€ hidden states. Lur goal IS 10 maximize the INCOMPIELE 540 m variables to have roughly the same variability, we can
log-likelihood functionln f(w|#). The EM algorithm decou-

les this difficult imization int iteration betw " describe them with a common variance. In this way, we obtain
ples this dificult maximization Into an fteration between tWoy, . yejiaple parameter estimates by increasing the amount of
simpler steps: the E step and the M step.

. . training data associated with each parameter. This practice is
At the [th iteration, the E step calculates the expect 9 b P

! o own as “tying” in the HMM literature [18], and we use it
V"’?'“e Es[ln :f(w’ SIO)lw, 0.]' The M st_eletHen MaXIMIZES 14 more robustly estimate the means, variances, and transition
this expression as a function @8fto obtain@ ™" for the next

terati Und id diti this iterati tgrobabilities of our wavelet-domain HMM’s.
lteration. nder miidconditions, this tleration converges 1o, Fig. 8, we distinguish between two different types of
a local maximum of the log-likelihood functioin f(w|@)

. - . tying in the HMT model: tying between wavelet trees and
[31]. Efficient EM algorithms for HMM’s exist under the ying ying

tion that th derlvi babilisti ciordal tying within wavelet trees. Recall from Section Il [see also
assumption that the underlying probabllistic grap rda Figs. 3(b) and 5] that in general, the wavelet decomposition
[20], [28]. A graph is chordal if all cycles of length greater

5A cycle of a graph is a path starting and ending at the same node—a
4Since the states are not observed, we will generally denote them usiigsed loop. Achordis a connection between two nonconsecutive nodes in a
capital letters to emphasize their uncertain or random nature. cycle.
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methods do not exploit key clustering and persistence proper-
ties. In this section, we illustrate the power of the HMT model
by developing a novel signal denoising method based on this
framework. The new denoising method coordinates the noise
removal among the wavelet coefficients and automatically
adjusts to subtle structure within the signal [17] [see Fig. 9(b)].
Consider the problem of estimating a lengthssignal x
in zero-mean white Gaussian noise with power. Taking
the L-scale wavelet transform of the noisy signal, we obtain
K = N27L trees of noisy wavelet coefficient&w)} (see
@ (b) Section Il). Since the orthogonal wavelet transform of zero-
ean white Gaussian noise is zero-mean white Gaussian noise
the same power, the estimation problem can be expressed
in the wavelet domain as

Fig. 8. Tying in the HMT model. Pictured above are three wavelet trees. {%}
Tying across the wavelet trees. (b) Tying within a wavelet tree.

of even a single si_gnal observation can result in multiple wk = y¥ +nk (6)
wavelet trees. By tyingicrosstrees—which assumes that the

coefficients of these trees have the same density—we can tnalere ¥, ¥, andn* denote the wavelet coefficients of the
as if we had multiple signal observations. We can also t@hserved data, the signal, and the noise, respectively.
within trees—Dby tying all coefficients within the same scale Our approach is succinctly described as follows. We first
of a tree, for example. In the Appendix, we discuss both typésan HMT model to they;’s from the noisy data and then

of tying for training HMT models. use this model as a prior signal distribution to compute the
conditional mean estimates of thg's given w¥. In effect,
V. APPLICATIONS this approach is an “empirical” Bayesian estimation procedure

Our development of wavelet-domain HMM's has beeHnder squared-error loss. It is empirical since we estimate the

motivated by the intrinsic properties of the wavelet trang@rameters of our Bayesian prior from the data itself [see
form, and we have discussed how several aspects of fig- 9(P)]. To fit an HMT to the noisy wavelet coefficients,
model are supported by empirical and theoretical evidendé® apPply the EM algorithm from thenﬁ\ppenlex. We begin
However, the true test of our modeling framework lies in itgy estimating the p-a-ramete{.ggsl (m)i i, (i) 7i,m} fOr '_[he
application to signal processing “benchmark” problems. T@gnalwavelet coefficients using theisysignal observatiofi.
this end, we consider applications in signal estimation andThe key observation is that if the signal has a wavelet-
detection/classification. domain HMM pdf, then the noisy signal does as well. This

We compare the estimation performance of our new mo@bservation stems from two facts. First, the sum of two
els for signal estimation in additive noise to state-of-the-afdependent Gaussian random variables is also Gaussian, with
wavelet denoising methods. We show that our new framewo¥Rriance the sum of the two variances. Second, given the
offers significant improvements in several well-studied bencMalues of their hidden state variables, the signal wavelet
mark problems. Wavelet-domain HMM's are also well suitegoefficients are Gaussian. Therefore, adding the independent
to signal detection and classification. zero-mean white Gaussian noigé increases each mixture

In this section, we approach these problems by assumifgdel variances?,, by o7 but leaves the other parameters
that no prior signal models are available and that only “traifthchanged. Hence, we can obtain the signal wavelet model
ing” data are available for the design of the detector/classifiéiom the noisy signal by fitting an HMM to the noisy signal
We compare the wavelet-domain HMM-based detectors yvelet coefficients and then subtracting the added variance
classical detectors. Our results demonstrate the HMM's pé#ue to noise. If we denote the estimated mixture variance of
formance and extremely efficient use of training data in twib€ noisy wavelet coefficient at locatianin the mth state as
difficult signal detection problems. V7 o then

2 _ 2 2
A. Signal Estimation Tivm = Vim — 00+ (7

Wavelets have proved remarkably successful for estimatith (z); = x for z > 0 and(z)4 = 0 for x < 0. The noise

ing signals in additive white Gaussian noise [1], [3]. Theowero?2 can be estimated using the median estimate of [1]
compression property indicates that the wavelet transfoperformed on the finest scale wavelet coefficients (where the
typically compacts signals into just a few coefficients of larggignal energy is expected to be negligible).

magnitude. Because the wavelet transform is orthogonal, itOf course, we typically have only a single noisy signal
leaves white noise evenly distributed across many coefficiefsservation at hand. Therefore, in order to ensure reliable
of small magnitude. Therefore, by setting small wavelet coeffyarameter estimation for the signal, we must “share” sta-
cients to zero, one effectively removes noise without degraditigtical information between related wavelet coefficients. We

the signal [see Fig. 9(a)]. on .
Existi denoisina methods usually ignore possible de °As in [2] and [3], we assume that the wavelet coefficients are zero mean.
XISting denoising y 19 p Pefke scaling coefficients, although they are not zero mean, are relatively noise

dencies between signal wavelet coefficients, and hence, theseand, hence, are not processed.
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Fig. 9. Block diagrams for wavelet-based denoising. (a) Standard wavelet-based denoising. (b) Our empirical Bayesian wavelet-based deactsing. In
case, the signal in additive white Gaussian noise (WGN) is wavelet transformed, passed through threshold-like nonlinearities, and inversed transfo

to get the denoised signal. However, the empirical Bayesian approach attempts to learn and exploit the signal's wavelet-domain structure to better
separate signal from noise.

TABLE | We now compare our “empirical” Bayesian denoising pro-
L T F O A T 1 cedure using the IM and HMT with current state-of-the-art
ENeTH EST SIGNALS [1]. NOISE VARIANCE 7, = wavelet denoising algorithnisTable | compares the estima-
tion performance of the IM and the HMT models with two
. state-of-the-art scalar algorithms. Donoho and Johnstone’s
S;fyswhlr;k[g]l ] g'ggg 8'333 g'fzz 8'82? SureShrink algorithm [1] performs scalar thresholding in the
™M 0:335 0:105 0:170 0:080 wavelet domain. The_ Bayes.iarj mixture_ algorithm of Chipr_nan
HMT 0268 | 0.079 | 0.132 0.081 et al. [3] operates in a similar fashion to the denoising
method using the IM model, except that their mixture model
_ ) _ ~ s a true Bayesian prior and is not inferred from the data.
accomplish this by assuming that all wavelet coefficienigean-squared-error (MSE) results are tabulated for denoising
and state variables within a common scale are identicaypnoho and Johnstone's length-1024 test signals Bumps,
distributed, inClUding identical parent—ch”d state transitiOB|ockS, Dopp|er, and Heavisine [1] in additive white Gaussian
probabilities. (This model corresponds to tying both within anggise of powers2 = 1. Inspection of Table | shows that
across trees from Section IV-C.) The resulting HMT mod&jignificant MSE gains can be achieved by exploiting wavelet-
is completely parameterized by two mixture variances for thgymain dependencies via the HMT model. The only exception

wavelet coefficients at each scale, two probabilities for the rogtthe Heavisine signal, which has less wavelet-domain struc-
state variable at the coarsest scale, and2 state transition tyre for the HMT model to exploit. In this case, the IM and

probability matrices for the state variables at all other scalegpmT models perform roughly equivalently.

Once we have trained the HMT, estimation of the true signal Fig. 10 illustrates the subjective improvenfeaf the HMT
wavelet coefficients (denoising) is straightforward. Note that ihodel for denoising a signal realization of the Doppler signal
the statesS} of the signal wavelet coefficientg’ are known, iy white Gaussian noise of powef = 2.25. We see that the
then the estimation problem becomes a series of simple 1T denoising method offers two significant advantages over
problems of estimating zero-mean Gaussian random variablgg other methods: 1) HMT denoising is often smoother than
in zero-mean additive Gaussian noise. The conditional megfth SureShrink and IM, and 2) HMT denoising preserves

Method Mean-squared error

Bumps | Blocks | Doppler | Heavisine

estimate ofyf, givenw} and the state}, is the high-frequency components better than the other methods.
A A o?,. N This demonstrates how exploiting the statistical dependencies
ENFWS =w), 87 =ml= ——= 5w’ (8) between wavelet coefficients enables HMT denoising to better

n i,m

separate signal from noise—even in regions where signal and
Now, recall that by-products of the EM algorithm are th@oise are visually indistinguishable.

hidden state probabilitieg(S¥|w*, ), given the model and
the observed wavelet coefficients. (See the Appendix for
how these probabilities are calculated.) Using these state
probabilities, we obtain conditional mean estimatesyfovia

the chain rule for conditional expectation For each estimation algorithm, Bumps was transformed using the

Daubechies-4 wavelet, Blocks using the Haar wavelet, and Doppler and

ko k k k Heavisine using the Daubechies-8 most-nearly symmetric wavelet. The IM
E[yz |W ’ 0] = Z p(Si = m|W ’ 0) and HMT algorithms used a seven-scale wavelet decomposition. The error
m results of Table | for SureShrink and the Bayesian algorithm of Chipatan
o2 al. were quoted from [3]. More details of these two algorithms are provided
X k. (9) in [1] and [3]. Error results for IM and HMT were obtained by averaging
0% + azm ¢ over 1000 trials. For Fig. 10, SureShrink was implemented using the “hybrid”

) . . . . . shrinkage estimator in the WavelLab software. The Bayesian mixture algorithm
The final signal estimate (denoised signal) is computed @fwas not implemented for Fig. 10 but is similar to IM both in its Bayesian
the inverse wavelet transform of these estimates of the sigfihulation and MSE performance.
wavelet coefficients. Note that only the wavelet coefficients®Results vary depending on the noise realization, and there can be no
.. . - . guarantee of smoothness with any MSE-based optimality criterion. However,
are processed. The orlglnal scallng coefficients are used in figure is a typical example of the subjective improvements that can result

inverse transform. from exploiting dependencies between wavelet coefficients.
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Fig. 10. Denoising the Doppler test signal in white Gaussian noise ajti= 2.25. On each plot, a dotted line is used to depict the original signal and a
solid line to depict the noisy or denoised signal. The leftmost plots depict the entire signals; the rightmost plots depict the signals “zoonietErt@iti@
0.04], where it is difficult to distinguish high-frequency signal from noise. (a) Noisy length-1024 Doppler signal=\V2SE. (b) Denoised via SureShrink
[1], MSE = 0.43. (c) Denoised via wavelet-based Bayesian IM model MSH.34. (d) Denoised via wavelet-based Bayesian HMT model MSE.26.

B. Signal Detection and Classification each class;, resulting in parameter vectots,. We use the

1) Motivation: Our marriage of wavelet transforms andrained HMM's to detect or classify a new signal observation
HMM's yields a flexible framework for generalized likelihood-w by determining which describes the new observation best.
based signal detection and classification that both matches Tiés task boils down to computing the likelihood of the new
properties of the wavelet transform and exploits the structusignal observation for each HMI(w|6,,,) and then selecting
inherent in real-world signals. Given i.i.d. signal observatioribe classm whose HMM provides the greatest likelihood.
from two or more classes of signals, we can train HMM's fofFhis approach is analogous to the use of HMM's for speech
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Fig. 11. Typical autoregressive (AR) signals used in nonlinear classification experiment. (a) Linear AR process (Class 1). (b) Linear AR predess pass
through a mild cubic nonlinearity (Class II).

recognition [19], where each signal class is a specific word -
or utterance. A slightly different approach developed for time-
domain HMM'’s has been shown to be asymptotically optimal
in the Neyman—Pearson sense for two-class problems [33].
Several other wavelet-based detection and classification
schemes have been proposed [4], [24], [34], [35]. Our purpose
is not to provide a comprehensive review of wavelet-based

o o
N 3]

ERROR RATE
=)
w

detection algorithms but, rather, to demonstrate the potential of 0.2k
the new wavelet-domain HMM framework for signal detection
and classification. Note, however, that this approach is quite o1}
different from the other wavelet-based detection schemes . . .
; 1000 2000 3000 4000
mentioned above. NUMBER OF TRAINING VECTORS

The properties of the wavelet transform make our frame- - . . o .
Fig. 12. Minimum probability of error rates for quadratic classifier (solid),

Wor!( partiCUIarly apprppriate for the classification and dQ/Valvelet—domain IM model classifier (dash), and wavelet-domain HMT model
tection of real-world signals. To demonstrate the power ar@ssifier (dash-dot).

potential of wavelet-domain HMM’s for signal classification,

we tackle two difficult problems: classification of nonlineap ...y on the Haar transform and two-component mixture
processes an_d cha_nge detection. These prob!ems anse In Manyels. Although the Haar transform is appropriate for edge
apph_cat_lons, mclu_dmg sonar _and radar, “_“aCh'”ery and ProC&&fection, different wavelet transforms may work better for

mh°”'tf1f'”?; and b'okmgd'cﬁl S|gnz_al ar|1aly3|s%We d?] not SuQ%%ﬂ‘]er applications. Generally, we expect the transform that
that this framework Is the optimal one for either speciliyq compresses the signals of interest to provide the best

pr:ot)fllem_g_rlfither,dwedchosg_lt_hesef t\r’lvo examplehs to de_mor_]Strgé?formance. In addition, we could use more flexible models
the flexibility and adaptability of the approach. In situationgi, a7 ~ 2 mixture components, but in using such models,

where the data is known to obey a simple probability mod%e would risk “overfitting” the training data
then optimal detection and classification methods should bez) Classification and Detection of Nonline.arit)For the

used. However, in complicated real-world applications, Wheb%rposes of demonstration, we have designed a numerical

combination, wavelet HMM’s and training data provide alyo classes of random processes described by
efficient and powerful framework for generalized likelihood

ratio testing. Both examples considered here are binary hy- I z1(t) =azi(t — 1) + ni(t)
pothesis problems, but the framework is applicable to multiple : zo(t) =y2(t) + 0.205(¢)
hypothesis testing as well. With ya(t) = bya(t — 1) + na(t).

In these examples, we applied a Haar transform with a single
wavelet tree and a single scaling coefficient. We modeled theBoth n; and n, are white Gaussian noise processes, and
wavelet coefficients using two-componemt/ (= 2) IM and the autoregressive (AR) parametersand b are i.i.d. and
HMT models with nonzero mixture means. These models wenaiform over the interval (0.4, 0.8). The signals are discrete
trained using multiple signal observations (without tying). Weme and organized into signal vectors of length 128 with
did not model the scaling coefficient since it provides thg = 1,2, ..., 128). Class | signals are linear AR(1) pro-
global mean of the signal, which in both examples was tlwesses. Class Il signals are produced by passing linear AR(1)
same under the two hypotheses. In other scenarios, the scafimgcesses through a memoryless cubic nonlinearity. Examples
coefficient(s) may provide vital discriminating information. of signals from each class are shown in Fig. 11 (generated

For the purposes of illustration, we only considered a vewyith the same AR parameter and white noise excitation for
special form of the wavelet-domain HMM framework—oneomparison).
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Fig. 13. Typical signals for the abrupt change detection experiment. (a) Gaussian white noise added to constant signal (Class 1). (b) Gaussian white
noise added to signal with abrupt change (Class ).

The first task at hand is to train wavelet-domain HMM'’s foand additive white Gaussian noise. Class Il consists of random
the two classes based on labeled observations from each cldisrete-time processes with an abrupt arbitrary change in
We generatedvr i.i.d. AR signals from each class for trainingthe mean at some arbitrary point in the signal. Again, our
purposes. (Note that the AR parameter was varied indepeignal observations are organized into length-128 observation
dently for each realization.) For comparison, we constructegctors. Formally, our signal classes are defined by
a minimum-probability-of-error quadratic detector under the | z1(t) = a1 4+ n1(t)
assumption that the two classes have Gaussian distribution I (t) = asl bl + o)
with different means and covariances [36], with the means and = 72 2L, ey mp T I2RE L o 128} T2
covariances estimated from the training data. The quadratid0th 71 andn, are white Gaussian noise processas.as,
detector is not optimal since the second class is non-Gauss@flb2 are i.i.d. and uniform o1, 1]. lic(y, .., 7y = 1if ¢ €
In cases where the number of training observatidhswas 11, *-+; 7} and is zero otherwiselc(, 11, ..., 125y is defined
smaller than the dimension of the observations, we formed e @0 @nalogous fashion. The change-poinis uniformly
quadratic detector in the subspace spanned by the training ddistriouted over the integergl6, .-, 112}. Examples of

After training the classifiers, we tested their performancignals from each class are shown in Fig. 13. _
with 1000 additional i.i.d. observations from each class. To AN €Xcellent treatment of classical methods for the detection
obtain reliable estimates of the error rates, we repeated rg'éeabmpt changes is given in [37]. In addition, other wavelet-

training and testing procedure 10 times in each case. The e §ed approaches to the change point problem have been

rates for the IM model, HMT model, and quadratic detectoﬁ"i,'scussed in the literature [34], [35]. The purpose of this

. . example is not to make an exhaustive comparison between
as a function of the number of training vecta¥s from each . . . . i
A our method and other existing techniques in the literature;
class, are shown in Fig. 12. . o o
. L - rather, the intent is simply to demonstrate the versatility of
Given a limited amount of training data, the quadrati : .
detector had a difficult time distinguishing the classes an g wavelet-based HMM approach to signal detection.
h ffers ver © verforman gln ngtr ¢ the wavel We again designed the wavelet-domain HMM classifiers
us ofiers e,y poor pertormance. In contrast, the wave haar-based IM model and Haar-based HMT model) with
domain HMM’s make much more efficient use of the trainin

aining data from each class and then tested their performance

data. With only 128 training vectors. from each. CI"’_‘S,S’ tWéith 1000 additional i.i.d. observations from each class. The
performances of the HMM'’s have stabilized to their MINIMUM 01 ratas for the IM model and HMT model as a function

error rates. Additional training data does not improve thegf the number of training vectord/ from each class are

performance. The performance of the quadratic detector dQgs 1 in Fig. 14. For comparison, we also implemented an
improve asNr increases but requires nearly ten times they |ine” generalized likelihood ratio test (GLRT) detector
amount of training data that the HMM's require for the sam@7] - Although the signal parameters (position and size of
error rate. We see that asymptotically (in number of trainingange) and noise variance are estimated from the data itself,
data Nr), the quadratic detector has the best error rate, fghe GLRT detector makes full use of piecewise constant
lowed closely by the HMT model. The IM model has the worsfjgnal model and Gaussian noise model. Since the GLRT
asymptotic error performance. This demonstrates the perfagploits all prior information, we may view the performance
mance gains associated with the HMT model. In addition, thi$ the GLRT detector as a lower bound on detection
suggests that more complex wavelet-domain HMM'’s (that iperformance in this case. Note that with just a few hundred
more probabilistic connections between states) may provigieining samples, the performances of the wavelet-domain
asymptotic performances that meet or even exceed that of M detectors approaches that of the GLRT detector.
quadratic detector. Of course, more complex HMM'’s will also Clearly, the HMM'’s are not the optimal detector in this
require more training data to achieve such performance. Theggeblem. With precise knowledge of the problem at hand,
and related issues are currently under investigation. more efficient detectors such as the GLRT are easily designed.

3) Detection of an Abrupt Changen this example, we However, this experiment again demonstrates the utility of the
consider the following two-class problem. Class | consists ofavelet-domain HMM'’s for modeling data with little or no
random discrete-time processes with an arbitrary mean vajgor information.
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05 . : . - In fact, the EM steps for estimating the parameters of tree-
structured probability models have been derived only recently
0.4 [27], [32], with work primarily focusing on trees of discrete-
" valued random variables. Following [32], we will develop an
50.3 EM algorithm for HMT’s generalized to handle continuous-
@ valued wavelet coefficients and specialized to the tree structure
%02. provided by the wavelet transform. The major change from
ut \ [32] is that for the leaves of the tree, we replace maximum-
R | S armrssegeseseyepeyeyepermpeyepepepepepepepepepepepepeerers likelihood (ML) estimation of probability mass function (pmf)
values with ML estimation of Gaussian mixture means and
variances. In addition, we will demonstrate the effect of tying

1000 2000 3000 4000 :
NUMBER OF TRAINING VECTORS on the algorithm.

Fig. 14. Detection of an abrupt change. Minimum probability of error rates In ap_plylng the EM algomhm o HMT's, qur task
for wavelet-domain HMT model detector (solid), wavelet-domain IM modd® 10 fit an Af-state  HMT model parameterized by

detector (dash-dot), and GLRT detector (dash-dash). 0 = {ps,(m), € iy Hi,mo ol i = 1,...,P; n,m =
1,---, M}°to K > 1 trees of observed wavelet coefficients,
VI. CONCLUSIONS with P the number of wavelet coefficients in each tree. We

Th . i £ th let t ; localit omit modeling the single scaling coefficient associated with
€ primary properties ot the wavelet transtorm—locality, , ., tree; as mentioned in Section 1lI-B, extensions to handle

multiresolution, and compression—have led to powerful neW o scaling coefficients are straightforward

Yve obtain theK trees either by wavelet-transforming

methods usually model the wavelet coefficients as statisticag. nal observations, each into a single tree, or by wavelet

:;jdte;:endtehnt or J((lenlfly Gaus(s;an. '_I'he corgplresfsmq %ro%eﬂ; nsforming one signal observation inkd different wavelet
ictates the need for non-f>aussian Models for Indivi es, as shown in Fig. 5(b). In the latter case, we actually tie
wavelet coefficients. Moreover, the secondary properties 2

h let t f luster: d it indi ross trees, modeling different trees using the same set of
€ wavelet transtorm-—clustering and persistence—Indicayl , aters (see Section IV-C for details). The EM steps are
that statistical dependencies between coefficients musti

. . . . . id&ntical for either case.
characterized in order to derive optimal signal ProcessiNgpecall from Section IV-A that the EM algorithm is iterative

algorithms. and that for HMT's, it converges to a local-maximum of the

. In thls paper, we have developed a new framgwork fo,r Stath?*l'complete log-likelihoodf (w|®#). The iterative structure is as
tical signal processing based on wavelet-domain HMM's. T lows:

framework enables us to concisely model the non-Gaussian
statistics of individual wavelet coefficients and capture statis-
tical dependencies between coefficients. We have develope . )
an efficient expectation maximization algorithm for fitting the Sele_ct an initial model estima’.
HMM'’s to observational signal data, and we have demon- Set iteration countef = 0.
strated the utility, flexibility, and performance of our frame- 1) E step: Calculatep(S|w, 8'), which is the joint pmf for
work in several estimation and detection prob|ems_ the hidden state variables (Used in the maximization of
We believe that the HMM framework presented here could  Eslln f(w, S(6)|w, 6')).
serve as a powerful new tool for wavelet-based statistical2) M step: Set@""! = arg maxg Es[ln f(w, S|0)|w, 6'].
signal and image processing with applications in signal esti-3) Setl = [ + 1. If converged, then stop; else, return to
mation, detection, classification, compression, and synthesis. E Step.
Although the examples we have provided here are 1-We will suppress the superscriptwhen it is clear from the
multidimensional wavelet domain HMT’s can be derived fromgontext.
our results since the models and training algorithms apply toSince the wavelets coefficients are conditionally Gauss-
qguad and higher dimensional trees. Furthermore, these HMNEs given the hidden states, the M step involves simple
apply not only for modeling wavelet-domain data but alsclosed-form updates for the means, variances, and transition
for modeling data from other multiresolution transforms gprobabilities as a function of the wavelet coefficients
signal representations. Finally, the knowledge base that haarginal state pmf'g(S; = m|w, 01), and parent—child pmf's
already accumulated in statistics, speech recognition, artificiaB; = m, S,(i) = n|w, 8']. To perform the M step updates,
intelligence, and related fields may lead to wavelet-domaiim the E step, we calculate these pmf's. In the E step, we can
HMM'’s that are even more accurate and sophisticated, yaso calculate likelihoods, such gw|#), that can be used
still tractable, robust, and efficient for signal processing. for classification and other tasks.
To keep things clear and simple, we will first develop the
APPENDIX E step for a single tree. (The E step is often referred to as

EM ALGORITHM FOR HIDDEN MARKOV TREES

EM Algorithm for HMT
Hﬁitialize:

. . . . 9Except for i’s corresponding to root states, the pmfis; (m) are
Although the EM algorithm is classical with a We”'knowncompletely specified by the root state pmf's and the transition probabilities

basic structure, the exact EM steps are problem dependert; .
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the forward-backward algorithm in the HMM literature [18]Bayes rule applied to (14)—(16) leads to the desired conditional
and as the upward—downward or inward—outward algorithprobabilities

in the artificial intelligence literature [20], [27], [32].) We will i (m)Bi(m)
then develop the EM steps for multiple trees. We will finish p(S; = m|w, 0) = MZ : 17)
by incorporating into the EM steps the notion of tying within Zai(ﬂ)ﬁi(ﬂ)
trees from Section IV-C. —
We first focus on processing a single siZewavelet tree
containing observed wavelet coefficiens= [wiws --- wp] &N
having hidden stateS = [S; S; --- Sp] that take on values p(S; = m, Syiy =n|w, 6)
m = 1,.---, M. The primary task of the E step is to B ()™ iy (1) Bocina (1)
calculate the hidden state probabilitig§S; = m|w, §) and = PR Do IR N 1)
p(S; = m, S, = n|w, 8). To obtain these probabilities, we M 3
introduce a number of intermediate variables. 221 @i(n)fi(n)
A. Setup B. E Step for a Single Wavelet Tree

We now introduce some notation for trees of observd@/pward—Downward Algorithm)
wavelet coefficients. Similar in structure to the trees of Fig. 5, A|| state variables within our HMT model are interde-

these trees are formed by linking the wavelet coefficients rat'l?éndent; in determining probabilities for the state variables,
than the hidden states. We defiff¢ to be the subtree of \ve must propagate state information throughout the tree.
observed wavelet coefficients with root at nadso that the Tpe upward—downward algorithm is an efficient method for
subtree”; contains coefficienty; and all of its descendants.propagating this information. The up step calculates fite
Now, if 7; is a subtree off; (i.e., W; and all its descendantspy transmitting information about the fine-scale wavelet coeffi-
are members off;), then we defineZ;,; to be the set of cients to the states of the coarse-scale wavelet coefficients; the
wavelet coefficients obtained by removing the subfeérom  qown step calculates thes by propagating information about
7;. Without loss of generality, we ordev so thatw, is atthe the coarse-scale wavelet coefficients down to the states of
root of the entire tree. Thug), is the entire tree of observedine fine-scale wavelet coefficients. Combining the information
wavelet coefficients (a tree-structured version of the veefor fom the o’s and @'s via (17) and (18), we obtain conditional

In our probability expressions, we will interchan@e andw  pmfs for the state of each wavelet coefficient in the tree.

when convenient. . B o For our derivation, we will focus on models with mixing
For each subtre®;, we define the conditional likelihoods components that are Gaussian with density
Bi(m) = f(Zi|S; = m, 0) (10) O - 1 exp | — (w— p)? (19)
Bi, p(iy(m) = F(Til S piy = m, 0) (11) P fong? 202 |
Boani(m) = F(Tpanil Spiy = m, ) (12)  More general densities can also be treated. Recall that we
and the joint probability functions assign to each nodein the tree a scald (i) € {1, ---, L}
with J = 1 the finest scale and = L the coarsest scale. In
ai(m) = p(Si = m, T1\;|0) (13) addition, recall thap(i) is the parent of node and c(i) the
with S; taking discrete values and the coefficients set of chllt?lren to node.
taking continuous values. Up Step:
Based on the HMT properties from Section I1I-B, the trees Initialize: For all state variableS; at the finest scald = 1,
7; and 7y,; are independent given the state variable This calculate form =1, ---, M:
fact, along with the chain rule of probability calculus, leads
to the desired state probabilities in terms of thie and 3’s.
First, we obtain Bi(m) = g(wis i, m, 7 ). (20)
p(S; =m, 71|0) = a;(m)B;(m) (24) _
1) For all state variables; at scaleJ, compute form =
and
1, -, M
p(Si =m, Sy =n, 1110) M
:Bi(m)ezl;}(i)aﬂ(i)(n)ﬁp(i)\i(n). (15) ﬁi,p(i)(m) = Z 6Zl:(i)/3i(”) (21)
n=1
The likelihood of w is then 9
M ﬁp(z) (m) :g(wp(i); Hop(i), mo ap(i),nz)
F(w16) = £(7116) = > p(Si =m, T110) x T Bsoem) 22)
me ice(p(i))
Bo(i
= Z Bi(m)a;(m). (16) Bpani(m) = M (23)

m=1 B ﬁz,p(z) (m)
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2) SetJ = J + 1 (move up the tree one scale).
3) If J = L, then stop; else return to step 1.

Down Step:

Initialize: For state variablé&, at the coarsest scale= L,
setform=1,---, M

a1(m) = ps, (m). (24)

1) SetJ = J — 1 (move down the tree one scale).
2) For all state variables; at scaleJ, compute form =
1, -, M

M

Z € p(i)@o(i) (1) Bogiyyi ().

(25)

3) If J =1, then stop; else return to step 1.

C. E Step for Multiple Wavelet Trees
To handle K > 1 wavelet trees, we add a superscript
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and variances with the weights chosen in proportion to the
probabilities of each mixture.

As should be clear from the E and M steps, the per-
iteration computational complexity of the EM algorithm is
linear in the number of observed wavelet coefficients. The
overall complexity may involve a large multiplicative constant,
depending on the number of hidden states used and the
number of iterations required to converge. However, as shown
throughout this paper, even the simplest two-state HMT model
can approximate many densities quite well.

E. Tying Within Trees

The M step changes slightly when tying is performed within
trees, such as tying wavelet coefficients and their states within
a certain subband or scale. (See Section IV-C for the basic
idea behind tying.) With tying, we perform extra statistical
averaging over coefficients that are tied together within each
tree. For thekth treew*® with wavelet coefficienta?, we write
i ~ j if wf andw? (and their states) are tied, which means that
they are modeled with the same underlying density parameters.
The set[i] = {j|w} ~ w}} denotes the equivalence class of

to denote the tree number. We denote the observed waveé|awith |[¢]| the number of elements in the class.

coefficients asw = [w! w? ..
asS =[St S? ...
and S¥ = [SF S
and states of thé&th tree, respectively.

To implement the E step at iteratidrof the EM algorithm,

SE]. The vectorsw* = [wh wh .. whk]

w!] and the hidden states For simplicity, we assume that all trees are tied in the same

K

fashion (that is, the coefficients in the tree$, w2, - .-, w

- S%] contain the wavelet coefficientsare tied in the same manner) according to the collection of

equivalence classes given by thigs. In this scenario, the M
step becomes

we apply the upward—downward algorithm independently to

each of theK wavelet trees. Using the parameter estimates

6 = ¢', we calculate the probabilities(S* = m|w*, 8') and

p(SF =m, SP(Z

D. M Step

Once the probabilities for the hidden states are known, the

M step is straightforward. We update the entrie95f* as

K

— 1 k _ k pl
psi(m) = kZﬂp(Si = m|w", ') (26)
K
Zp[S = SP(Z) = n|w",0']
k=1
€ i) = (27)
o) Kpsp(i>(n)
K
> wkp(st = mlw",6")
k=1
i, m = 28
i KpSi (m) ( )
K
Z(wz - /vLi,m)Qp(SzIC = m|wk7 01)
o2, == (29)

Kpsi (m)

The updates for the state probabilities (m) and € ,, are

performed by summing the individual state probabilities an

) = nlwk, 6') for each tree via (17) and (18).

Z Zp =m|w", 8')  (30)
JE[Z
€ (i) = I Z >,
KpSP(i)(m) |l Jeli]
X p(S’»C =n, Sp(j) = mlw¥, 8% (31)
Hi,m =
ey Z ;
X w»‘p(S»‘ = m|Wk, 0 (32)
2
Ji,m
= R ) Z 2
X (wf = pj,m)?p(S) =m|w*, 6").  (33)

Although (30)—(33) appear more computationally intensive
than (26)—(29), the computational complexity remains the
same since the common parameters for each equivalence class
[{] are calculated only once.
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