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Wavelet-Based Statistical Signal Processing
Using Hidden Markov Models
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Abstract— Wavelet-based statistical signal processing
techniques such as denoising and detection typically model the
wavelet coefficients as independent or jointly Gaussian. These
models are unrealistic for many real-world signals. In this paper,
we develop a new framework for statistical signal processing
based on wavelet-domain hidden Markov models (HMM’s) that
concisely models the statistical dependencies and non-Gaussian
statistics encountered in real-world signals. Wavelet-domain
HMM’s are designed with the intrinsic properties of the
wavelet transform in mind and provide powerful, yet tractable,
probabilistic signal models. Efficient expectation maximization
algorithms are developed for fitting the HMM’s to observational
signal data. The new framework is suitable for a wide range of
applications, including signal estimation, detection, classification,
prediction, and even synthesis. To demonstrate the utility of
wavelet-domain HMM’s, we develop novel algorithms for signal
denoising, classification, and detection.

Index Terms—Hidden Markov model, probabilistic graph,
wavelets.

I. INTRODUCTION

T HE WAVELET transform has emerged as an exciting
new tool for statistical signal and image processing.

The wavelet domain provides a natural setting for many
applications involving real-world signals, including estimation
[1]–[3], detection [4], classification [4], compression [5], pre-
diction and filtering [6], and synthesis [7]. The remarkable
properties of the wavelet transform have led to powerful signal
processing methods based on simple scalar transformations of
individual wavelet coefficients. These methods implicitly treat
each wavelet coefficient as though it were independent of all
others. Methods that exploit dependencies between wavelet
coefficients should perform even better. The goal of this paper
is to develop new wavelet-domain probability models that
match the statistical dependencies and non-Gaussian statistics
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often encountered in practice. These new models lead to so-
phisticated processing techniques that coordinate the nonlinear
processing amongst coefficients to outperform current wavelet-
based algorithms. The models are designed with the intrinsic
properties of the wavelet transform in mind.

A. The Discrete Wavelet Transform

The wavelet transform is an atomic decomposition that
represents a one-dimensional (1-D) signal in terms of
shifted and dilated versions of a prototype bandpass wavelet
function , and shifted versions of a lowpass scaling
function [8], [9]. For special choices of the wavelet and
scaling functions, the atoms

(1)

form an orthonormal basis, and we have the signal represen-
tation [8], [9]

(2)

with , and .
In this representation, indexes thescaleor resolution of

analysis—smaller corresponds to higher resolution analysis.
indicates the coarsest scale or lowest resolution of analysis.
indexes the spatial location of analysis. For a wavelet

centered at time zero and frequency, the wavelet
coefficient measures the signal content around time
and frequency . The scaling coefficient measures the
local mean around time .

In practice, we work with a finite-resolution representation
of , replacing the semi-infinite sum in (2) with a sum
over a finite number of scales

. Furthermore, multidimensional wavelet bases for higher
dimensional data are easily formed using tensor products of
wavelet and scaling functions [8], [9]. To keep the notation
manageable in the sequel, we will emphasize the 1-D case
and apply an abstract single index system for wavelet atoms
and coefficients , . Fig. 1 provides a
graphical depiction of the time–frequency analysis affected by
the wavelet transform.
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Fig. 1. Tiling of the time–frequency plane by the atoms of the wavelet
transform. Each box depicts the idealized support of a scaling atom�K (top
row) or a wavelet atom i (other rows) in time–frequency; the solid dot at
the center corresponds to the scaling coefficientuK or wavelet coefficient
wi. Each different row of wavelet atoms corresponds to a differentscaleor
frequency band. (We run the frequency axis down rather than up for later
convenience.)

In wavelet-based signal and image processing, we process
the signal by operating on its wavelet coefficients
and scaling coefficients . The wavelet transform has
several attractive properties that make it natural for signal and
image processing. We call these theprimary propertiesof the
wavelet transform.

Locality: Each wavelet atom is localized simultaneously
in time and frequency.
Multiresolution: Wavelet atoms are compressed and dilated
to analyze at a nested set of scales.
Compression:The wavelet transforms of real-world signals
tend to be sparse.

Together, the locality and multiresolution properties enable
the wavelet transform to efficiently match a wide range of sig-
nal characteristics, from high-frequency transients and edges
to slowly varying harmonics. The wavelet transform’s ability
to match a wide variety of signals leads to the compression
property. Complicated signals can often be represented using
only a handful of wavelet and scaling functions. As a result
of these properties, statistical signal modeling and processing
methods based in the wavelet domain are, in many cases,
much more effective than classical time-domain or frequency-
domain approaches.

B. Wavelet-Domain Statistical Models

In this paper, we adopt a statistical approach to wavelet-
based signal processing in which we regard the signal and its
wavelet coefficients as random realizations from a family or
distribution of signals. To this end, our objective is to develop
probability models for the wavelet transform of signals that
are rich and flexible enough to capture the structure of a wide
variety of data yet concise, tractable, and efficient for practical
application in real-world problems.

Until recently, wavelet coefficients have been modeled
either as jointly Gaussian [4], [6], [10], [11] or as non-Gaussian
but independent [2], [3], [12], [13]. Jointly Gaussian models
can efficiently capture linear correlations between wavelet
coefficients. However, Gaussian models are in conflict with
the compression property, which implies that the wavelet
transforms of most signals are sparse, resulting in a large
number of small coefficients and a small number of large
coefficients. A typical wavelet coefficient density or histogram

is thus much more “peaky” at zero and heavy-tailed than the
Gaussian.

Non-Gaussian models have also been formulated, but usu-
ally, the coefficients are assumed to be statistically independent
of each other. Justification for independent non-Gaussian mod-
els is based on the primary properties plus the interpretation of
the wavelet transform as a “decorrelator” that attempts to make
each wavelet coefficient statistically independent of all others.
However, the wavelet transform cannot completely decorrelate
real-world signals—aresidual dependency structurealways
remains between the wavelet coefficients. In words, we have
the following secondary propertiesof the wavelet transform.

Clustering:If a particular wavelet coefficient is large/small,
then adjacent coefficients are very likely to also be
large/small [14].
Persistence:Large/small values of wavelet coefficients tend
to propagate across scales [15], [16].

As we see in Fig. 2, these are striking features of the wavelet
transform. They have been exploited with great success by the
compression community [5], [14]. Our goal is to do the same
for signal processing.

C. Modeling Framework

Completely modeling the joint probability density function
of all of the wavelet coefficients with
would characterize the dependencies between the coefficients.
However, the complete joint probability density is usually
intractable to use and impossible to estimate. At the other
extreme, modeling the wavelet coefficients as statistically
independent, with , is simple but disregards
the intercoefficient dependencies. To strike a balance between
these two extremes, we must represent the key dependencies
and only the key dependencies. The primary and secondary
properties of the wavelet transform suggest natural candidates:
Persistence suggests that wavelet coefficients can have strong
dependencies across scale (vertically in Fig. 1), whereas clus-
tering and locality suggest that coefficients can have strong
dependencies within scale (horizontally in Fig. 1).

In this paper, we introduce a new modeling framework that
neatly summarizes the probabilistic structure of the coefficients
of the wavelet transform [17]. Our models owe their richness
and flexibility to the following features:

Mixture Densities:To match the non-Gaussian nature of
the wavelet coefficients, we model the marginal probability

of each coefficient as a mixture density with a hidden
state variable [see Fig. 3(a)].
Probabilistic Graphs:To characterize the key dependencies
between the wavelet coefficients, we introduce Markovian
dependencies between the hidden state variables. These
dependencies are described by a probabilistic graph or tree
[see Fig. 3(b)].

Models of this type, which are commonly referred to as
hidden Markov models(HMM’s), have proved tremendously
useful in a variety of applications, including speech recognition
[18], [19] and artificial intelligence [20].

We will investigate three simple probabilistic graphs with
state-to-state connectivities shown in Fig. 3(b). Theindepen-
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(a) (b)

Fig. 2. Clustering and persistence illustrated, respectively, in Donoho and Johnstone’s (a) Doppler and (b) Bumps test signals [1]. The signals lie atop
the time–frequency tiling (Fig. 1) provided by a seven-scale wavelet transform. Each tile is colored as a monotonic function of the wavelet coefficient
energyw2

i
, with darker tiles indicating greater energy.

(a) (b)

Fig. 3. Statistical models for the wavelet transform. (a) Independent mixture (IM) model. To match the non-Gaussian nature of the wavelet coefficients, we
model each coefficient as a mixture with a hidden state variable. Each black node represents a continuous wavelet coefficientWi. Each white node represents the
mixture state variableSi for Wi. (b) To match the intercoefficient dependencies, we link the hidden states. Connecting discrete nodes horizontally across time
(dashed links) yields the hidden Markov chain model. Connecting discrete nodes vertically across scale (solid links) yields the hidden Markov tree (HMT) model.

dent mixture(IM) model leaves the state variables unconnected
and, hence, ignores any intercoefficient dependencies. The
hidden Markov chainmodel connects the state variables hor-
izontally within each scale. Thehidden Markov tree(HMT)
model connects the state variables vertically across scale.
We will refer to these models collectively aswavelet-domain
HMMs.

We will show that the wavelet-domain HMM framework
effectively captures key wavelet coefficient characteristics,
leading to computationally efficient and statistically robust
wavelet-based models for real-world signals. This framework
provides a natural setting for exploiting the structure inherent
in real-world signals for estimation, detection, classification,
prediction and filtering, and synthesis. In Section V-A, we
will apply this machinery to signal estimation and derive
a new wavelet denoising scheme that performs substantially
better than current approaches (see Fig. 10 and Table I, which
appear in V). In Section V-B, we will apply our models to
two difficult problems in detection and classification.

Although, for illustrative purposes, we will focus on 1-D
signals, the results in this paper apply to wavelet-domain
HMM’s for images and multidimensional data as well. HMT
models for 1-D signals have a natural binary tree structure,
with each wavelet state connected to the two “child” wavelet
states below it [see Fig. 3(b)]. HMT models for images have a
natural quadtree structure, with each wavelet state connected

Fig. 4. HMT for an image quadtree. Each parent hidden state is connected
to its four child states. (Some parent–child connections are omitted for visual
clarity.) The two fields of nodes depict the wavelet coefficients at scalesJ

andJ�1, respectively, and correspond to 2-D wavelet basis functions with a
specific spatial orientation (horizontal, vertical, or diagonal). For more details
on 2-D wavelet systems, see [5], [8], and [9].

to the four “child” wavelet states below it (see Fig. 4).
HMT models for -dimensional data have a natural -tree
structure.

D. Related Work

Our approach in this paper differs considerably from pre-
vious approaches to modeling wavelet transforms. In the
signal estimation arena, research has concentrated primarily
on modeling the non-Gaussianity of the wavelet coefficients
rather than their interdependencies [2], [3], [12], [13]. How-



CROUSEet al.: WAVELET-BASED STATISTICAL SIGNAL PROCESSING USING HIDDEN MARKOV MODELS 889

(a) (b)

Fig. 5. Organization of a wavelet transform as a forest of binary trees. Tilings of the time–frequency plane and tree structures for (a) full decomposition (one
tree) and (b) decomposition with two fewer scale bands (four trees). A scaling coefficient sits above the root of each tree. Associated with each indexi is a pair
of nodes representing the wavelet coefficientWi (black node) and its state variableSi (white node). See Fig. 3(b) for a wavelet decomposition with two trees.

ever, in the compression arena, techniques incorporating both
coefficient non-Gaussianity and intercoefficient dependence lie
at the heart of the state-of-the-art compression systems. In
particular, the zerotree coder of Shapiro [5] has revolutionized
wavelet image compression, significantly improving compres-
sion performance by exploiting dependencies between wavelet
coefficients. Recently, new compression algorithms have been
developed that combine the idea of exploiting dependencies
with probabilistic models for the wavelet coefficients [21],
[22]. Although similar in spirit to the probability models pre-
sented in this paper, none of these new compression algorithms
use an HMM framework.

Wavelet-domain HMM’s also differ considerably from the
multiscale stochastic models developed in [6] and [10]. In
these multiscale stochastic models, the wavelet coefficients
themselves (rather than the hidden state variables) are modeled
using a Markov structure. In addition, Bassevilleet al. empha-
size linear Gaussian models [6]. Wavelet-domain HMM’s are
nonlinear and non-Gaussian and do not constrain the wavelet
coefficients to be strictly Markov.

The multiscale models of [23], which are used for seg-
mentation, have a Markov tree of state variables similar to
that of the HMT model. However, these models are applied
directly to the signal (which is not tree-structured), rather than
the wavelet transform of the signal (which is tree structured).
This distinction can be visualized as removing all the dark
nodes from Fig. 3(b) except those at the bottom scale, which
now represent signal samples instead of wavelet coefficients.
Differing both in form and purpose from wavelet-domain
HMM’s, these models clearly do not provide feasible wavelet-
domain models.

Wavelet-domain HMM’s are also distinct from the tra-
ditional HMM’s used in time series analysis and speech
recognition. Traditional HMM’s model local correlations of a
signal across time. Wavelet-domain HMM’s model dependen-
cies in the two-dimensioanl time–frequency plane—an entirely
different topology requiring new modeling techniques. In
addition, wavelet-domain HMM’s are designed to characterize
properties of wavelet coefficients such as clustering, persis-
tence, and compression. These properties are not necessarily
present in time-series data and, hence, can lead to substantially
different modeling assumptions than those typically used for
time-series data.

After dispensing with definitions and notation in Section II,
we turn to wavelet transform modeling using HMM’s in
Section III. We discuss the training of these models in
Section IV. (Details of a new EM training algorithm for the
HMT model are provided in the Appendix.) In Section V, we
apply this machinery to several problems in signal estimation
and detection and classification. We close in Section VI with
a discussion and conclusions.

II. PRELIMINARIES

Graphs and trees will play a central role in this paper. An
undirectedgraph consists of a set ofnodes
and a set ofconnectionslinking the nodes. Apath is a set of
connections between two nodes. A rootedtree is an undirected
acyclic graph. In a tree, there is a unique path linking any two
nodes. All nodes that lie on the path from to the root are
calledancestorsof ; all nodes that lie on paths from away
from the root are calleddescendantsof . The parent of
is its immediate ancestor and is denoted by . A node is a
child of if is its parent. We denote the children of node

by . A node may have several children but only
one parent; nodes with no children are calledleavesof the
tree. In abinary tree, each node that is not itself a leaf has
two children.

When viewed in the time–frequency plane as in Fig. 1,
a wavelet transforms has a natural organization as aforest
of binary trees [24].1 The tree(s) are rooted at the wavelet
coefficients in the coarsest scale (lowest frequency) band;
a single scaling coefficient sits above each root. Depending
on the length of the signal and the number of scale bands
computed in the transform, the forest of trees will contain
from one to several distinct trees [see Figs. 3(b) and 5]. For
instance, if we analyze a length- discrete signal over
wavelet scales, we obtain wavelet trees. In our abstract
indexing scheme, we will denote theth wavelet coefficient
from the th tree as .

Finally, we have some additional notation: When dealing
with random quantities, we will use capital letters to denote the
random variable and lower case letters to refer to a realization
of this variable. We will use to denote the probability
mass function (pmf) of the discrete random variableand

1Do not confuse our use of trees with so-called tree-structured filter banks
[9].
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to denote the probability density function (pdf) of the
continuous random variable . We will use the shorthand i.i.d.
for independent and identically distributed and will denote
vectors with boldface letters.

III. W AVELET DOMAIN PROBABILITY MODELS

Recall that our objective is to develop probability models for
the wavelet transform that capture complex dependencies and
non-Gaussian statistics, yet remain tractable so that they can
be applied to real-world problems. To this end, we develop
our model in two steps. We begin with a simple model in
which the wavelet coefficients are assumed to be independent
of each other. This model is based on the primary properties
of the wavelet transform and motivated by the fact that the
wavelet transform nearly decorrelates a wide variety of signal.

Next, we extend the independent coefficient model in order
to account for residual dependencies that remain between
the wavelet coefficients. This extension is accomplished with
simple Markovian structures on the wavelet tree. We consider
Markov models across both time and scale to account for
the secondary properties of the wavelet transform: clustering
and persistence. Our structures reflect Markov dependencies
between the states of the wavelet coefficients rather than
the values of the wavelet coefficients themselves (as in [6]).
The tandem of marginal Gaussian mixtures and first-order
Markovian dependencies leads to practical HMM’s for the
wavelet coefficients.

A. Probabilistic Model for an Individual Wavelet Coefficient

The compression property of the wavelet transform states
that the transform of a typical signal consists of a small number
of large coefficients and a large number of small coefficients.
More precisely, most wavelet coefficients have small values
and, hence, contain very little signal information. A few
wavelet coefficients have large values that represent significant
signal information. This property leads to the following simple
model for an individual wavelet coefficient. We model each
coefficient as being in one of two states: “high,” corresponding
to a wavelet component containing significant contributions
of signal energy, or “low,” representing coefficients with little
signal energy. If we associate with each state a probability
density—say a high-variance, zero-mean density for the “high”
state and a low-variance, zero-mean density for the “low”
state—the result is a two-state mixture model for each wavelet
coefficient.

As we see from Fig. 6, the two-state, zero-mean mixture
model is completely parameterized by the pmf of the state
variable , and the variances of the Gaussian
pdf’s corresponding to each state. In most applications of
mixture models, the value of the coefficient is observed,
but the value of the state variable is not; we say that the
value of is hidden.

Several factors support the model’s validity. Empirical
results from estimation have shown this mixture model to be
simple yet effective [2], [3]. Our experience corroborates these
results; in Fig. 7, we demonstrate the fit that this model pro-
vides for an actual signal. Furthermore, theoretical connections

Fig. 6. Two-state, zero-mean Gaussian mixture model for a random variable
W . We denote the state variableS with a white node and the random variable
W with a black node. The Gaussian conditional pdf’s forW jS are illustrated
as well as the overall non-Gaussian pdf forW . S = 1 corresponds to
a low-variance Gaussian pdf, andS = 2 corresponds to a high-variance
Gaussian pdf. In our application, we model each wavelet coefficientWi (each
black node in Fig. 1) in this way.

Fig. 7. Two-state, zero-mean Gaussian mixture model can closely fit real
wavelet coefficient data. Here, we compare the model pdf to a histogram of
one scale of the Daubechies-4 wavelet transform of the “fruit” image in the
Georgia Tech database.

have been made between wavelet coefficient mixture models
and the fundamental parameters of Besov spaces—function
spaces that have proved extremely useful for characterizing
real-world signals [12].

For any given set of wavelet data, the two-state, zero-mean
Gaussian mixture model may not provide a fit to with
the desired fidelity. To improve accuracy, we can use Gaussian
mixture models with states or nonzero means in the
Gaussian mixing densities. By increasing the number of states
and allowing nonzero means, we can make the fit arbitrarily
close for densities with a finite number of discontinuities [25].
We can even mix non-Gaussian densities, such as conditional
densities belonging to the exponential family of distributions
[26]. However, the two-state, zero-mean Gaussian mixture
model is simple, robust, and easy-to-use—attractive features
for many applications. For purposes of instruction, we will
focus on the simple two-state model in this paper but develop
machinery capable of handling more general mixture models.

In general, an -state Gaussian mixture model for a random
variable consists of the following.

1) a discrete random state variable taking the values
according to the pmf ;

2) the Gaussian conditional pdf’s ,
.

To generate a realization of using the mixture model, we
first draw a state value according to and then draw
an observation according to . The pdf of
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is given by

(3)

Although each wavelet coefficient is conditionally Gaussian
given its state variable, the wavelet coefficient has an overall
non-Gaussian density due to the randomness of.

Unlike wavelet coefficients, scaling coefficients typically are
not zero mean. Therefore, a two-state, zero-mean Gaussian
mixture model may be inappropriate. One approach is to model
the scaling coefficients as Gaussian with nonzero mean. Since
scaling coefficients are essentially weighted averages of a large
number signal samples, this approximation is reasonable in
light of the Central Limit Theorem. A more flexible approach
is to apply a Gaussian mixture model as before but with
nonzero-mean mixing densities.

B. Probabilistic Models for a Wavelet Transform

1) Motivation: Since a Gaussian mixture model can accu-
rately characterize the pdf of a single wavelet coefficient, it
seems logical to use Gaussian mixture models to characterize
the joint pdf of the entire wavelet transform. The simplest
approach would be to model the wavelet coefficients as
independent Gaussian mixtures. We call this approach the
independent mixture (IM) model[see Fig. 3(a)]. Because the
wavelet transform nearly decorrelates a wide variety of signals,
this model for the wavelet tree is intuitively plausible. More-
over, as demonstrated by the denoising results in [2] and [3],
the IM model is a substantial improvement over deterministic
signal models that do not explicitly take the distribution of
signal’s wavelet coefficient values into account.

Nevertheless, the clustering and persistence properties lead
to local dependencies between wavelet coefficients. Charac-
terization of these dependencies has resulted in significant
performance gains in compression [5], [14]. Ideally, we would
like a model that both matches each individual coefficient’s pdf
and captures dependencies between coefficients.

We motivate our approach by extending the Gaussian mix-
ture model for one wavelet coefficient to jointly model two
wavelet coefficients that represent components of the signal
close in time and/or scale. We say that two such coefficients
areneighbors. By clustering and persistence, if one coefficient
is in a high-variance (low-variance) state, then its neighbor is
very likely to also be in a high-variance (low-variance) state.
Thus, the two neighboring wavelet coefficients can be modeled
as Gaussian mixtures withinterdependent state variables. This
two-coefficient example suggests a natural generalization to
the multiple coefficients in a wavelet transform: Model each
coefficient as a Gaussian mixture, but allow probabilistic
dependencies between the state variables of each mixture.

What remains is to specify an appropriate model for these
dependencies between the state variables. A complete joint
pdf taking into account all possible dependencies is clearly
intractable since the number of different state variable combi-
nations grows exponentially in the number of wavelet coeffi-
cients. Fortunately, the locality and multiresolution properties
of the wavelet transform suggest that dependencies die off

quickly as we move away from the local neighborhood about
a coefficient of interest. Hence, very accurate and practical
models can be obtained with probabilistic links between the
states of only neighboring wavelet coefficients. We will now
apply probabilistic graph theory [20], [27], [28] to develop
these models.

2) Graph Models for Wavelet Transforms:Probabilistic
graphs are useful tools for modeling the local dependencies
between a set of random variables [20], [27], [28]. Roughly
speaking, a probabilistic graph associates each random
variable with a node in a graph; dependencies between
pairs of variables are represented by links connecting
the corresponding nodes. The locality and multiresolution
properties of the wavelet transform suggest three simple ways
to “connect the dots,” representing the wavelet coefficients
and states in Fig. 1:

a) a graph with no dependencies between wavelet state
variables;

b) a graph linking wavelet state variables across time using
chains;

c) a graph linking wavelet state variables across scale using
trees.

In Fig. 3, we illustrate these three simple graphs.
We are by no means limited to just these three graphs. We

can develop graphs that capture even more interdependencies
by placing additional connections between the states. Unfor-
tunately, the computational complexity increases substantially
for graphs more complicated than trees. Although we can still
formulate algorithms for training and applying more general
graphs [20], [28], to keep our presentation and analysis simple,
we will concentrate on the three special cases described in
Fig. 3.

a) Independent Mixture (IM) Model:A mixture model
with no connections, as in Fig. 3(a), corresponds to the IM
presented in [2] and [3] and is discussed above. It treats
wavelet state variables (and hence wavelet coefficients) as
independent random variables.

b) Hidden Markov Chain Model:Connecting the state
variables horizontally in Fig. 3(b) specifies a Markov-1
chain dependency between the state variableswithin each scale
[18]. This model treats wavelet state variables as dependent
within each scale but independent from scale to scale.

c) Hidden Markov Tree (HMT) Model:By connecting
state variables verticallyacross scalein Fig. 3(b), we obtain
a graph with tree-structured dependencies between state
variables. We call this new model a “tree model” to emphasize
the underlying dependencies between parent and child state
variables.

We will focus on the IM and HMT models in the sequel.2

3) HMT Model: The HMT model matches both the clus-
tering and persistence properties of the wavelet transform. Its
structure is reminiscent of the zerotree wavelet compression

2The IM and HMT models and their respective training algorithms gen-
eralize directly to multidimensional data. However, the chain model must
be adapted to higher dimensions. For example, in 2-D, the chain becomes a
hidden Markov field, and more complicated training algorithms are required
for this topology. See [28] for a discussion of possible algorithms and [29] for
an alternative modeling approach potentially useful for reducing complexity.
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system [5], which exploits tree-structured dependencies for
substantial compression gains. Furthermore, this graph has a
natural parent–child dependency interpretation. State variable
dependencies are modeled via state transition probabilities
from each parent state variableto its children’s states, where
the two state variables are connected to it from below (if they
exist). For example, in Fig. 5(a), state variablesand are
both children of and, hence, are causally dependent on.
Dependency is not simply limited to parent–child interactions,
however. State variables and may be highly dependent
due to their joint interaction with .

Moreover, if we do not restrict ourselves to zero-mean,
two-state Gaussian mixture model, but rather use Gaussian
mixture models with more than two states and nonzero means,
this simple tree-structure is capable of approximating the joint
parent–child wavelet coefficient pdf to arbitrary precision.3

Using an -state Gaussian mixture model for each wavelet
coefficient , the parameters for the HMT model are

1) , the pmf for the root node ;
2) , the conditional prob-

ability that is in state given is in state
;

3) and , the mean and variance, respectively, of
the wavelet coefficient given , is in state .

These parameters can be grouped into a model parameter
vector . Recall that we will primarily focus on the case

with the means .
In the HMT model, we have the following conditional

independence relationships among the wavelet coefficients
. First, we observe that

(4)
In words, is conditionally independent of all other random
variables given its state . Hence, the conditional inde-
pendence properties for the states also lead to conditional
independence properties for the wavelet coefficients. We next
investigate the independence properties for the wavelet coef-
ficients and wavelet states in tandem.

The tree-structured connections lead to several conditional
independence relationships for the states and wavelet coeffi-
cients. Given the parent state , the pair of nodes
are independent of the entire tree except for’s descendants.

3The approximation capability improves to arbitrary precision as we
increase the number of mixture componentsM used to model the marginal
parent and child distributions. A sketch of the proof follows. Recall the
components of the parent–child model. The parent is modeled usingM

Gaussian univariate mixing densities and anM -vector of probabilities that
weight the densities. Conditioned on the parent state variable, the child wavelet
coefficient is modeled by its ownM Gaussian univariate densities and an
M � M matrix of probabilities for transitions from the parent’s state to
the child’s state. The joint model for parent and child is thus a mixture of
M

2 bivariate Gaussians, which are the Cartesian products of the univariate
mixing densities. The mixture weights for theseM2 bivariate Gaussians
are products of the parent state probabilities with theM � M matrix of
transition probabilities. Hence, we haveM2 degrees of freedom in choosing
the mixture weights, and we can realize any weighted mixture of theM2

bivariate Gaussians we desire. Appealing to the approximation capabilities of
Gaussian mixtures [25] (analogous to radial basis function networks [30]), as
M increases, the bivariate Gaussian mixture is capable of approximating any
bivariate parent–child pdf with a finite number of discontinuities to arbitrary
precision.

Conversely, given the child state , the pair
are independent of ’s descendants. Combining

these properties shows us that are conditionally
independent of the entire tree given only the parent state
and the children states .

In Fig. 5(a), we can see concrete examples of these inde-
pendence properties. Given the parent, the pair of nodes

are conditionally independent of the subtree rooted
at . Effectively, conditioning on the parent state separates

from the right side of the tree. Conversely, given
the child , the pair are conditionally independent
of the subtrees rooted at and ; given the other child

, are conditionally independent of the subtrees
rooted at and . Applying these together, we see that
given the parent and children , the pair
are conditionally independent of the rest of the tree.

It is important to note that the Markov structure is on the
states of the wavelet coefficients and not on the coefficients
themselves. This is an important distinction between our model
and other multiscale Markov signal representations such as
those considered in [6] and [10]. Because the states are never
known exactly, our HMM framework does not place a Markov
structure on the wavelet coefficients directly. Let denote
that the scale of (and ) and assume that the scales are
ordered from finest ( ) to coarsest ( ). In our model

(5)

However, even though the wavelet coefficients are generally
not Markov, signal processing using wavelet-domain HMM’s
remains efficient due to the Markov nature of the wavelet state
variables.

The question remains of how to capture interdependencies
in the scaling coefficients. One simple possibility is to use
a jointly Gaussian model for the scaling coefficients; this
captures correlations between scaling coefficients but treats
them as independent of the wavelet coefficients. If, instead,
we use Gaussian mixture models, then the simplest approach
is to treat the scaling coefficients as independent mixtures as
shown in Fig. 5(b). To capture scaling coefficient correlations,
we can link the states of the scaling coefficients across time
in a hidden Markov chain model. Alternatively, to capture
dependencies between wavelet and scaling coefficients, we can
link the states of the scaling coefficients across scale with those
of the coarsest scale wavelet coefficients. Other possibilities
exist, but the above models are natural and straightforward
to implement. The question of which model is best, or even
whether any model is necessary, depends on the application
at hand. In wavelet denoising, for example, the noisy scaling
coefficients typically contain much more signal energy than
noise energy; hence, they can be viewed as reliable estimates
of the signal scaling coefficients and left unprocessed [1], [3].

4) Three Standard Problems of HMM’s:There are three
canonical problems associated with the wavelet-domain
HMM’s we have described [18]:

a) Training: Given one or more sets of observed wavelet
coefficients , determine the wavelet-domain HMM
parameters that best characterize the wavelet coefficients.
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b) Likelihood Determination:Given a fixed wavelet-domain
HMM with parameters , determine the likelihood of an
observed set of wavelet coefficients .
c) State Estimation:Given a fixed wavelet-domain HMM
with parameters , determine the most likely sequence of
hidden states for an observed set of wavelet coefficients

.

This is useful for problems such as segmentation (see [23]),
where the hidden states represent a physically meaningful
quantity.

We next focus on training and likelihood determination,
since they are crucial for the applications that we develop
in Section V.

IV. TRAINING AND LIKELIHOOD VIA THE EM ALGORITHM

In training, we seek the parameters of a wavelet-based
HMM that best fit a given set of data. The training data

consists of the wavelet coefficients of an observed
signal(s); the model parametersconsist of the mixture state
probabilities and the mean and variance of each Gaussian
component. For parameter estimation, we apply the maximum
likelihood (ML) principle. ML estimates are asymptotically
efficient, unbiased, and consistent as the number of training
observations increases.

Direct ML estimation of model parameters from the
observed data is intractable since, in estimating, we are
characterizing the states of the wavelet coefficients

, which are unobserved (hidden).4 Yet, given the values of
the states, ML estimation ofis simple (merely ML estimation
of Gaussian means and variances). Therefore, we employ an
iterativeexpectation maximization(EM) approach [31], which
jointly estimates both the model parametersand probabilities
for the hidden states, given the observed wavelet coefficients

. In the context of HMM’s, the EM algorithm is also known
as theBaum–Welchalgorithm.

A. EM Algorithms for Training

Our discussion of EM algorithms focuses on the specific
problem of parameter estimation in wavelet-based HMM’s;
for a more general treatment see [31]. We begin with some
terminology. Theincompletedata is our training data , and
the completedata is our training data augmented with
the hidden states. Our goal is to maximize the incomplete
log-likelihood function . The EM algorithm decou-
ples this difficult maximization into an iteration between two
simpler steps: the E step and the M step.

At the th iteration, the E step calculates the expected
value . The M step then maximizes
this expression as a function ofto obtain for the next
iteration. Under mild conditions, this iteration converges to
a local maximum of the log-likelihood function
[31]. Efficient EM algorithms for HMM’s exist under the
assumption that the underlying probabilistic graph ischordal
[20], [28]. A graph is chordal if all cycles of length greater

4Since the states are not observed, we will generally denote them using
capital letters to emphasize their uncertain or random nature.

than 3 have a chord.5 Since the HMM’s considered in this
paper do not contain cycles, they are trivially chordal and,
hence, admit efficient EM training.

For HMM’s, the complexity of one EM iteration is linear in
the number of observations [18], [28]. With intelligent initial-
ization, the algorithm can converge in as few as ten iterations
for a simple two-state HMT model. However, as the graph
model underlying an HMM becomes more complicated, each
iteration of the EM algorithm becomes more computationally
intensive (still linear complexity but with a large constant
factor), and the algorithm may take longer to converge. Hence,
it is important to keep the HMM as simple as possible. See
[29] for a “context-based” approach that reduces complexity
in HMM’s, yet still models key wavelet-domain dependencies.

The specific EM steps for the IM and hidden Markov chain
models have been developed thoroughly in [18] and [26], so
we do not include them in this paper. For more general tree
models, Ronenet al. provide specific EM steps for discrete
variables in [32]. Since the observed wavelet data in the HMT
model is continuous valued, we provide a new EM algorithm
for this model in the Appendix.

B. Likelihood Determination

The E step of the EM algorithm is useful in its own right
since it calculates , which is the log-likelihood of
the observed data given the model. This likelihood calculation
basically measures how well the modeldescribes the data.
Hence, it is useful for detection and classification applications,
as we will see in Section V-B. The calculation can also be used
to predict or estimate the values of wavelet coefficients given
the model.

C. Robust Training via Tying

HMM’s are very rich models; thus, we must ensure that
we have enough training data to prevent “overfitting.” By
averaging over only one or very few signal observations, we
cannot expect to robustly estimate the marginal densities of
the wavelet coefficients, let alone a joint density for the entire
wavelet transform. This brings us to a key problem: If limited
training data are available, how can we make our modeling
more robust? We do so by modeling random variables that
have similar properties using a common density or a common
set of density parameters. For example, if we expect two
random variables to have roughly the same variability, we can
describe them with a common variance. In this way, we obtain
more reliable parameter estimates by increasing the amount of
training data associated with each parameter. This practice is
known as “tying” in the HMM literature [18], and we use it
to more robustly estimate the means, variances, and transition
probabilities of our wavelet-domain HMM’s.

In Fig. 8, we distinguish between two different types of
tying in the HMT model: tying between wavelet trees and
tying within wavelet trees. Recall from Section II [see also
Figs. 3(b) and 5] that in general, the wavelet decomposition

5A cycle of a graph is a path starting and ending at the same node—a
closed loop. Achord is a connection between two nonconsecutive nodes in a
cycle.
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(a) (b)

Fig. 8. Tying in the HMT model. Pictured above are three wavelet trees. (a)
Tying across the wavelet trees. (b) Tying within a wavelet tree.

of even a single signal observation can result in multiple
wavelet trees. By tyingacrosstrees—which assumes that the
coefficients of these trees have the same density—we can train
as if we had multiple signal observations. We can also tie
within trees—by tying all coefficients within the same scale
of a tree, for example. In the Appendix, we discuss both types
of tying for training HMT models.

V. APPLICATIONS

Our development of wavelet-domain HMM’s has been
motivated by the intrinsic properties of the wavelet trans-
form, and we have discussed how several aspects of the
model are supported by empirical and theoretical evidence.
However, the true test of our modeling framework lies in its
application to signal processing “benchmark” problems. To
this end, we consider applications in signal estimation and
detection/classification.

We compare the estimation performance of our new mod-
els for signal estimation in additive noise to state-of-the-art
wavelet denoising methods. We show that our new framework
offers significant improvements in several well-studied bench-
mark problems. Wavelet-domain HMM’s are also well suited
to signal detection and classification.

In this section, we approach these problems by assuming
that no prior signal models are available and that only “train-
ing” data are available for the design of the detector/classifier.
We compare the wavelet-domain HMM-based detectors to
classical detectors. Our results demonstrate the HMM’s per-
formance and extremely efficient use of training data in two
difficult signal detection problems.

A. Signal Estimation

Wavelets have proved remarkably successful for estimat-
ing signals in additive white Gaussian noise [1], [3]. The
compression property indicates that the wavelet transform
typically compacts signals into just a few coefficients of large
magnitude. Because the wavelet transform is orthogonal, it
leaves white noise evenly distributed across many coefficients
of small magnitude. Therefore, by setting small wavelet coeffi-
cients to zero, one effectively removes noise without degrading
the signal [see Fig. 9(a)].

Existing denoising methods usually ignore possible depen-
dencies between signal wavelet coefficients, and hence, these

methods do not exploit key clustering and persistence proper-
ties. In this section, we illustrate the power of the HMT model
by developing a novel signal denoising method based on this
framework. The new denoising method coordinates the noise
removal among the wavelet coefficients and automatically
adjusts to subtle structure within the signal [17] [see Fig. 9(b)].

Consider the problem of estimating a length-signal
in zero-mean white Gaussian noise with power. Taking
the -scale wavelet transform of the noisy signal, we obtain

trees of noisy wavelet coefficients (see
Section II). Since the orthogonal wavelet transform of zero-
mean white Gaussian noise is zero-mean white Gaussian noise
of the same power, the estimation problem can be expressed
in the wavelet domain as

(6)

where , , and denote the wavelet coefficients of the
observed data, the signal, and the noise, respectively.

Our approach is succinctly described as follows. We first
fit an HMT model to the ’s from the noisy data and then
use this model as a prior signal distribution to compute the
conditional mean estimates of the ’s given . In effect,
this approach is an “empirical” Bayesian estimation procedure
under squared-error loss. It is empirical since we estimate the
parameters of our Bayesian prior from the data itself [see
Fig. 9(b)]. To fit an HMT to the noisy wavelet coefficients,
we apply the EM algorithm from the Appendix. We begin
by estimating the parameters for the
signalwavelet coefficients using thenoisysignal observation.6

The key observation is that if the signal has a wavelet-
domain HMM pdf, then the noisy signal does as well. This
observation stems from two facts. First, the sum of two
independent Gaussian random variables is also Gaussian, with
variance the sum of the two variances. Second, given the
values of their hidden state variables, the signal wavelet
coefficients are Gaussian. Therefore, adding the independent
zero-mean white Gaussian noise increases each mixture
model variance by but leaves the other parameters
unchanged. Hence, we can obtain the signal wavelet model
from the noisy signal by fitting an HMM to the noisy signal
wavelet coefficients and then subtracting the added variance
due to noise. If we denote the estimated mixture variance of
the noisy wavelet coefficient at locationin the th state as

, then

(7)

with for and for . The noise
power can be estimated using the median estimate of [1]
performed on the finest scale wavelet coefficients (where the
signal energy is expected to be negligible).

Of course, we typically have only a single noisy signal
observation at hand. Therefore, in order to ensure reliable
parameter estimation for the signal, we must “share” sta-
tistical information between related wavelet coefficients. We

6As in [2] and [3], we assume that the wavelet coefficients are zero mean.
The scaling coefficients, although they are not zero mean, are relatively noise
free and, hence, are not processed.
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(a) (b)

Fig. 9. Block diagrams for wavelet-based denoising. (a) Standard wavelet-based denoising. (b) Our empirical Bayesian wavelet-based denoising. Ineach
case, the signal in additive white Gaussian noise (WGN) is wavelet transformed, passed through threshold-like nonlinearities, and inverse transformed
to get the denoised signal. However, the empirical Bayesian approach attempts to learn and exploit the signal’s wavelet-domain structure to better
separate signal from noise.

TABLE I
DENOISING RESULTS FORDONOHO AND JOHNSTONE’S

LENGTH-1024 TEST SIGNALS [1]. NOISE VARIANCE �
2

n
= 1

accomplish this by assuming that all wavelet coefficients
and state variables within a common scale are identically
distributed, including identical parent–child state transition
probabilities. (This model corresponds to tying both within and
across trees from Section IV-C.) The resulting HMT model
is completely parameterized by two mixture variances for the
wavelet coefficients at each scale, two probabilities for the root
state variable at the coarsest scale, and state transition
probability matrices for the state variables at all other scales.

Once we have trained the HMT, estimation of the true signal
wavelet coefficients (denoising) is straightforward. Note that if
the states of the signal wavelet coefficients are known,
then the estimation problem becomes a series of simple 1-D
problems of estimating zero-mean Gaussian random variables
in zero-mean additive Gaussian noise. The conditional mean
estimate of , given and the state , is

(8)

Now, recall that by-products of the EM algorithm are the
hidden state probabilities , given the model and
the observed wavelet coefficients. (See the Appendix for
how these probabilities are calculated.) Using these state
probabilities, we obtain conditional mean estimates forvia
the chain rule for conditional expectation

(9)

The final signal estimate (denoised signal) is computed as
the inverse wavelet transform of these estimates of the signal
wavelet coefficients. Note that only the wavelet coefficients
are processed. The original scaling coefficients are used in the
inverse transform.

We now compare our “empirical” Bayesian denoising pro-
cedure using the IM and HMT with current state-of-the-art
wavelet denoising algorithms.7 Table I compares the estima-
tion performance of the IM and the HMT models with two
state-of-the-art scalar algorithms. Donoho and Johnstone’s
SureShrink algorithm [1] performs scalar thresholding in the
wavelet domain. The Bayesian mixture algorithm of Chipman
et al. [3] operates in a similar fashion to the denoising
method using the IM model, except that their mixture model
is a true Bayesian prior and is not inferred from the data.
Mean-squared-error (MSE) results are tabulated for denoising
Donoho and Johnstone’s length-1024 test signals Bumps,
Blocks, Doppler, and Heavisine [1] in additive white Gaussian
noise of power . Inspection of Table I shows that
significant MSE gains can be achieved by exploiting wavelet-
domain dependencies via the HMT model. The only exception
is the Heavisine signal, which has less wavelet-domain struc-
ture for the HMT model to exploit. In this case, the IM and
HMT models perform roughly equivalently.

Fig. 10 illustrates the subjective improvement8 of the HMT
model for denoising a signal realization of the Doppler signal
in white Gaussian noise of power . We see that the
HMT denoising method offers two significant advantages over
the other methods: 1) HMT denoising is often smoother than
both SureShrink and IM, and 2) HMT denoising preserves
the high-frequency components better than the other methods.
This demonstrates how exploiting the statistical dependencies
between wavelet coefficients enables HMT denoising to better
separate signal from noise—even in regions where signal and
noise are visually indistinguishable.

7For each estimation algorithm, Bumps was transformed using the
Daubechies-4 wavelet, Blocks using the Haar wavelet, and Doppler and
Heavisine using the Daubechies-8 most-nearly symmetric wavelet. The IM
and HMT algorithms used a seven-scale wavelet decomposition. The error
results of Table I for SureShrink and the Bayesian algorithm of Chipmanet
al. were quoted from [3]. More details of these two algorithms are provided
in [1] and [3]. Error results for IM and HMT were obtained by averaging
over 1000 trials. For Fig. 10, SureShrink was implemented using the “hybrid”
shrinkage estimator in the WaveLab software. The Bayesian mixture algorithm
[3] was not implemented for Fig. 10 but is similar to IM both in its Bayesian
formulation and MSE performance.

8Results vary depending on the noise realization, and there can be no
guarantee of smoothness with any MSE-based optimality criterion. However,
the figure is a typical example of the subjective improvements that can result
from exploiting dependencies between wavelet coefficients.
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(a)

(b)

(c)

(d)

Fig. 10. Denoising the Doppler test signal in white Gaussian noise with�
2

n
= 2:25. On each plot, a dotted line is used to depict the original signal and a

solid line to depict the noisy or denoised signal. The leftmost plots depict the entire signals; the rightmost plots depict the signals “zoomed” to theinterval [0,
0.04], where it is difficult to distinguish high-frequency signal from noise. (a) Noisy length-1024 Doppler signal, MSE= 2:42. (b) Denoised via SureShrink
[1], MSE = 0:43. (c) Denoised via wavelet-based Bayesian IM model MSE= 0:34. (d) Denoised via wavelet-based Bayesian HMT model MSE= 0:26.

B. Signal Detection and Classification

1) Motivation: Our marriage of wavelet transforms and
HMM’s yields a flexible framework for generalized likelihood-
based signal detection and classification that both matches the
properties of the wavelet transform and exploits the structure
inherent in real-world signals. Given i.i.d. signal observations
from two or more classes of signals, we can train HMM’s for

each class , resulting in parameter vectors . We use the
trained HMM’s to detect or classify a new signal observation

by determining which describes the new observation best.
This task boils down to computing the likelihood of the new
signal observation for each HMM and then selecting
the class whose HMM provides the greatest likelihood.
This approach is analogous to the use of HMM’s for speech
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(a) (b)

Fig. 11. Typical autoregressive (AR) signals used in nonlinear classification experiment. (a) Linear AR process (Class I). (b) Linear AR process passed
through a mild cubic nonlinearity (Class II).

recognition [19], where each signal class is a specific word
or utterance. A slightly different approach developed for time-
domain HMM’s has been shown to be asymptotically optimal
in the Neyman–Pearson sense for two-class problems [33].

Several other wavelet-based detection and classification
schemes have been proposed [4], [24], [34], [35]. Our purpose
is not to provide a comprehensive review of wavelet-based
detection algorithms but, rather, to demonstrate the potential of
the new wavelet-domain HMM framework for signal detection
and classification. Note, however, that this approach is quite
different from the other wavelet-based detection schemes
mentioned above.

The properties of the wavelet transform make our frame-
work particularly appropriate for the classification and de-
tection of real-world signals. To demonstrate the power and
potential of wavelet-domain HMM’s for signal classification,
we tackle two difficult problems: classification of nonlinear
processes and change detection. These problems arise in many
applications, including sonar and radar, machinery and process
monitoring, and biomedical signal analysis. We do not suggest
that this framework is the optimal one for either specific
problem; rather, we chose these two examples to demonstrate
the flexibility and adaptability of the approach. In situations
where the data is known to obey a simple probability model,
then optimal detection and classification methods should be
used. However, in complicated real-world applications, where
the only prior information is a set of training data, our approach
offers a useful framework for detection and classification. In
combination, wavelet HMM’s and training data provide an
efficient and powerful framework for generalized likelihood
ratio testing. Both examples considered here are binary hy-
pothesis problems, but the framework is applicable to multiple
hypothesis testing as well.

In these examples, we applied a Haar transform with a single
wavelet tree and a single scaling coefficient. We modeled the
wavelet coefficients using two-component ( ) IM and
HMT models with nonzero mixture means. These models were
trained using multiple signal observations (without tying). We
did not model the scaling coefficient since it provides the
global mean of the signal, which in both examples was the
same under the two hypotheses. In other scenarios, the scaling
coefficient(s) may provide vital discriminating information.

For the purposes of illustration, we only considered a very
special form of the wavelet-domain HMM framework—one

Fig. 12. Minimum probability of error rates for quadratic classifier (solid),
wavelet-domain IM model classifier (dash), and wavelet-domain HMT model
classifier (dash-dot).

based on the Haar transform and two-component mixture
models. Although the Haar transform is appropriate for edge
detection, different wavelet transforms may work better for
other applications. Generally, we expect the transform that
best compresses the signals of interest to provide the best
performance. In addition, we could use more flexible models
with mixture components, but in using such models,
we would risk “overfitting” the training data.

2) Classification and Detection of Nonlinearity:For the
purposes of demonstration, we have designed a numerical
experiment that captures many of the nuances that make
nonlinearity classification/detection so difficult. We consider
two classes of random processes described by

I:

II:

with

Both and are white Gaussian noise processes, and
the autoregressive (AR) parametersand are i.i.d. and
uniform over the interval (0.4, 0.8). The signals are discrete
time and organized into signal vectors of length 128 with
( ). Class I signals are linear AR(1) pro-
cesses. Class II signals are produced by passing linear AR(1)
processes through a memoryless cubic nonlinearity. Examples
of signals from each class are shown in Fig. 11 (generated
with the same AR parameter and white noise excitation for
comparison).
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(a) (b)

Fig. 13. Typical signals for the abrupt change detection experiment. (a) Gaussian white noise added to constant signal (Class I). (b) Gaussian white
noise added to signal with abrupt change (Class II).

The first task at hand is to train wavelet-domain HMM’s for
the two classes based on labeled observations from each class.
We generated i.i.d. AR signals from each class for training
purposes. (Note that the AR parameter was varied indepen-
dently for each realization.) For comparison, we constructed
a minimum-probability-of-error quadratic detector under the
assumption that the two classes have Gaussian distributions
with different means and covariances [36], with the means and
covariances estimated from the training data. The quadratic
detector is not optimal since the second class is non-Gaussian.
In cases where the number of training observations was
smaller than the dimension of the observations, we formed the
quadratic detector in the subspace spanned by the training data.

After training the classifiers, we tested their performance
with 1000 additional i.i.d. observations from each class. To
obtain reliable estimates of the error rates, we repeated the
training and testing procedure 10 times in each case. The error
rates for the IM model, HMT model, and quadratic detector,
as a function of the number of training vectors from each
class, are shown in Fig. 12.

Given a limited amount of training data, the quadratic
detector had a difficult time distinguishing the classes and
thus offers very poor performance. In contrast, the wavelet-
domain HMM’s make much more efficient use of the training
data. With only 128 training vectors from each class, the
performances of the HMM’s have stabilized to their minimum
error rates. Additional training data does not improve their
performance. The performance of the quadratic detector does
improve as increases but requires nearly ten times the
amount of training data that the HMM’s require for the same
error rate. We see that asymptotically (in number of training
data ), the quadratic detector has the best error rate, fol-
lowed closely by the HMT model. The IM model has the worst
asymptotic error performance. This demonstrates the perfor-
mance gains associated with the HMT model. In addition, this
suggests that more complex wavelet-domain HMM’s (that is,
more probabilistic connections between states) may provide
asymptotic performances that meet or even exceed that of the
quadratic detector. Of course, more complex HMM’s will also
require more training data to achieve such performance. These
and related issues are currently under investigation.

3) Detection of an Abrupt Change:In this example, we
consider the following two-class problem. Class I consists of
random discrete-time processes with an arbitrary mean value

and additive white Gaussian noise. Class II consists of random
discrete-time processes with an abrupt arbitrary change in
the mean at some arbitrary point in the signal. Again, our
signal observations are organized into length-128 observation
vectors. Formally, our signal classes are defined by

I:

II:

Both and are white Gaussian noise processes. ,
and are i.i.d. and uniform on . if

and is zero otherwise. is defined
in an analogous fashion. The change-pointis uniformly
distributed over the integers . Examples of
signals from each class are shown in Fig. 13.

An excellent treatment of classical methods for the detection
of abrupt changes is given in [37]. In addition, other wavelet-
based approaches to the change point problem have been
discussed in the literature [34], [35]. The purpose of this
example is not to make an exhaustive comparison between
our method and other existing techniques in the literature;
rather, the intent is simply to demonstrate the versatility of
the wavelet-based HMM approach to signal detection.

We again designed the wavelet-domain HMM classifiers
(Haar-based IM model and Haar-based HMT model) with
training data from each class and then tested their performance
with 1000 additional i.i.d. observations from each class. The
error rates for the IM model and HMT model as a function
of the number of training vectors from each class are
shown in Fig. 14. For comparison, we also implemented an
“off-line” generalized likelihood ratio test (GLRT) detector
[37]. Although the signal parameters (position and size of
change) and noise variance are estimated from the data itself,
the GLRT detector makes full use of piecewise constant
signal model and Gaussian noise model. Since the GLRT
exploits all prior information, we may view the performance
of the GLRT detector as a lower bound on detection
performance in this case. Note that with just a few hundred
training samples, the performances of the wavelet-domain
HMM detectors approaches that of the GLRT detector.

Clearly, the HMM’s are not the optimal detector in this
problem. With precise knowledge of the problem at hand,
more efficient detectors such as the GLRT are easily designed.
However, this experiment again demonstrates the utility of the
wavelet-domain HMM’s for modeling data with little or no
prior information.
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Fig. 14. Detection of an abrupt change. Minimum probability of error rates
for wavelet-domain HMT model detector (solid), wavelet-domain IM model
detector (dash-dot), and GLRT detector (dash-dash).

VI. CONCLUSIONS

The primary properties of the wavelet transform—locality,
multiresolution, and compression—have led to powerful new
approaches to statistical signal processing. However, existing
methods usually model the wavelet coefficients as statistically
independent or jointly Gaussian. The compression property
dictates the need for non-Gaussian models for individual
wavelet coefficients. Moreover, the secondary properties of
the wavelet transform—clustering and persistence—indicate
that statistical dependencies between coefficients must be
characterized in order to derive optimal signal processing
algorithms.

In this paper, we have developed a new framework for statis-
tical signal processing based on wavelet-domain HMM’s. The
framework enables us to concisely model the non-Gaussian
statistics of individual wavelet coefficients and capture statis-
tical dependencies between coefficients. We have developed
an efficient expectation maximization algorithm for fitting the
HMM’s to observational signal data, and we have demon-
strated the utility, flexibility, and performance of our frame-
work in several estimation and detection problems.

We believe that the HMM framework presented here could
serve as a powerful new tool for wavelet-based statistical
signal and image processing with applications in signal esti-
mation, detection, classification, compression, and synthesis.
Although the examples we have provided here are 1-D,
multidimensional wavelet domain HMT’s can be derived from
our results since the models and training algorithms apply to
quad and higher dimensional trees. Furthermore, these HMM’s
apply not only for modeling wavelet-domain data but also
for modeling data from other multiresolution transforms or
signal representations. Finally, the knowledge base that has
already accumulated in statistics, speech recognition, artificial
intelligence, and related fields may lead to wavelet-domain
HMM’s that are even more accurate and sophisticated, yet
still tractable, robust, and efficient for signal processing.

APPENDIX

EM ALGORITHM FOR HIDDEN MARKOV TREES

Although the EM algorithm is classical with a well-known
basic structure, the exact EM steps are problem dependent.

In fact, the EM steps for estimating the parameters of tree-
structured probability models have been derived only recently
[27], [32], with work primarily focusing on trees of discrete-
valued random variables. Following [32], we will develop an
EM algorithm for HMT’s generalized to handle continuous-
valued wavelet coefficients and specialized to the tree structure
provided by the wavelet transform. The major change from
[32] is that for the leaves of the tree, we replace maximum-
likelihood (ML) estimation of probability mass function (pmf)
values with ML estimation of Gaussian mixture means and
variances. In addition, we will demonstrate the effect of tying
on the algorithm.

In applying the EM algorithm to HMT’s, our task
is to fit an -state HMT model parameterized by

,9 to trees of observed wavelet coefficients,
with the number of wavelet coefficients in each tree. We
omit modeling the single scaling coefficient associated with
each tree; as mentioned in Section III-B, extensions to handle
the scaling coefficients are straightforward.

We obtain the trees either by wavelet-transforming
signal observations, each into a single tree, or by wavelet
transforming one signal observation into different wavelet
trees, as shown in Fig. 5(b). In the latter case, we actually tie
across trees, modeling different trees using the same set of
parameters (see Section IV-C for details). The EM steps are
identical for either case.

Recall from Section IV-A that the EM algorithm is iterative
and that for HMT’s, it converges to a local-maximum of the
incomplete log-likelihood . The iterative structure is as
follows:

EM Algorithm for HMT
Initialize:
Select an initial model estimate .
Set iteration counter .

1) E step: Calculate , which is the joint pmf for
the hidden state variables (used in the maximization of

).
2) M step: Set .
3) Set . If converged, then stop; else, return to

E step.

We will suppress the superscriptwhen it is clear from the
context.

Since the wavelets coefficients are conditionally Gauss-
ian given the hidden states, the M step involves simple
closed-form updates for the means, variances, and transition
probabilities as a function of the wavelet coefficients,
marginal state pmf’s , and parent–child pmf’s

. To perform the M step updates,
in the E step, we calculate these pmf’s. In the E step, we can
also calculate likelihoods, such as , that can be used
for classification and other tasks.

To keep things clear and simple, we will first develop the
E step for a single tree. (The E step is often referred to as

9Except for i’s corresponding to root states, the pmf’spS (m) are
completely specified by the root state pmf’s and the transition probabilities
�
mn

i; �(i).
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the forward-backward algorithm in the HMM literature [18]
and as the upward–downward or inward–outward algorithm
in the artificial intelligence literature [20], [27], [32].) We will
then develop the EM steps for multiple trees. We will finish
by incorporating into the EM steps the notion of tying within
trees from Section IV-C.

We first focus on processing a single size-wavelet tree
containing observed wavelet coefficients
having hidden states that take on values

. The primary task of the E step is to
calculate the hidden state probabilities and

. To obtain these probabilities, we
introduce a number of intermediate variables.

A. Setup

We now introduce some notation for trees of observed
wavelet coefficients. Similar in structure to the trees of Fig. 5,
these trees are formed by linking the wavelet coefficients rather
than the hidden states. We define to be the subtree of
observed wavelet coefficients with root at nodeso that the
subtree contains coefficient and all of its descendants.
Now, if is a subtree of (i.e., and all its descendants
are members of ), then we define to be the set of
wavelet coefficients obtained by removing the subtreefrom

. Without loss of generality, we order so that is at the
root of the entire tree. Thus, is the entire tree of observed
wavelet coefficients (a tree-structured version of the vector).
In our probability expressions, we will interchange and
when convenient.

For each subtree , we define the conditional likelihoods

(10)

(11)

(12)

and the joint probability functions

(13)

with taking discrete values and the coefficients in
taking continuous values.

Based on the HMT properties from Section III-B, the trees
and are independent given the state variable. This

fact, along with the chain rule of probability calculus, leads
to the desired state probabilities in terms of the’s and ’s.
First, we obtain

(14)

and

(15)

The likelihood of is then

(16)

Bayes rule applied to (14)–(16) leads to the desired conditional
probabilities

(17)

and

(18)

B. E Step for a Single Wavelet Tree
(Upward–Downward Algorithm)

All state variables within our HMT model are interde-
pendent; in determining probabilities for the state variables,
we must propagate state information throughout the tree.
The upward–downward algorithm is an efficient method for
propagating this information. The up step calculates the’s
by transmitting information about the fine-scale wavelet coeffi-
cients to the states of the coarse-scale wavelet coefficients; the
down step calculates the’s by propagating information about
the coarse-scale wavelet coefficients down to the states of
the fine-scale wavelet coefficients. Combining the information
from the ’s and ’s via (17) and (18), we obtain conditional
pmfs for the state of each wavelet coefficient in the tree.

For our derivation, we will focus on models with mixing
components that are Gaussian with density

(19)

More general densities can also be treated. Recall that we
assign to each nodein the tree a scale
with the finest scale and the coarsest scale. In
addition, recall that is the parent of node and the
set of children to node.

Up Step:
Initialize: For all state variables at the finest scale ,

calculate for :

(20)

1) For all state variables at scale , compute for

(21)

(22)

(23)
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2) Set (move up the tree one scale).
3) If then stop; else return to step 1.

Down Step:
Initialize: For state variable at the coarsest scale ,

set for

(24)

1) Set (move down the tree one scale).
2) For all state variables at scale , compute for

(25)

3) If , then stop; else return to step 1.

C. E Step for Multiple Wavelet Trees

To handle wavelet trees, we add a superscript
to denote the tree number. We denote the observed wavelet
coefficients as and the hidden states
as . The vectors
and contain the wavelet coefficients
and states of theth tree, respectively.

To implement the E step at iterationof the EM algorithm,
we apply the upward–downward algorithm independently to
each of the wavelet trees. Using the parameter estimates

, we calculate the probabilities and
for each tree via (17) and (18).

D. M Step

Once the probabilities for the hidden states are known, the
M step is straightforward. We update the entries of as

(26)

(27)

(28)

(29)

The updates for the state probabilities and are
performed by summing the individual state probabilities and
then normalizing so that the probabilities sum to one. Just as
for the IM model [26] and the hidden Markov chain model
[18], updates for the Gaussian mixture means and variances
are performed by a weighted averaging of the empirical means

and variances with the weights chosen in proportion to the
probabilities of each mixture.

As should be clear from the E and M steps, the per-
iteration computational complexity of the EM algorithm is
linear in the number of observed wavelet coefficients. The
overall complexity may involve a large multiplicative constant,
depending on the number of hidden states used and the
number of iterations required to converge. However, as shown
throughout this paper, even the simplest two-state HMT model
can approximate many densities quite well.

E. Tying Within Trees

The M step changes slightly when tying is performed within
trees, such as tying wavelet coefficients and their states within
a certain subband or scale. (See Section IV-C for the basic
idea behind tying.) With tying, we perform extra statistical
averaging over coefficients that are tied together within each
tree. For the th tree with wavelet coefficients , we write

if and (and their states) are tied, which means that
they are modeled with the same underlying density parameters.
The set denotes the equivalence class of
, with the number of elements in the class.

For simplicity, we assume that all trees are tied in the same
fashion (that is, the coefficients in the trees
are tied in the same manner) according to the collection of
equivalence classes given by the’s. In this scenario, the M
step becomes

(30)

(31)

(32)

(33)

Although (30)–(33) appear more computationally intensive
than (26)–(29), the computational complexity remains the
same since the common parameters for each equivalence class

are calculated only once.
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