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Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis article a texture feature extraction scheme based 

on M-band wavelet packet frames is investigated. The fea- 
tures so extracted are used for segmentation of satellite im- 
ages which usually have complex and overlapping bound- 
aries. The underlying principle is based on the fact that dif- 
ferent image regions exhibit different textures. Since most 
signifcant information of a texture often lies in the interme- 
diate frequency bands, the present work employs an over- 
complete wavelet decomposition scheme called discrete M -  
band wavelet packet frame (DM-bWPF), which yields im- 
proved segmentation accuracies. Wavelet packets represent 
a generalization zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the method of multiresolution decom- 
position and comprise of all possible combinations of sub- 
band tree decomposition. We propose a computationally 
eflcient search procedure to find the optimal basis based 
on some maximum criterion of textural measures derived 
from the statistical parameters of each of the subbands, to 
locate dominant information in each subbands (frequency 
channels) and decide further decomposition. 

1. Introduction 

The segmentation of different landcover regions has 
been recognized as a difficult problem in the realm of satel- 
lite imagery. Remotely sensed images usually have poor il- 
lumination and are highly dependent on the environmental 
conditions. Spatial resolution of these images are also very 
low. The scene mostly contains many objects (landcovers), 
and these regions are not very well defined because of spa- 
tial ambiguities. Moreover the gray value assigned to a pixel 
is the average reflectance of different types of landcovers 
present in the corresponding pixel area. Assigning unique 
class levels with certainty is thus a problem of remotely 
sensed images. Also these type of images contain informa- 
tion on a large range of scales and the frequency structure 
changes throughout the signal (i.e non-periodic signal). In 

remote sensing perspective, the resolution of the imagery 
may be different in many cases, and so it is important to un- 
derstand how information changes through different scales 
of imagery. This problem leads naturally to multiresolution 
type analysis which are most effective using wavelets, also 
wavelet theory is well suited for the study of complex sig- 
nals which are aperoidic. Wavelets are particularly good at 
describing a scene in terms of the scale of the textures in it. 

Texture is an important property of reflective surface 
which human visual perception system uses to segment and 
classify different image objects in a digital image. In a re- 
motely sensed image texture is considered to be the visual 
impression of coarseness or smoothness caused by the vari- 
ability or uniformity of image tone. These textural proper- 
ties of remotely sensed images provide valuable informa- 
tion for segmentation of such images. 

Segmentation is a process of partitioning an image space 
into some non-overlapping meaningful homogeneous re- 
gions. The term meaningful is ofcourse problem dependent 
and the success of an image analysis system depends on the 
quality of segmentation, So basically this is a multi-texture 
segmentation problem. 

Several approaches have been considered in the last few 
decades and reported in [9]. Of the several approaches 
available for texture feature extraction we focus on the sig- 
nal processing approach in the present work. Other ap- 
proaches to segmentation of remotely sensed images have 
been reported in the literature. Various fuzzy thresholding 
techniques is demonstrated in remotely sensed images in [6] 
and genetic algorithm based pattern classifiers has been in- 
vestigated in the domain of satellite imagery in [ 2 ] .  

Most of the texture segmentation algorithms based on 
signal processing techniques [4] apply the textured image 
to a filtering step followed by a nonlinear operation which 
gives an estimate of the energy. Recent development of 
wavelet theory has provided a proimising tool for texture 
analysis. 

The octave band (standard wavelet) decomposition gives 
a logarithmic frequency resolution and are not suitable 
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for the analysis of high frequency signals with relativ:ely 
narrow bandwidth. So the main motivation of this wbrk 
is to utilize the decomposition scheme based on M-band 
wavelets, which unlike the standard wavelet decomposition 
gives a mixture of logarithmic and linear frequency re'so- 
lution. Since the most significant information of a texture 
often appears in the middle frequency channels, and also 
translational invariance is desirable for accomplishing tex- 
ture analysis, an M-band wavelet packet frame transf4rm 
is envisaged, which corresponds to a general tree-structured 
filter bank, and gives an overcomplete representation. But 
this decomposition scheme leads to a large number of inde- 
pendent basis. We propose a computationally efficient and 
adaptive technique for finding out the optimal basis based 
on some maximum criterion of textural measures derived 
from the statistical parameters extracted from each of the 
subbands. 

Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 presents the analysis of the filtering technique 
used in the proposed work, while section 3 discusses about 
the extraction of features and integration of these features. 
Finally section 4 gives experimental results and concludes 
our study. 

2. Multiscale M-band wavelet representation 

The feature extraction scheme that we have used has a 
filtering stage and a subsequent nonlinear stage followed by 
a smoothing filter as shown in figure 1 .The objectives of the 
filtering and that of the local energy estimator, are to trans- 
form the edges between textures into detectable discontinu- 
ities. 

2.1. M-band wavelet f i l ter 

where the sequence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhl is the scaling filter, and satisfies the 
following linear and quadratic constraints. 

k = N - 1  k=N-1  

h i ( k )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, h l ( k ) h l ( k  + M I )  = 61 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2) 
k=O k=O 

The wavelet transform maps a function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf(z) E L2(R)  
onto a scale-space plane, and are obtained from a single 
prototype function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$(x) by scalings a and shifts b [3] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 5 ] .  
The M-band orthonormal wavelet is a direct generalization 
of the two band case [7], and are able to zoom in onto nar- 
rowband high frequency components of a signal and gives 
better energy compaction than 2-band wavelets [7]. 

An M-band wavelet system consist of M - 1 wavelets, 
$%(z), i = 2, . . . , A4 associated with the scaling function 
$1 (z). The scaling function $1 (z) satisfies, 

And there are M - 1 wavelets which also satisfy, 

$i(Z) = a h i ( k ) $ ( M z  - I C )  (3 )  
k 

The ( M  - 1)hi (i = 2,. . . , M )  vectors called the wavelet 
filters satisfy the equation, 

k = N - l  

h i ( k )h j ( k  + M I )  = 6(1)6(i - j )  (4) 

The filter bank in essence is a set of bandpass filters with 
frequency and orientation selective properties. In the fil- 
tering stage we make use of orthogonal and linear phase 
M-band (M=4) wavelet following [l]. The 1-D M(=4)- 

band wavelet filter responses are given by $i and their cor- 
responding transfer functions are denoted by Hi ,  where 

The filters H i k  ( U ) ,  at level k are generated as follows, 

k=O 

i = 1, . . . ,  M .  

Hi,k = Hi,O(2'w) for i = 1,. . . , 4  ( 5 )  

Suppose 1: ( w )  be the Fourier transform of the input signal 
I ( z )  for subband (frequency channel) s at decomposition 
level k.  For 0 5 s 5 4k - 1 we have, 

p + 1  
z , 4 s + ( i - 1 )  (w)  

This corresponds to a filter bank with channel filters, 

fiZtf,,(U) li = 1,. . . , 4  

from the filter bank theoretic point. The filters are given by 

the following recursive relation as follows, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 1. Experimental setup. 

For 2-D signals, the transform is obtained by the tensor 
product of the 1-D channel filters. 

2.2. Adaptive basis selection 

An appropriate way to perform the wavelet transform 
for texture feature extraction is to detect the most signifi- 
cant frequency channels and then decompose them further. 



This leads naturally to a tree structured wavelet transfrom. 
It is also usually redundant to decompose all the subbands 
in each scale to achieve the full tree of decomposition. Also 
for a decomposition depth of IC, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM M b  number of basis are 
possible. It is quite evident that an exhaustive search to de- 
termine the optimal basis from this large set is computation- 
ally expensive and difficult procedure. 

In order to avoid a full decomposition and simultane- 
ously to find out the optimal basis, we propose an adap- 
tive decomposition algorithm using a maximum criterion 
of textural measures based on the statistics extracted from 
each of the subbands, and identify the most significant sub- 
bands and then decide whether further decomposition of the 
particular channel would generate more information or not. 
This search is computationally efficient and enables us to 
zoom into any desired frequency channel for further de- 
composition. Energy is used as the textural measure in our 
work. Energy measures textural uniformity, meaning pixel 
pair repetitions. 

Figure 2 shows a general tree structure of discrete zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM -  
band wavelet packet frame decomposition. The image is 
first decomposed into M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx M channels using the 2-D M -  
band wavelet transfrom, but without downsampling. Energy 
of each subband is then evaluated. From the M 2  subbands 
only those that contain appreciable energy are considered 
and decomposed further. In our simulation we have con- 
sidered only those bands that contain more than 2% of the 
total energy of the parent band. And we have further de- 
composed a subband if it atleast have more than 10% of the 
total energy of all the subbands at the current scale. This 
step results in a set of feature images Fea tk (x7y ) ,  from 
which a set of feature vectors are derived. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3. Texture feature extraction 

3.1. Local energy estimator 

The objectives of the filtering and that of the local en- 
ergy estimator (nonlinear operator and smoothing filter), are 
to transform the edges between textures into detectable dis- 
continuities. The local energy estimator, estimates the en- 
ergy of the filter output in a local region around each pixel. 
Since the magnitude fo the correlation between the wavelet 
and the image is all that is important, we have used absolute 
values of the wavelet coefficients as a generalized energy 
definition. The local energy E n g k ( i , j )  is formally given 
as, 

E V k ( i 7 j )  =I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFk(i,j) I (8) 

where, Fk(i,j) is the filtered image at different scales IC. 
The nonlinear transform is succeeded by a Gaussian low 
pass (smoothing) filter h ~ ( z ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy). Formally, the feature im- 
age Featk(z ,  y) corresponding to filtered image Fk(z ,  y) is 

INPUT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 2. Structure of DM-bWPF transform. 

given by, 

Featk ( 2 7  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY) = r(Fk (a ,  b)hG(X - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa7 Y - b ) )  
(%b)EG., 

where IC correspond to different scales, I?(.) is the nonlin- 
ear function and G,, is a G x G window centered at pixel 
with coordinates (z,y). The size G of the smoothing or 
the averaging window is an important parameter. More re- 
liable measurement of texture feature demands larger win- 
dow sizes. On the other hand, more accurate localization of 
region boundaries requires smaller windows. 

3.2. Unsupervised classifier 

Having obtained the feature images, the main task is to 
integrate these feature images to produce a segmentation. 
We define a scale - space signature as the vector of features 
at different scales taken at a single pixel in an image, 

Suppose these scale-space signatures are considered as 
feature vectors in a feahre space. If the signatures of the 
text part are distinct from the signatures of non-text part a 
pattern reognition system can be used to identify those fea- 
ture vectors that represent text part in the scale space. 

Let us assume that there are M texture categories, 
Cl,. . . , C M ,  present in the image. If the texture features 
obtained are capable of discriminating these categories then 
the patterns belonging to each category will form a clus- 
ter in the feature space which is compact and isolated from 
clusters corresponding to other texture categories. Pattern 
clustering algorithms are ideal modes for forming such clus- 
ters in the feature space. Segmentation algorithm accept as 
input a set of features and put a class labeling to each pixel. 
Fundamentally this can be considered a multidimensional 
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I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
data clustering problem. Our aim in this work has been to 
make the segmentation scheme independent of any zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa priori 
knowledge about the input, thus we need an unsupervised 
classifier. We have used a traditional K-means clustering 
algorithm [8] for this purpose. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAResults 

We have implemented our algorithm on several remotely 
sensed images. We present our results on two IRS-1A 
(band-4) images and one SPOT (band-3) image. The IRS- 
1A images were obtained from Indian Remote Sensing 
Satellite. This is a circular sun-synchronous satellite and 
is equipped with two different sensors LISS-I and LISS- 
11. These IRS-1A images were taken using the scanner 
LISS-I1 (Linear Imaging Self Scanner) in the wavelength 
range 0.77pm - 0.86pm which has a spatial resolution of 
36.25m x 36.25m. The image in fig. 3 covers an area 
around the city of Calcutta, while fig. 4 shows a part of 
the city of Bombay, both these cities are located in India. 

The SPOT image fig. 5 was taken by the French satellites 
Systems Probataire d’observation de la Terre, they carry 
two imaging devices that consist of a linear array of charge 
coupled device (CCD). This image was taken in the near 
infrared band of wavelength 0.79,um - 0.89pm and have a 
spatial resolution of 20.0m x 20.0m, and covers another 
portion of the city of Calcutta. All the images considered in 
this work are of size 512 x 512. 

In fig. 3 the prominent black stretch across the figure 
is the river Hoogly. There is a prominent light patch on the 
bottom right corner, this the Salt Lake stadium and the black 
patches nearby are the3sheries. In the upper part right part 
of the image there is a distinct line structure, this the air- 
port runway. In total there are five major classes in which 
the image can be classified. These are water bodies (WB), 
vegetation (VEG), habitation (HAB), city area (CA) and 
open spaces (OS). 

Fig. 4 shows a part of Bombay, the elongated city area is 
surrounded by the Arabian sea. There is a concrete structure 
(on the right side top corner) connecting Bombay to New 
Bombay. On the southern part of the city, there are sev- 
eral islands, including the famous Elephanta islands. The 
dockyard is situtated on the south eastern part of Bombay, 
which can be seen as a set of three finger like structure. 
On the upper part of the image, towards left, there is a dis- 
tinct criscrossed structure, this is the Santa Cruz airport. 
In total the image can be classified into six major classes, 
these are turbid water 1 (TWl), turbid water 2 (TW2), con- 
crete (CONCR), habitation (HAB), vegetation (VEG) and 
oprn spaces (OS). The sea water is decomposed into two 
classes TWl and TW2 for better classification since they 
have somewhat different reflectance properties (as can be 
seen in fig. 4). 

In fig. 5 the prominent black stretch across the figure is 
the river Hoogly. There are two distinct black, elongated 
patches below the river, on the left side of the image. These 
are water bodies, the one to the left being Garden Reach 
Lake and the one to the right being the Khiderpore dock- 
yard. Just to the right of these water bodies, there is a thin 
line starting from the right bank of the river and going to 
the bottom edge of the image, this is a canal called Talis 
nala. On the right side of the image there is a triangular 
patch which is the race course. On the top right hand side 
of the image, there is a thin line, sretching from the top edge 
and ending in the middle of the image, this is the Beleghata 
canal. This image has seven major classes, these are tur- 
bid water (TW), pond water (PW), concrete (CONCR), 
vegetation (VEG), habitation (HAB), open space (OS) and 
roadsbridges (B/R). 

Due to poor illumination, the actual object classes 
present in the input images are not visible clearly. So we 
have presented the histogram equalized images in figures 3, 
4 and 5, which highlight the different object regions. But 
the algorithms were implemented on the actual inputs. 

Throughout the experiment we have used a window size 
of 3 x 3. The test images have several fine (line) structures 
(roads and bridges), to detect those structures the window 
size has to be very small. 

A quantitative index zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp [6] is being used to evaluate the 
segmentation results. p is defined as the ratio of the total 
variation and within class variation. Let ni be the number 
of pixels in the ith (i = 1 , 2 , .  . . c) region, let Xij be the gray 
value of the j th  pixel (j = 1,2 ,  . . . ni) in the ith region, and 

be the mean of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAni gray values in the ith region. It is 
formally defined as, 

where, n is the size of the image and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx is the mean gray 
value of the image. 

The numerator is constant for a given image and number 
of class, so the value of ,B is dependent only on the denom- 
inator. The denominator on the otherhand decreases with 
homogeneity of a region. So higher the value of P better is 
the segmentation. 

For fig. 3a the segementation result is given in fig. 3b, 
with value of c=5 and for which p index is 3.65887. The 
stadium and3sherie.s as well as the airport runway are quite 
distinctly discernible. The segmentation result of fig. 4a. is 
given in 4b. with c=6 and p index 8.1046. The dockyard, 
the concrte structure connecting Bombay and New Bombay 
and Santa Cruz airport are detected in the segmented out- 
put. The segmentation result of fig. 5a. is shown in 5b. with 
c=7 and ,B index 3.27832. The race course and a triangular 
outline which is the track of the race course is also detected. 
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Figure 3. a) IRS-1A image of Calcutta b) Seg- 
mented output with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc = 5 and 

Figure 4. a) IRS -1 A image of Bombay b) Seg- 
mented output with c = 6 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = 8.1046 = 3.65887 
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Figure 5. a) SPOT image of Calcutta b) Seg- 
mented output with c = 7 and ,f3 = 3.27832 

One major advantage of our scheme over other meth- 
ods is that even though we have made use of overcomplete 
wavelet representation of images, which imply large feature 
space (i.e. feature images of the same dimension as the in- 
put image), we have found that by intelligent selection of 
basis as discussed in subsection zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2.2, only 4 to 6 features 
were sufficient for the desired segmentation of the images 
used in our study. 

This implicates that in our method, dimensionality of the 
feature space can be greatly reduced, while still maintaining 
a high segmentation quality. 

Another point which is mention worthy is that except for 
the knowledge of the number of classes present in a com- 
posite image we do not have any a pr ior i  knowledge about 
the test images, that is our scheme is completely unsuper- 
vised. The algorithm is computationally simple and less 
expensive. 

It has been discussed in section 1 that assigning unique 
class levels with certainty is a problem of remotely sensed 
images. This problem can be handled using Fuzzy set the- 
oretic approaches by associating certainty factors with each 
class labels. A work based on this is already in progress by 
us. 
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