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a b s t r a c t

The amount of image data generated each day in health care is ever increasing, especially

in combination with the improved scanning resolutions and the importance of volumetric

image data sets. Handling these images raises the requirement for efficient compression,

archival and transmission techniques. Currently, JPEG 2000's core coding system, defined

in Part 1, is the default choice for medical images as it is the DICOM-supported

compression technique offering the best available performance for this type of data. Yet,

JPEG 2000 provides many options that allow for further improving compression

performance for which DICOM offers no guidelines. Moreover, over the last years, various

studies seem to indicate that performance improvements in wavelet-based image coding

are possible when employing directional transforms. In this paper, we thoroughly

investigate techniques allowing for improving the performance of JPEG 2000 for volu-

metric medical image compression. For this purpose, we make use of a newly developed

generic codec framework that supports JPEG 2000 with its volumetric extension (JP3D),

various directional wavelet transforms as well as a generic intra-band prediction mode.

A thorough objective investigation of the performance-complexity trade-offs offered by

these techniques on medical data is carried out. Moreover, we provide a comparison of the

presented techniques to H.265/MPEG-H HEVC, which is currently the most state-of-the-

art video codec available. Additionally, we present results of a first time study on the

subjective visual performance when using the aforementioned techniques. This enables us

to provide a set of guidelines and settings on how to optimally compress medical

volumetric images at an acceptable complexity level.

& 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Today, all modern hospitals heavily rely on digital

medical imaging as an important and well-established

part of the full chain of patient care handling. In fact, the

completely digitized medical workflow, the improved

imaging scanner technologies and the importance of

volumetric image data sets have all raised the require-

ments for more efficient compression techniques.

Currently image slice resolutions of 512�512 are consid-

ered to be the minimum standard. However, more recent

scanning systems are able to output image slices with

spatial resolutions of 1024�1024 or more at increasing

pixel bit-depths [1]. Additionally, volumetric and time-

lapse capable scanning technologies are both increasing

the amount of output data even more. With thin-slice

Computed Tomography (CT) scanning, the number of slices

in volumetric datasets exploded as the inter-slice distance

decreased from typically 5 mm to 0.6 mm over the years

[2,3]. As such, efficient compression and improved trans-

mission techniques for handling medical images are of

utmost importance. Moreover, the ubiquity of Internet
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usage for e-Health platforms also mandates adequate

support for features such as region-of-interest (ROI) cod-

ing and progressive quality and resolution scalability more

than ever before.

Yet, a large variety of image coding techniques exist,

ranging from transform based techniques utilizing Discrete

Cosine Transform (DCT) [4,5], Discrete Wavelet Transforms

(DWT) [6] or Karhunen-Loève Transforms (KLT) [7–9] to

prediction-based techniques, such as CALIC [10] or LOCO-I

[11] (as used in JPEG-LS [12]). Some proposals investigated

using video coding methodologies such as H.264/MPEG-4

AVC [13] or the very recent H.265/MPEG-H HEVC [14,15] to

compress 3D and 4D medical image datasets [16–20]. All

of the aforementioned techniques have their strengths and

weaknesses. For the compression of volumetric medical

datasets it is shown that 3D wavelet based codecs outper-

form the DCT-based solutions while providing required

functionalities such as quality and resolution scalability,

random access and ROI coding [21]. In contrast, prediction-

based techniques (like CALIC [10] and LOCO-I [11]), typi-

cally deliver competitive (near-)lossless compression per-

formance, at the cost of not supporting these functionality

constraints.

Most, if not all, medical informatics systems rely on the

Digital Imaging and Communications in Medicine (DICOM)

standard [22], which in turn relies on major ISO/IEC and

ITU-T standards such as JPEG [5], JPEG-LS [12] and JPEG

2000 [6] for encoding of medical image datasets. From this

set of adopted coding standards, the wavelet based JPEG

2000 is still the best-suited coding technique. It provides

excellent rate-distortion performance for volumetric med-

ical datasets [21,23–25], it supports lossy-to-lossless cod-

ing, resolution scalability, region of interest access at

varying degrees of granularity, flexible file formats and

resilience against transmission errors [6].

The JPEG 2000 [26,27] standard is subdivided in multi-

ple parts of which Part 1 [6] defines the core image coding

technology. The other parts specify optional extensions

that add extra functionality to JPEG 2000. As such, Part 2

[28] – providing the Multi-Component Transform (MCT)

extension – and Part 10 [29] – known as JP3D, providing

volumetric extensions – are also relevant for this work.

To compress an image, the JPEG 2000 encoder decom-

poses the input into wavelet sub-bands (see Section 2) and

consecutively quantizes and encodes the resulting wavelet

coefficients by use of the Embedded Block Coding by

Optimized Truncation (EBCOT) [30] paradigm. EBCOT is a

two-tiered entropy coder. Tier-1 represents a context-

based adaptive binary arithmetic coding unit that pro-

cesses the various sub-bands as smaller independent units

or so-called code-blocks. Tier-2 then packetizes the result-

ing code-block bit-streams to generate the final output

JPEG 2000 code-stream that optionally meets given rate

and/or distortion requirements. The decoding process, on

the other side, can be coarsely considered as the inverse of

the encoding process without an EBCOT Tier-2 module.

Currently, two methodologies exist for the compression

of volumetric medical image data using JPEG 2000. The first

is used by DICOM and employs the Multi Component

Transform (MCT) feature, as defined in JPEG 2000 Part 2,

to perform an axial DWT step with the image slices

interpreted by the codec as separate image components.

However, this has the minor drawback of causing an

inherent ambiguity between actual component information

and slice information. The second methodology involves

JP3D to handle compression of volumetric image data by

properly extending the required portions of JPEG 2000

Part 1. JP3D redefines the DWT to enable support for three

dimensions (3D-DWT) [27]. Additionally, JP3D allows the

number of decomposition steps and the applied wavelet

kernels along the X; Y and Z dimensions to mutually differ.

This offers extra flexibility to easily adapt the wavelet

transform to specific characteristics of the data at hand.

For the purpose of this work, our presented framework will

support both of these methodologies. We would like to

point out that both the MCT and JP3D extensions allow fall-

back to a 2D-DWT setting when opportune, guaranteeing

that the worst-case performance of these extensions is

equal to the best-case performance of JPEG 2000 Part 1.

Finally, JP3D also introduces volumetric ROI and volu-

metric code-block support, which are both unavailable in

Part 1 or Part 2. The impact of volumetric ROI coding on the

lossless compression performance is known and largely

depends on the size of the ROI [31,27]. The max-shift ROI

method is further enhanced by JPEG 2000 Part 2 to support

variable shifts, allowing to balance the ROI overhead and

the coding performance more precise. It was observed that

with the max-shift method the impact on the lossless bit-

rate for small ROIs - spanning less than 1% of the volume –

is negligible, though for larger ROIs can increase up to 10%.

Alternatively, JPEG 2000 also supports another type of ROI

coding, that is block-based and involves rearranging the

code-block data in the code-stream into quality layers, and

can be done, unlike the shift-based ROI, after encoding. The

impact for this type of ROI on the lossless compression

performance, caused by the overhead to signal the extra

layers and packets within the code-stream, is negligible

(typically less than 0.5% overhead) and depends on the

precinct sizes. These overhead figures were obtained for the

most likely case that the code-blocks are smaller or equal to

their containing precinct. When precincts sizes are chosen

to be smaller than the code-block size to support very small

ROIs, the overhead will significantly increase. Nonetheless,

practice demonstrates that this type of ROI encoding is

rarely required.

The classical wavelet transform employed in JPEG 2000

has the drawback of not being able to optimally represent

curvilinear discontinuities in images. The origin of this

problem stems from the fact that the n-dimensional DWT

is assumed to be a separable transform, given by the

tensor product of individual 1D-DWTs along their respec-

tive orthogonal dimensions. As such, the classical DWT is

limited to efficiently representing point-singularities, and

it is unable to sparsely capture more complex, higher-

order discontinuities such as lines and curves. Directional

transforms on the other hand can efficiently adapt and

sparsely represent such geometric structures. Significant

research regarding different types of directional wavelet

transforms has been proposed in the past, for 2D image

data [32–35]. To our knowledge a directional discrete

wavelet has never been deployed in the context of volu-

metric image coding. This paper extends directional

T. Bruylants et al. / Signal Processing: Image Communication 31 (2015) 112–133 113



wavelet transforms to allow support for volumetric image

data sets. We note that finding optimized directional

wavelets in the axial direction relies on similar concepts

as those of motion-compensated temporal filtering, which

was very popular in wavelet-based coding of video [36–

40]. The state-of-the-art in video compression, which is

the recently developed High Efficiency Video Coding

(H.265/MPEG-H HEVC) standard [41] is used as benchmark

in the experimental section. We note that employing and

optimizing video coding techniques for the compression of

volumetric medical data calls for thorough investigations

and possibly algorithmic modifications, which goes

beyond the scope of this paper. This paper shows how

the JPEG 2000 standard can be further extended while also

maintaining backward compatibility with its current spe-

cification, and provides a thorough evaluation of the

resulting performance for volumetric medical data. With

this respect, our paper analyses the impact on the com-

pression efficiency by examining various compression

settings, such as the employed wavelet kernel, the applied

decomposition structure, the directional transform and the

related entropy-coding settings. Subsequently, it investi-

gates the possibility of exploiting symmetries that are

typically present in medical images by additionally de-

correlating the wavelet coefficients before the entropy-

coding step. This is achieved based upon the work of [42],

through the use of a generic block-based intra-band

prediction scheme.

Alternatively, it is also possible to replace the axial

DWT with an axial KLT for the compression of volumetric

medical image data, which is supported through the

Multi-Component Transform (MCT) extension of JPEG

2000 Part 2. The KLT is able to optimally remove existing

correlations from the image data, but it has two serious

drawbacks that make it less suitable for the compression

of volumetric medical image data. First of all, the KLT has

very high computational complexity and memory usage.

Secondly, it comes with the inability to access individual

slices, without decoding all slices of the volumetric image.

Promising work was done in the context of compression of

hyper-spectral image data to (1) provide a reversible KLT

implementation [43] that allows scalable lossy-to-lossless

compression, and (2) reduce the computational and mem-

ory complexities of the KLT by applying a divide-and-

conquer strategy [8,9]. However, for the compression of

volumetric medical image data with a slice-based 2D-

DWT, it was shown that the axial KLT does not maximize

the coding gain and consequently performs less or equal to

an axial DWT [7]. Combined with the fact that the axial

DWT does not suffer from the drawbacks that the KLT

brings, we decided to not include it in this study.

Summarizing, this paper provides a comprehensive and

unified study on the efficient compression of volumetric

medical image data, in both lossy – with rate-distortion

optimization – and lossless modes. We present a novel,

JPEG 2000 based volumetric image codec, enhanced with

additional coding modes based on the aforementioned

state-of-the-art techniques, that is, directional wavelet

transforms, block-based intra-band prediction and arbi-

trary decomposition structures. Though these individual

coding techniques have been presented in literature

before, it is the first time that they are jointly integrated

in a volumetric coding system and that directional wavelet

transforms are deployed in a volumetric context. Subse-

quently, the paper provides thorough experimental results,

comparing existing coding techniques, such as JPEG 2000

Part 1, JPEG 2000 Part 2 MCT (as supported by DICOM),

JPEG 2000 Part 10 (JP3D), JPEG-LS and H.265/MPEG-H

HEVC, and the proposed volumetric coding system. The

results are obtained using both objective and subjective

metrics.

The paper is structured as follows. Section 2 provides a

formal definition of the lifting-based Discrete Wavelet

Transform as used in this work, along with the various

tested extensions to make it directional. Section 3.1

explains how these directional wavelet transforms can be

applied on volumetric images, and Section 3.2 describes

the tested intra-band prediction methodology. Finally,

Section 4 gives a description of the implemented codec

that was used for this work, with the results in Section 5

and conclusions in Section 6.

2. Discrete wavelet transform (DWT) and beyond

2.1. Classical or non-directional DWT

This section introduces a general formulation of the

discrete wavelet transform (DWT) based on the lifting

scheme as applied for JPEG 2000. It is similar to the

formulations used in [32–34], but extended for volumetric

data. This notation is used as the basis to present exten-

sions to the DWT in subsequent sections.

A forward 1D-DWT separates a given discrete signal

into a low-pass L and a high-pass H signal [44] by means of

a dyadic wavelet filter bank and down-sampling opera-

tions. The resulting low-pass output signal is a scaled

version of the original signal with half the number of

samples. The high-pass signal contains the missing high-

frequency information needed to allow reconstruction

with an inverse 1D-DWT. It is important to note that the

DWT is critically sampled.

Let S¼ s½l�jlAΠ, with s½l� ¼ s½lx; ly; lz� and l¼ ðlx; ly; lzÞ,

denote a signal defined on a 3D orthogonal sampling grid

Π¼ ðlx; ly; lzÞAZ
3. Let the grid Π be divided into eight

distinct sub-grids, where

Πpqr ¼ ðlx; ly; lzÞAΠjp¼ lx mod 2; q¼ ly mod 2; r¼ lz mod 2

ð1Þ

The division of the sampling gridΠ into the eight sub-grids

Πpqr facilitates defining three instantiations of a 1D-DWT.

Each instance filters samples along one of the three possible

dimensions of Π, labeled as 1D-DWTH, 1D-DWTV and

1D-DWTA, for the horizontal (along the X-axis), vertical

(along the Y-axis) and axial (along the Z-axis) dimensions

respectively. Then, based on the just created sub-gridsΠpqr ,

we introduce the following six grid-unions:

Π
H
ϕ ¼ ⋃

q;rAB

Πϕqr ; Π
V
ϕ ¼ ⋃

p;rAB

Πpϕr ; Π
A
ϕ ¼ ⋃

p;qAB

ΠpqϕjϕAB;B¼ f0;1g

ð2Þ

More precisely, the six sub-grid-mergers divide Π into

three pairs of odd and even poly-phase components, with

T. Bruylants et al. / Signal Processing: Image Communication 31 (2015) 112–133114



respect to a given dimension. Introducing these odd and

even poly-phase sub-grids, avoids using ambiguous termi-

nology like rows or columns in the volumetric context.

In [45] it is shown that any biorthogonal 1D-DWT can

be expressed as a finite sequence of prediction and update

steps, jointly called lifting steps. Given that D indicates

either H, V or A, the input signal S is first decomposed into

even (Sð0Þ0 ¼ fS½l0�jl0AΠ
D
0 g) and odd (Sð0Þ1 ¼ fS½l1�jl1AΠ

D
1 g)

components respectively. Then, in the subsequent stage, a

finite sequence of successive prediction and update steps

take place, grouped as pairs of lifting steps. Let M be the

total number of required lifting steps, then the ith predict

and update steps are respectively defined as

SðiÞ1 ½l1� ¼ Sði�1Þ
1 ½l1��Pd;ðiÞ

l1
ðSði�1Þ

0 Þ; 8 l1AΠ
D
1 ð3aÞ

SðiÞ0 ½l0� ¼ Sði�1Þ
0 ½l0�þUd;ðiÞ

l0
ðSðiÞ1 Þ; 8 l0AΠ

D
0 ð3bÞ

The prediction function Pd;ðiÞ
l1

ð�Þ and the update function

Ud;ðiÞ
l0

ð�Þ are functions operating on the sample values of the

previous and current lifting steps respectively and return-

ing a scalar output. The variable d represents a constant

vector depending on D being H, V or A as respectively

d¼ dH ¼ ð1;0;0Þ, d¼ dV ¼ ð0;1;0Þ or d¼ dA ¼ ð0;0;1Þ.

Finally, after M pairs of lifting steps, the even and odd

poly-phase values represent the result as respective low-

pass (LD) and high-pass (HD) coefficients, up to scaling

factors GL and GH:

HD½l1� ¼ GHS
ðMÞ

1 ½l1�; 8 l1AΠ
D
1 ð4aÞ

LD½l0� ¼ GLS
ðMÞ

0 ½l0�; 8 l0AΠ
D
0 ð4bÞ

The applied prediction and update functions are defined

by:

Pd;ðiÞ
l1

ðSði�1Þ
0 Þ ¼

X

KP �1

k ¼ �KP

cP;i;kS
ði�1Þ
0 ½l1�ð2kþ1Þd� ð5aÞ

Ud;ðiÞ
l0

ðSðiÞ1 Þ ¼
X

KU �1

k ¼ �KU

cU;i;kS
ðiÞ
1 ½l0�ð2kþ1Þd� ð5bÞ

where KP, cP;i;k, KU and CU;i;k, as well as GL, GH and M, are

constants determined by the applied DWT kernel. The

scaling factors GL and GH handle the normalization of the

transform to make it unitary, which is important in order

to achieve good lossy coding performances. The normal-

ization factors are computed from the synthesis wavelet

filters such that for one decomposition level, the total

noise energy is preserved in the reconstructed image,

when quantizing the coefficients with very high-rate

scalar uniform quantizers and assuming that the quantiza-

tion noise on the wavelet coefficients is white. Wavelet

coefficients in JPEG 2000 can be quantized due to either an

explicit but optional uniform with dead-zone quantization

step, or implicitly as the consequence of bit-stream trun-

cation during the Embedded Block Coding by Optimized

Truncation (EBCOT) process. In both cases, quantization is

considered to be uniform.

Typically, the kernel's predict- and update filter coeffi-

cients and the scaling factors are rational, or even irra-

tional, numbers, approximated as floating point numbers.

Hence, even if the input is given by integer numbers, the

output of the filtering operations is no longer guaranteed

to be integer. Moreover, due to its limited representation

precision, floating point arithmetic is not exact and thus

inherently introduces approximation errors, meaning that

both the prediction and the update functions are irrever-

sible in practice. In order to ensure perfect reversibility of

the transform, one needs to define specialized prediction

and update functions that rely on integer calculus alone to

prevent rounding errors. The integer-based prediction and

update functions are defined by

P̂
d;ðiÞ

l1
ðSði�1Þ

0 Þ ¼
X

KP �1

k ¼ �KP

cP;i;kS
ði�1Þ
0 ½l1�ð2kþ1Þd�

6

6

6

4

7

7

7

5 ð6aÞ

Û
d;ðiÞ

l0
ðSðiÞ1 Þ ¼

X

KU �1

k ¼ �KU

cU;i;kS
ðiÞ
1 ½l0�ð2kþ1Þd�þ0:5

6

6

6

4

7

7

7

5 ð6bÞ

where ⌊⋯c represents the mathematical floor operator. The

loss of accuracy by applying rounding in P̂
d;ðiÞ

l1
ð�Þ and Û

d;ðiÞ

l0
ð�Þ

depends on the kernel coefficient values and causes a loss in

the energy compaction efficiency of the transform. This

means that certain kernels are inherently more usable in a

lossless compression fashion than other kernels, depending

on their respective kernel constants and the ability to

maintain a minimal reduction of accuracy due to rounding.

As stated before, the lifting-based forward 1D-DWTD
described above is able to filter a discrete sampled signal

into a low-pass (LD) and a high-pass (HD) sub-band, along

dimension D. Assuming that the two-dimensional DWT

(2D-DWT) is separable, it can be written as the tensor

product of two separated one-dimensional DWTs (1D-

DWT). As such, applying the forward 1D-DWTV on an

input signal S, followed by application of a 1D-DWT H on

the resulting LV and HV is equivalent to the forward 2D-

DWT as used by JPEG 2000 Part 1 to perform a single level

of decomposition, yielding four sub-bands LHLV , LHHV ,

HHLV and HHHH (the H and V sub-indices will be omitted

from now on). As specified in JPEG 2000 Part 1, the

complete forward DWT step performs a multi-resolution

wavelet analysis, as introduced by Mallat in [46]. The full

decomposition then represents an iteration of consecutive

2D-DWT operations on the LL sub-bands generated at

different resolution levels (see Fig. 1(a)).

The 3D-DWT (see Fig. 1(b) and (c)) is similarly defined

as the tensor product of the independent horizontal,

vertical and axial 1D-DWTs. That is, for volumetric

instances of a given signal S, the 3D-DWTHVA can be

defined as the application of the 1D-DWTA, followed by

the 1D-DWTV and finally the 1D-DWTH, effectively decom-

posing S into eight wavelet subbands. With volumetric

Mallat (see Fig. 1(c)), only the resulting low-pass (LLL) sub-

band is further analyzed in order to generate a new

decomposition level.

2.2. Wavelet filters in JPEG 2000

JPEG 2000 supports two built-in wavelet filter banks,

labeled 5�3 and 9�7, both originating from the same

T. Bruylants et al. / Signal Processing: Image Communication 31 (2015) 112–133 115



family of biorthogonal Cohen-Daubechies-Feauveau (CDF)

wavelets [47]. With the minimum support requirement,

both of these wavelets can be constructed by factorizing a

maximally flat Daubechies or Dubuc–Deslaurier half-band

filter [48]. This means that the 5�3 kernel is in fact

constructed from the CDF 5/3, which is the shortest

symmetrical biorthogonal CDF wavelet with two vanishing

moments. Its synthesis scaling function or low-pass filter

is a linear B-spline. The 5�3 kernel is extremely useful for

supporting lossless compression because all of its filters

have rational coefficients with the dividends being powers

of two. Due to this property, achieving perfect reversibility

is possible without loss of performance, as rounding errors

can be perfectly controlled.

The 9�7 kernel, on the other hand, is a variation on

the CDF biorthogonal cubic B-spline construction, using

the shortest scaling of order four. It is a variation, because

the vanishing moments (6 and 2) are divided up equally on

both analysis and synthesis sides in a way that makes the

resulting basis functions almost orthogonal [48]. As such,

the 9�7 kernel has four vanishing moments per wavelet

filter. Moreover, this kernel is nearly orthogonal and has a

higher factorization-order that the 5�3 kernel. As such, it

also offers an improved energy compaction performance

for lossy compression compared to the 5�3 kernel.

An exhaustive study on the performance of various

types of wavelet kernels [49] drove the JPEG committee to

select the 5�3 kernel for lossless and the 9�7 kernel for

lossy compression for JPEG 2000. One notes also that in

literature, most new advancements utilize also the 5�3

and 9�7 kernels [32,35,42]. Consequently, we will also

investigate these kernels in the context of volumetric

image coding.

2.3. Alternative wavelet filters

Some proposals in the literature focus on directional

transforms [33,34], making use of the so-called (6, 6)

interpolation wavelet kernel [45] as an alternative to the

9�7 wavelet kernel. For some data sets, the (6, 6) kernel is

found to offer higher energy compaction efficiency than

the 9�7 kernel. Complexity-wise, the 9�7 and the (6, 6)

kernels are notably different, both with benefits and

drawbacks depending on the implementation architecture.

On one hand, the (6, 6) filter-bank can be implemented

through a single lifting step per filter, unlike the 9�7

kernel that requires two lifting steps per filter, which

might complicate efficient memory access implementa-

tions. On the other hand, the (6, 6) kernel requires more

operations per calculated coefficient than the 9�7 kernel

due to it's large support length of 21 samples. Still, a

complexity study of the kernels is beyond the scope of this

work and given the good overall performance of the (6, 6)

kernel, we decided to also investigate this kernel.

Finally, and in light of the fact that the study is being

performed in a volumetric imaging context, we also opted

to include results using the Haar filter. This wavelet kernel

has the shortest possible support length of one and

basically performs a linear prediction to generate the

high-pass coefficients. Therefore, it might prove beneficial

for the compression of volumetric medical image data sets

for which the axial sampling pitch (i.e. intra slice distance)

is much larger than the intra slice sampling pitch, as it is

often the case with modalities such as CT or Magnetic

Resonance Imaging (MRI).

2.4. Non-interpolated directional DWT

As shown in literature [32–35], it is possible to improve

transform efficiency by making use of directional wavelet

transforms. Modifying the previously defined classic or

non-directional 1D-DWTD to make it directional requires

the prediction function (5a) and the update function (5b)

to accept more generic direction vectors than d¼ dD

(recall that D can be H, V or A). As such, d now represents

the direction vector and is confined only by

l1�ð2kþ1ÞdAΠ
D
0 ; 8 l1AΠ

D
1 4kA ½�KP ;KP ½ ð7aÞ

l0�ð2kþ1ÞdAΠ
D
1 ; 8 l0AΠ

D
0 4kA ½�KU ;KU ½ ð7bÞ

This restriction implies that dAZ
3 (i.e. no interpolation

will be required) and that depending on D one of its

coordinates is always odd. Moreover, d is further restricted

so that the line segment between the grid origin ð0;0;0Þ

and d does not intersect with any other point inΠ to avoid

using linear dependent vectors. An encoder could be made

to try out all possible direction vectors within a well-

defined range of angles, in order to identify the best

possible direction in some rate-distortion sense. However,

it is more convenient in practice to predefine a discrete set

of direction vectors. This significantly limits the number of

possibilities that have to be evaluated by the transform

while encoding.

Fig. 1. Examples of possible decomposition structures for volumetric images. (a) 2-level 2D slice-base Mallat decomposition (i.e. without axial DWT).

(b) 2-level 2D slice decomposition, combined with a 2-level axial DWT. (c) 2-level 3D Mallat decomposition.
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2.5. Interpolated directional DWT

Subsequently, it is possible to modify the prediction

and update functions once more to allow direction vectors

with fractional coordinates (i.e. dAR
3). This implies that

the actual prediction and update values to be used by the

two functions need to be sub-sampled on the grid Π.

However, in order to respect the causality constraint for

the inverse directional DWT, it is required that the applied

interpolation function uses only samples from Π0 during

the predict step or samples from Π1 during the update

step. The implementation used in this work makes use of a

1D Lanczos [50] interpolation filter L(X) given by

LðXÞ ¼
sincðxÞsincðx=aÞ if �aoxoa

0 otherwise

�

ð8Þ

where sincðxÞ ¼ sin ðxÞ=x and with a¼2 in order to perform

the interpolation as in [32].

3. Investigated extensions for JPEG 2000

3.1. Volumetric coding based on direction-adaptive DWT

(DA-DWT)

3.1.1. Introduction

In practice, the directional DWT of Section 2.4 is always

employed in an adaptive way, such that the direction

vector d dynamically changes depending on spatial loca-

tion. This adaptability allows the DA-DWT to optimize

energy compaction by adjusting itself to distinct localized

directionality features in the image data. Doing so, requires

the inverse DA-DWT operation of the decoder to know

how the forward DA-DWT was applied. Hence, the enco-

der must also signal the directional information (i.e. the

applied direction per spatial location) in the code-stream.

It is important to stress that, for a direction-adaptive DWT

(DA-DWT) to be profitable, the associated rate cost for

encoding this directional information should be small

enough so as to not inhibit the overall rate-distortion gain

brought by the directional transform itself. Thus, it is

practically not possible to allow per pixel direction selec-

tion. Segmenting the image data and allowing the direc-

tional DWT to employ a suited direction per segment can,

however, achieve the trade-off between adaptability and

overhead. For this reason, various segmentation strategies

were proposed in the past, ranging from simple block-

based or tree-based segmentations [32,33,35] to fully

arbitrary and content dependent segmentation [34].

3.1.2. Block- and tree-based segmentation

The most straightforward approach is the application of

a block-based segmentation, where the transform seg-

ments the input into fixed-sized NXnNYnNZ blocks. Such

blocks are subsequently referred to as DA-blocks (distin-

guishing them from EBCOT code-blocks). This requires

only the signaling of the globally chosen DA-block dimen-

sions along with a selected direction vector for each DA-

block. Large DA-blocks result in fewer vectors to signal, but

at the same time also cause the transform adaptability to

be less granular, affecting its energy compaction perfor-

mance. Making this trade-off between the adaptability of

the directional transform and the associated overhead is

content dependent and can be effectively solved by intro-

ducing a tree-based segmentation to generate the blocks.

Using the tree enables measuring the splitting cost versus

the coding gain in a rate-distortion optimal way, up to a

predefined minimum DA-block size.

3.1.3. Generic segmentation

An alternative to the block-based and tree-based

approaches for segmenting the input image was presented

in the work of [34] by introducing a generic segmentation

driven DA-DWT (SD-DA-DWT). This work proposes an

image segmentation scheme at the sample resolution,

allowing for maximal directional adaptability of the trans-

form. The so-called Edgementation [51,52] algorithm is

used which performs a gradient-based segmentation fol-

lowed by rate-distortion-driven segment merging with

contour simplification to significantly limit the generated

overhead. For the contour simplification and contour

coding, the proposed algorithm uses the sophisticated

algorithm from [53]. However, for the compression of

volumetric medical data sets, this last approach has two

hurdles. First of all, determining the optimal segmentation

that captures directional features in a volumetric dataset is

complex. Secondly, the actually applied segmentation

description needs to be stored, which severely influences

the overall performance gains due to the incurred over-

head. For this reason, and given the typical slice-oriented

representation of medical volumetric images, our generic

segmentation implementation uses the 2D SD-DA-DWT of

[34].

3.1.4. Direction vector selection

Similar to [33,34], we use the L1-norm of the prediction

(i.e. high-pass) coefficients as the metric to compare all

direction vector candidates, with L1ðXÞ ¼
P

ijxij. In practice,

this means giving preference to those direction vectors

that minimize the sum of absolute values of the generated

prediction coefficients. Minimizing those coefficients

tends to also minimize the bit-rate contributions of the

high-pass sub-bands after quantization and entropy

coding.

3.1.5. Direction vector coding

To encode the selected direction vector information, we

employ a rather conventional signaling methodology that

is independent of the employed segmentation technique.

More precisely, direction vectors are coded as indexes to

the actual vectors in modulus ND for each of 1D-DWTD
steps independently, where ND represents the number of

possible direction vectors in the respective set for a given

D. The direction vectors each represent an angle and as

such their respective indexes are ordered in a circular way

to support predictive coding. The implementation predicts

each direction index from its respective causal neighbor-

hood and the resulting prediction error value is simply

sent to a ND-symbol arithmetic coder.

More advanced coding strategies, such as a tree-based

coding approach, can be useful to drive the direction

search in a rate-distortion optimized way. However, in

practice we found that for volumetric medical images, the
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bit-rate spent on directionality coding ranges from 0.001

to 0.05 bits per pixel (bpp) depending on the chosen DA-

block dimensions. This is extremely low, rendering any

potential gains frommore advanced techniques from small

to negligible.

3.2. Volumetric coding using block-based intra-band

prediction

It is observed that resulting wavelet coefficients gener-

ated by a forward wavelet transform of medical images

still contain anatomical symmetry related correlations. As

shown in [42], such remaining correlations can be effec-

tively exploited by applying a block-based intra-band

prediction scheme to further reduce the energy of the

sub-bands. We note that the work of [42] only exploits

intra-band redundancies in 2D slices, yet showing

improvements of up to 15% in bit-rate reduction compared

to JPEG 2000 2D for lossless compression. In light of our

search to try to improve the overall compression efficiency

for medical volumetric datasets, it is relevant to test the

performance of such an intra-band prediction scheme in

combination with and compared to the presented volu-

metric and directional extensions. Thus, based on [42] a

generic block-based prediction step was implemented to

take place just before EBCOT encodes each sub-band. With

squared prediction blocks of 16�16, 8�8 or 4�4 coeffi-

cients, let bi denote the current prediction block under

investigation. Then, let C ¼ fb0; b1;…; bi�1g denote the set

of previously encoded blocks in raster-scan order, serving

as candidates for the prediction of bi. Furthermore, let Tk(b)

with kA ½0;7� represent the spatial transform operator that

takes as input a prediction block b and creates as output

any of the eight geometrical possible permutations

through 901-rotation and/or mirroring operations. The

encoder then searches for the best prediction candidate

block bpAC with a corresponding Tt for bi that satisfies

L1ðT tðbpÞ�biÞ ¼mink;bACðL1ðTkðbÞ�biÞÞ.

Once bp and Tt are found, both the prediction residual

T tðbpÞ�bi and the original block bi are lossless encoded

with EBCOT and the comparison of the resulting rates

serves as the decision criteria to enable prediction or not

for bi. Additionally, to be able to decode the predicted

blocks, the prediction parameters (b,t) are encoded in the

final bit-stream using Exponential Golomb (k¼0) codes

[54] and arithmetic coding [55].

4. Volumetric compression framework, JP3DþDA

In the context of this work, a complete compression

system, called JP3DþDA, was designed and implemented

in Cþþ .1 It is in fact a JPEG 2000 Part 1 and Part 10

compliant codec extended to additionally support all of

the coding techniques investigated in this paper. More-

over, it can be used to generate results matching the JPEG

2000 Part 2 MCT setup as used by DICOM by disabling the

use of volumetric code-blocks. Fig. 2 schematically

presents the relevant parts of such a JPEG 2000 compliant

codec. Fig. 3, on the other hand, shows the extended

JP3DþDA codec employed in this work. Initially, the input

image is sent to the transform module, where a mode

switch allows to select the type of transform action to

perform. This is either an Edgementation based SD-DA-

DWT, a block-based DA-DWT, a non-directional DWT or no

transform action. With the selection of the first three

modes, the output represents the generated sub-band(s)

of a single-level decomposition step, along with side-

information. These sub-bands are subsequently sent back

as input data to the transform module, enabling multi-

level wavelet decompositions. Only in the case that no

transform was selected, the input data passes through

unaltered for further entropy coding in the entropy mod-

ule. The entropy module contains a switch for the intra-

band prediction step to allow further de-correlation of the

wavelet coefficients, before encoding them with EBCOT.

The module also handles coding the side-information and

multiplexes all the data into the final code-stream. We

would like to note that the optional interpolation for the

DA-DWT occurs in the direction search and the DA-DWT

blocks. The implemented wavelet filters for the experi-

ments are the reversible Haar and 5�3 kernels and the

irreversible 9�7 and (6, 6) kernels. Table 1 lists for each of

these four wavelet kernels their respective parameters and

kernel lifting coefficients.

For the DA-DWT modes, our codec implementation

works with a number of direction vectors that approx-

imate angle steps of 22.51 in the XY-plane, while for

directions involving the Z-dimension, angle steps of 451

were used, as shown in Fig. 4. For the Lanczos interpolated

mode, the direction vectors used represent the same

direction vectors as in the non-interpolated mode, but

with the coefficients normalized such that the leading

dimension coordinate becomes exactly 1 (i.e. x¼1 for H,

y¼1 for V and z¼1 for A).

The presented framework puts no restrictions on the

search for optimal directions for the DA-DWT. Unlike in

[32–34], it performs an exhaustive search, using the pre-

defined set of vectors, to achieve transform optimality by

maximizing its energy compaction into the low-pass sub-

bands. Doing so guarantees that our DA-DWT implementa-

tion will deliver optimal results in MSE sense. The increase

in time complexity for the exhaustive search is linearly

dependent on the number of employed direction vectors,

per applied directional 1D-DWT. Specifically, for our experi-

ments we used a set of 9 directions along all three

dimensions. Thus, for slice-based DA-DWT, this will lead

to a time-complexity increase relative to the conventional

Fig. 2. Overview schematic of the standard JP3D encoder.

1 The SD-DA-DWT implementation was done in MatLab as a separate

module.
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DWT by a factor of 18 per decomposed sub-band, while for

the axial DA-DWT, this factor will be 9. The encoding of the

direction vectors represent a negligible computational cost

compared to the other codec components.

Our previous work [56] shows that it is possible to

significantly reduce the computational complexity of the

direction vector search by a factor of 2.75, with only a very

modest penalty in the resulting rate-distortion perfor-

mance. Practical implementations of the DA-DWT can

and probably should make use of such complexity-

reduction techniques. Nonetheless, we focus in this paper

on maximizing and analyzing the rate-distortion perfor-

mance, optimizing the performance-complexity trade-off

being left as topic of further investigation.

5. Experimental results

5.1. Image data set

In order to provide representative results for medical

volumetric image coding, the experiments in this work uses

a data set consisting of various commonly used modalities,

Fig. 3. Schematic representation of the JP3DþDA encoder.

Table 1

Description of the wavelet kernels used for the experiments.

Kernel M KP KU GL GH i k cP;i;k cU;i;k

5�3 1 1 1 1 1 0 �1, 1 0.5 0.25

Haar 1 1 1 1 1 0 �1 1 0

0 1 0 0.5

9�7 2 1 1 0.812893066 1.230174105 0 �1, 1 1.586134342 �0.052980119

1 �1, 1 �0.882911076 0.443506852

(6, 6) 1 3 3 1.306139349 1.140657705 0 �1, 1 150/256 150/512

0 �2, 2 �25/256 �25/512

0 �3, 3 3/256 3/512

Fig. 4. Direction vectors for the non-interpolated 1D-DWTD. (a) 1D-DWTH, (b) 1D-DWTV and (c) 1D-DWTA.
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such as CT, MRI, and Ultrasound (US) scanners (see Table 2

and Fig. 6).

5.2. Bjøntegaard metric

For the evaluation of the lossy compression perfor-

mance, it is custom to provide a set of rate-distortion

curves where PSNR and bit-rate differences between two

or more methodologies can be read. However, given the

fact that we performed a huge amount of experiments for

a multitude of techniques and settings, it quickly became

impractical to simply provide the rate-distortion curves.

Instead we opted to make use of the Bjøntegaard Delta

Peak Signal Noise Ratio [57] (BD-PSNR) metric and in a

lesser extent also the Bjøntegaard Delta Bit Rate (BD-BR)

metric. Both metrics were originally designed within the

Video Coding Experts Group (VCEG) – ITU SG 16 – for the

comparison of various video coding techniques. BD-PSNR

measures the difference in compression performance by

calculating the average difference in quality between two

rate-distortion curves, represented by the gray area as

illustrated in Fig. 5. The result is a single PSNR value (in dB)

that facilitates the objective comparison of the investi-

gated compression techniques. Similarly, the average bit-

rate difference can be calculated to obtain a single BD-BR

value, representing the average relative difference in bit-

rate between the assessed and reference compression

techniques. Our particular implementation for calculating

the BD-PSNR and BD-BR values was written in Excel VBA

[58].

5.3. JPEG 2000 Parts 1, 2 and 10

5.3.1. Volumetric decomposition structures

There is a limit on the useful number of decomposition

levels that can be performed on the data to achieve quasi-

optimal energy compaction. Although performing more

decompositions than what is strictly necessary will not

worsen the compression efficiency, it is also preferable

to limit the number of decomposition levels in order to

reduce processor and memory loads of the DWT and to

facilitate efficient random-access functionality. Especially

the latter will be jeopardized by the fact that more

decomposition levels result in larger support widths and

hence poorer random access behavior. For labeling pur-

poses, we introduce the ðx; y; zÞ�notation, with x, y and z

representing the number of 1D-DWT decompositions

along H, V and A respectively, using the Mallat decom-

position structure.

Fig. 7(a) shows the impact of the number of in-slice

decompositions ðXYÞ, obtained with the 5�3 wavelet

kernel in the lossless compression scenario. The bars in

the graph each represent per image the loss in bit-rate

(bpp) relative to the result obtained with the (6, 6, 0)

decomposition. Moreover, the image names are annotated

with the absolute bit-rate (in bpp) when using the (6, 6, 0)

decomposition. These results clearly show that, generally,

four XY decomposition levels for the slices suffice to

efficiently compress the images.

Subsequently, Fig. 7(b) shows that along the axial (or Z-)

dimension near-optimal efficiency for lossless 5�3 is

already reached at two decomposition levels. For some of

the volumetric images, even a single decomposition along Z

suffices. Moreover, the difference in bit-rate between having

two decompositions and the best test case is well below

0.01 bpp for all images. Notice that here the annotated rates

refer to the (4, 4, 4) decomposition.

Table 2

Overview of the volumetric images used in the experiments.

Label Resolution

(w/h/d in px)

Dynamic range

(bpp)

0-order entropy

(bpp)

Pixel pitch

(w/h/d in mm)

Content

CT1 512/512/201 12 8.35 1.000/1.000/1.000 Axial thoracic lung scan

CT2 512/512/242 12 9.32 1.000/1.000/1.000 Axial thoracic lung scan

CT3 512/512/75 12 8.98 1.000/1.000/1.000 Axial spiral arterial scan

CT4 512/512/100 12 7.37 1.000/1.000/1.000 Axial scan of female cadaver

(slices 100–199)

CT5 512/512/672 12 6.62 0.977/0.977/2.500 Axial scan of human cadaver (full scan)

CT6 512/512/44 12 8.10 0.660/0.660/5.000 Helical scan of normal chest and

mediastinum

MRI1 432/432/250 12 5.13 0.579/0.579/0.579 Normal brain at 3.0 T

MRI2 256/256/200 12 6.15 0.860/0.860/0.800 Normal brain at 1.0 T

MRI3 256/256/100 12 6.41 0.977/0.977/2.000 Normal brain at 1.5 T

US1 500/244/201 8 7.05 NA Fetal spine Ultrasound

US2 352/242/136 8 7.27 NA Fetal brain Ultrasound

Fig. 5. Visual example of the area (or difference) between two curves,

used in order to determine the BD-PSNR.
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Similar results were found for the 9�7 (Fig. 8) and the

(6, 6) (Fig. 9) wavelet floating-point kernels. The bars in these

figures represent BD-PSNR values, using bit-rates of 0.50, 0.75,

1.0, 1.5, 2.0 and 3.0 bpp, to indicate the loss in quality (dB) w.r.t.

the best decomposition structure of each respective image.

5.3.2. Impact of selected wavelet filter

For the lossless compression case, it is well known that the

5�3 wavelet kernel performs overall better than the Haar

wavelet, largely due to its longer support length. Fig. 10 shows

that, even along the axial dimension where inter-pixel

Fig. 6. Selected single slice from each of the images in the data set, resampled to 8-bit for displaying. (a) CT1, (b) CT2, (c) CT3, (d) CT4, (e) CT5, (f) CT6,

(g) MRI1, (h) MRI2, (i) MRI3, (j) US1 and (k) US2.
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correlation is typically less pronounced than for the other two

dimensions, the Haar wavelet is less efficient than the 5�3

wavelet kernel.

We also notice that the performance gains between

having and not having the axial DWT is somewhat linked

with the axial resolution of the data set. Images with low

axial resolutions such as CT6 or MRI3 contain less inter-

slice correlations. Hence, the axial decomposition exhibits

relatively small bit-rate gains when compared to those of

the images with higher axial resolutions.

Fig. 7. Performance impact due to the applied decomposition structure with the lossless 5�3 wavelet kernel. (a) Varying in-slice only decompositions. The

bars represent the increase in bit-rate relative to the (6, 6, 0) decomposition, with the respective reference bit-rate (in bpp) for each image given between

parentheses. (b) Fixed 4 in-slice ðXYÞ and varying axial ðZÞ decompositions. The bars represent the increase in bit-rate relative to the (4, 4, 4) decomposition,

with the respective reference bit-rate (in bpp) for each image given between parentheses.

Fig. 8. Performance impact due to the applied decomposition structure in the lossy (0.50 bpp) to near-lossless (3.00 bpp) bit-rate range with the 9�7

wavelet kernel. (a) Varying in-slice only decompositions. The bars represent the loss in BD-PSNR (dB) relative to the (6, 6, 0) decomposition. (b) Fixed 4 in-

slice ðXYÞ and varying axial ðZÞ decompositions. The bars represent the loss in BD-PSNR (dB) relative to the (4, 4, 4) decomposition.

Fig. 9. Performance impact due to the applied decomposition structure in the lossy (0.50 bpp) to near-lossless (3.00 bpp) bit-rate range with the (6, 6)

wavelet kernel. (a) Varying in-slice only decompositions. The bars represent the loss in BD-PSNR (dB) relative to the (6, 6, 0) decomposition. (b) Fixed 4 in-

slice ðXYÞ and varying axial (Z) decompositions. The bars represent the loss in BD-PSNR (dB) relative to the (4, 4, 4) decomposition.

T. Bruylants et al. / Signal Processing: Image Communication 31 (2015) 112–133122



For lossy to near-lossless reconstruction, both the 9�7

and the (6, 6) kernels offer vastly improved compression

performances over the 5�3 kernel. Fig. 11 clearly indicates

that the two floating-point kernels easily outperform the 5�3

integer wavelet kernel (and as such also the Haar wavelet

kernel) with overall BD-PSNR improvements of up to 2 dB for

target bit-rates of 0.50, 0.75, 1.0, 1.5, 2.0 and 3.0 bits per pixel.

These results also show that the (6, 6) wavelet kernel outper-

forms the 9�7 wavelet kernel for 7 out of 11 images.

5.3.3. The impact of code-block sizes

In this section we assess the impact of the size of the

code-blocks used by EBCOT to code the resulting wavelet

coefficients. It is known that large code-blocks benefit

compression-wise from the relative long runs of bits sent

to the arithmetic coder allowing for better adaptation of the

statistical models as opposed to when using smaller code-

blocks with their inherent shorter adjustment period for

the arithmetic coder. Smaller code-blocks, on the other

hand, improve the random access and RD-optimization

granularity of the data. So, there is a trade-off to be made

between this granularity and the compression efficiency.

The resulting effect of the actual code-block sizes on the

compression efficiency is not easily observable without

experimental data due to the complex interactions between

the RD-optimizer, the decoding of truncated arithmetic bit-

streams and the small signaling overhead per code-block.

We exhaustively encoded our volumetric dataset using a

selected series of code-block dimensions, ranging from

16�16�1 to 64�64�32. To summarize the results and

because all datasets showed identical behavior for the given

code-block dimensions, we present the averaged results in

Table 3. Please note that volumetric code-blocks are only

supported by JP3D and not by JPEG 2000 Part 1 or Part 2,

which only support flat code-blocks (i.e. depth¼1).

The numbers confirm that the compression efficiency

improves by about 0.7 dB or 10% in bit-rate reduction by

switching from 16�16�1 to 32�32�1, and even further

by about 1 dB for 64�64�1. This is expected behavior

because the arithmetic coder can fully adapt to the

statistical properties of its input with larger code-blocks

(256, 1024 and 4096 coefficients per code-block respec-

tively). The same improvement can be obtained by

enabling the use of volumetric code-blocks, such as

16�16�16. We observe that the optimal results are

obtained using code-blocks of 32�32�32. Note that the

observed drop in coding performance starting from

64�64�32 (and onwards) is caused by the inherent loss

of granularity available to EBCOT for code-stream

truncation.

5.3.4. Intermediate conclusions

The experiments with volumetric medical images show

that it is possible to achieve significant improvements in

compression performance of 2 dB or more, using only JP3D

and compared to JPEG 2000 Part 1. The largest compres-

sion performance gain is caused by the extra axial wavelet

decomposition step. The results also indicate that for

medical images the (4,4,2) decomposition structure is

near-optimal and that performing more decompositions

would only waste computational resources. We note that

recent work [59] provides a novel analysis that models a

correlation coefficient for CT images, based on the acquisi-

tion parameters of the imaging device. This provides a

methodology that predicts whether an axial transform is

appropriate or not, before encoding the CT image and

potentially saving computational resources. Finally, the

introduction of a volumetric EBCOT entropy coder

improves the overall compression efficiency and it facil-

itates improved random access and scalability features

without any performance costs.

5.4. Block-based intra-band prediction

Looking at the various sub-bands after the multi-level

wavelet decomposition of medical volumetric images

Fig. 10. Difference in lossless rates using (4, 4, 2) decomposition with

5�3 and Haar wavelet kernels along axial dimension and code-blocks of

32�32�32. Bars represent the decrease in bit-rate w.r.t. the (4, 4, 0)

decomposition (i.e. 53/53/none, with the actual bit-rate in bpp between

parentheses).

Fig. 11. BD-PSNR gain for 9�7 and (6, 6) kernels versus the 5�3 kernel

while deploying a (4, 4, 2) decomposition.

Table 3

Averaged Bjøntegaard results of all volumetric medical data sets, given

per kernel w.r.t. EBCOT with code-blocks of 16�16�1. Applied decom-

position structure was (4, 4, 2) and target bit-rates ranged between 0.25

and 3.0 bpp. These results show the impact of varying code-block block

sizes for a given kernel, when compared with a 16�16�1 setting. For

each kernel, best results were observed using code-blocks of

32�32�32.

Code-block size

(W�H�D)

BD-PSNR for

5�3 (dB)

BD-PSNR for

9�7 (dB)

BD-PSNR for

(6, 6) (dB)

32�32�1 0.78 0.82 1.48

64�64�1 0.98 1.03 1.69

16�16�16 1.06 1.09 1.75

16�16�32 1.10 1.14 1.79

32�32�32 1.12 1.16 1.82

64�64�32 1.08 1.13 1.79
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reveals that the respective wavelet coefficients still show

structured symmetries. In order to further de-correlate

these remaining symmetries, we tested the potential of

applying the block-based intra-band prediction algorithm

as described in Section 3.2.

Table 4 shows the results obtained for lossless com-

pression with the 5�3 wavelet kernel using a (4, 4, 0)

decomposition for J2K with code-blocks of 32�32�1 and

a (4, 4, 2) decomposition with code-blocks of 32�32�32

for JP3D. The two columns show the respective relative

bit-rate reductions by enabling the slice-based prediction

algorithm. We point out that these results can still be

improved by designing a better tuned algorithm for

encoding the prediction parameters (b, t) (see Section

3.2). Even though the intra-band prediction clearly fails

on the MRI and US images, the results show that it is

indeed possible to achieve significant bit-rate reductions

on CT images by means of an extra intra-band prediction

step in the wavelet domain. Hence, it might be considered

as an extra coding mode, but not as a generic coding tool.

It is worth noting that the intra-band prediction algo-

rithm applies prediction only in the case that the resulting

energy of the predicted block is lower than that of the

original block. Thus the compression performance gain

mainly depends on the initial energy within a sub-band

before prediction. On one hand, images containing high

amounts of strong edges will still exhibit relatively high

energy content in the high-frequency wavelet sub-bands,

and thus also have a high potential for further energy

reduction by prediction. In contrast, images with primarily

smooth regions will have low energy content in the high

frequency bands, and hence, they will benefit less from an

additional intra-band prediction step. Moreover, larger

sub-bands will have more prediction blocks, given their

fixed minimum block size, meaning that more prediction

block candidates are available than with smaller sub-

bands.

5.5. Enabling DA-DWT

5.5.1. SD-DA-DWT

The application of the SD-DA-DWT methodology [34]

on volumetric medical datasets is more complicated due to

the fact that the described segmentation algorithm only

works on 2D images. As such, we opted to use the slice-

based approach where the slices of the volumetric datasets

are separately segmented and decomposed with the 2D

SD-DA-DWT using the (6, 6) kernel. Subsequently, we

apply EBCOT coding – instead of QT-L [60,61] – to encode

the coefficients. We selected code-blocks of 64�64�1 in

order to avoid inter-slice side effects caused by the 2D SD-

DA-DWT. We also decided to ignore the signaling over-

head of the segmentation in the final coding bit-rate

because no suitable volumetric segmentation compression

scheme was readily available. This means that the results

presented in Table 5 are only useful to determine whether

the SD-DA-DWT will be worth pursuing or not.

We observe that for medical volumetric images SD-DA-

DWT is unable to deliver any significant improvements in

overall compression efficiency. Only CT5 and CT6 show

modest compression performance gains, but we recall that

the signaling overhead is not included here. Moreover, for

some of the images, the SD-DA-DWT algorithm as used

here fails completely. This can be explained by the fact that

(a) the segmentation step is not able to always match

regions with similar directional features, and (b) the non-

alignment of the segmentation with the code-block struc-

ture of EBCOT negatively influences the entropy coder

efficiency. Hence, we conclude that no practical compres-

sion gain can be obtained from the segmentation-driven

transform for the compression of volumetric medical

images.

5.5.2. Block-based DA-DWT

The following set of experiments is used to assess the

potential gain in compression performance when switch-

ing from a traditional DWT to a block-based DA-DWT.

Results were obtained using the optimal DWT decomposi-

tion structure as determined by the previous experiments,

i.e. having 4 decompositions in the slice plane (along the

X- and Y-axes) and 2 decompositions along the axial

dimension (i.e. the (4, 4, 2) decomposition). Additionally,

as reference we use the (4,4,0) decomposition. The direc-

tionally enabled results have their first two decomposition

levels of the slices generated with the DA-DWT with DA-

blocks of 32�32�1. For each DA-block, the optimal

direction is selected from the set of 9 available vectors

by minimizing the L1-norm of the high-pass coefficients.

Recall that two vectors are selected per DA-block, i.e. one

for the 1D-DWTH and one for the 1D-DWTV. Entropy

coding of the coefficients is done with EBCOT usingTable 4

Bit-rate reduction after applying block-based intra-band prediction.

Image J2K bit-rate reduction (%) JP3D bit-rate reduction (%)

CT1 1.34 2.14

CT2 1.80 2.31

CT3 3.35 4.43

CT4 0.00 0.12

CT5 0.00 0.00

CT6 0.18 0.54

MRI1 0.00 0.00

MRI2 0.00 0.00

MRI3 0.00 0.00

US1 0.00 0.00

US2 0.00 0.00

AVG 0.61 0.87

Table 5

Results using one level of SD-DA-DWT on slices without overhead and

(4, 4, 0) decomposition w.r.t. classical DWT using the (6, 6) kernel.

Image BD-PSNR (dB) BD-BR (%)

CT1 0.172 �2.820

CT2 �0.036 0.963

CT3 0.062 �0.977

CT4 0.025 �0.338

CT5 0.451 �3.883

CT6 0.204 �3.540

MRI1 �0.039 0.332

MRI2 �0.010 0.097

MRI3 0.029 �0.344
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volumetric code-blocks of 32�32�32 pixels. Further-

more, we decided to include the coding overhead of the

directions in the results. As such, Fig. 12 shows the impact

on the lossless 5�3 compression efficiency for volumetric

medical images when enabling the slice-based DA-DWT.

From these results it can be clearly observed that the slice-

based DA-DWT has close to no effect on the lossless

compression efficiency. In fact, the only real compression

gain comes from the application of the volumetric decom-

position structure.

Similarly, for lossy to near-lossless compression, we

give results in Table 6 using the (6, 6) wavelet kernel,

calculated with bit-rates ranging from 0.25 to 3.0 bpp. All

decomposition structures from (1, 1, 0) up to (4, 4, 2) were

tested in bulk for each image, after which we selected the

best performing decomposition structure using JP3D com-

pliant settings (i.e. without DA-DWT) and the best per-

forming decomposition structure with slice-based DA-

DWT enabled. Again, the directional coding overhead

was accounted for this test. In line with the lossless coding

results, these numbers again confirm that enabling block-

based DA-DWT gives at best very modest compression

efficiency improvements.

5.5.3. Interpolated DA-DWT

In [33] the authors have already shown that the

introduction of interpolated coefficients to enable using

arbitrary direction vectors in the prediction and the

update steps of a DA-DWT does not help to improve the

compression efficiency. In fact, our results in Table 7

reconfirm this statement. The overall compression effi-

ciency improvement is insignificant, especially when com-

pared to the increased algorithmic complexity. We even

noted a slightly negative impact for some of the datasets

on the respective image quality when using interpolation.

5.5.4. Axial DA-DWT

Fig. 13 shows the impact of enabling DA-DWT for the

axial decomposition on volumetric medical images. The

reported results were generated using the 5�3 wavelet

kernel for horizontal and vertical decompositions (4

levels). For the axial decomposition both 5�3 and Haar

wavelet kernels were tested, where the selection of

optimal directions was based on minimizing the L1-norm

of the high-pass coefficients. Coefficients were lossless

encoded with code-blocks of 32�32�32.

These results indicate that with the current DA-DWT

implementation, no directional features can be effectively

exploited between slices and that in fact the optimal

direction vector appears to be d
A
0 in most cases. The small

performance penalty between 53/53/53 and 53/53/DA-53

is caused by the fact that the L1-norm selection criterion is

only an approximating metric for the final coefficient

coding bit-rate and, as such, will not necessarily select

the best direction vector in all situations.

5.5.5. Intermediate conclusions

Looking at both the block-based DA-DWT and the SD-

DA-DWT results, it is clear that typical volumetric medical

images, such as those in our test set, contain very few
Fig. 12. Bars represent bit-rate reductions (in bpp) and relative to the

(4, 4, 0) reference for lossless 5�3 using various decomposition struc-

tures with and without DA-DWT in slices. The respective reference rates

(in bpp) are given between parentheses.

Table 6

Best-of results showing the impact of enabling the non-directional axial

decomposition with and without slice-based DA-DWT on medical volu-

metric images. Directions selection uses L1-mode. Entropy coding is

EBCOT with 32�32�32 code-blocks. All values are in reference to

(4,4,0) coding.

(6, 6)

kernel

Best JP3D Best JP3DþDA

BD-PSNR

(dB)

BD-BR

(%)

BD-PSNR

(dB)

BD-BR

(%)

CT1 2.68 �29.27 2.72 �30.99

CT2 1.40 �19.44 1.40 �19.44

CT3 2.51 �31.42 2.51 �31.51

CT4 1.49 �15.20 1.50 �15.44

CT5 3.33 �29.35 3.49 �31.40

CT6 0.50 �5.62 0.58 �6.74

MRI1 3.16 �20.05 3.16 �20.05

MRI2 4.52 �38.56 4.52 �38.66

MRI3 0.51 �5.38 0.52 �5.44

US1 1.26 �14.43 1.26 �14.43

US2 0.46 �5.38 0.46 �5.38

Table 7

Average Bjøntegaard results of all volumetric images when switching to

interpolated direction vectors with in-slice (6, 6) DA-DWT. Entropy

coding was done using code-blocks of 32�32�32 and target bit-rates

between 0.50 and 3.0 bpp.

Mode BD-PSNR (dB) BD-BR (%)

iDA-(4, 4, 0) 0.023 �0.215

iDA-(4, 4, 2) 0.008 �0.087

Fig. 13. Shows the effect of enabling DA-DWT for the axial decomposi-

tion. The decomposition structure is (4, 4, 2) and bars represent the

decrease in bit-rate w.r.t. the (4, 4, 0) decomposition (larger is better). The

respective reference rates (in bpp) are given between parentheses.
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directional features that can be exploited. Moreover, SD-

DA-DWT requires specifying a set of parameters, such as a

smallest region size or the number of final regions that are

difficult to optimize for. The presented results were

obtained by varying these segmentation parameters and

only keeping the best found results (to no effect) to report.

As such, it can be concluded that the usefulness of the

investigated directional DWTs essentially depends on the

tradeoff between algorithmic complexities and potential

compression efficiency gains. In cases where the data does

contain high directionality features, it might make sense to

apply the DA-DWT, provided that the generated direc-

tional overhead can be managed effectively [32–34].

However, for typical volumetric medical images like the

ones we tested on, the potential gain in compression

efficiency seems small.

5.6. Comparison with H.265/MPEG-H HEVC and JPEG-LS

To put the previously presented compression results

into perspective, we also include results obtained with

(1) the upcoming H.265/MPEG-H HEVC [41] video coding

standard and (2) the JPEG-LS [11,12] image coding stan-

dard. H.265/MPEG-H HEVC is a promising state-of-the-art

video codec that supports lossy-to-lossless compression

for 2D and 2DþT sequences. Moreover, it also provides an

excellent intra-frame coder that competes well with image

coding standards, such as JPEG 2000 and JPEG-LS. Since

volumetric medical images can be considered to be 2DþT,

with T being the slice dimension, an evaluation of the rate-

distortion performances of H.265/HEVC is valuable. JPEG-

LS, on the other hand, is a low-complexity near-lossless to

lossless image codec that offers good lossless compression

performance.

For our experiments, we used the H.265/HEVC refer-

ence software (SVN revision 4089, range extensions

branch, version 15.0_RExt8.0, compiled with high bit-

depth support) which is freely available for download

[62]. We used two of the default configurations that

accompany the source code; 1) the all intra-frame

(HEVC-AI) configuration and 2) the random-access

(HEVC-RA) configuration. In order to maximize the

compression performance, we enabled full-frame search

(SearchRange¼0) on both configurations and in the case

of the HEVC-RA we changed the intra period to encode

only a single initial key-frame (IntraPeriod¼�1). We

recognize that this sacrifices the original random access

intention of that configuration, but for this work we

prioritize on measuring the maximum compression per-

formance potential of H.265/HEVC. Please note that

enabling lossless compression in the H.265/HEVC refer-

ence software additionally requires enabling both the

TransquantBypassEnableFlag and CUTransquantBypass-

FlagValue options [62].

The results in Table 8 show that for the given content

JP3D delivers the overall best lossless compression perfor-

mance. When combined with the intra-band block-predic-

tion the compression performance improves even more.

Only on CT5, MRI1 and MRI3 H.265/HEVC was able to

outperform JP3D and JP3DþBP. It needs to be mentioned

that JPEG 2000 with Part 2 performs very similar to JP3D.

Lossy results are given in Fig. 14 where we compared

HEVC-AI, HEVC-RA, JPEG 2000 Part 1 and JP3D. The JPEG

2000 results were obtained using the 9�7 wavelet kernel

with code-blocks of 64�64�1 for JPEG 2000 Part 1 and

32�32�32 for JP3D. We also point out that the curves are

drawn as-is, based on the numeric results that were

measured. From these results JP3D is the best performing

codec for all high bit-depth images – i.e. all but the

UltraSound images. Only with CT3 it seems that H.265/

HEVC surpasses JP3D around the 1.5 bpp bit-rate. As

shown, many of the HEVC curves stop early at relatively

low bit-rates, without reaching the requested high quality

point, even though the chosen QP value in these cases was

equal to 1. For example, the H.265/MPEG-H HEVC codec

was unable to compress the CT5 image at any bit-rates

above 1 bpp. This suggests that the current H.265/HEVC

standard still needs tuning with respect to the quantiza-

tion parameter values for high bit-depth image content.

We expect that this issue can and will be resolved.

However, this signifies that using H.265/HEVC for com-

pression of volumetric medical images is not yet straight-

forward, while the decade old JPEG 2000 standard just

works as designed, regardless of the sample bit-depth.

Table 8

Comparison of lossless rates (in bpp) obtained with respectively JPEG-LS, H.265/HEVC All-Intra, H.265/HEVC Random Access, JPEG 2000 Part 1 with (4, 4, 0)

decomposition, JPEG 2000 Part 2 using (4, 4, 2), JP3D using (4, 4, 2) and JP3D with intra-band block prediction enabled. For the JPEG 2000-based compression,

the results use the 5�3 wavelet kernel and code-blocks sizes that performed best (being 64�64�1 and 32�32�32). The best result for each image is

presented in bold.

Image JPEG-LS (bpp) HEVC-AI (bpp) HEVC-RA (bpp) J2K-P1 (bpp) J2K-P2 (bpp) JP3D (bpp) JP3DþBP (bpp)

CT1 5.42 5.55 5.01 5.52 4.93 4.91 4.80

CT2 7.83 7.93 7.73 7.93 7.65 7.63 7.45

CT3 5.89 6.14 5.69 5.87 5.46 5.44 5.20

CT4 4.01 4.28 4.12 4.09 3.88 3.86 3.85

CT5 2.99 3.07 2.75 3.20 2.87 2.84 2.84

CT6 4.91 5.12 5.08 5.17 5.05 5.02 5.00

MRI1 3.73 3.71 3.37 3.89 3.55 3.52 3.56

MRI2 4.58 4.68 4.11 4.72 4.14 4.09 4.12

MRI3 6.53 6.50 6.46 6.69 6.62 6.58 6.63

US1 5.20 5.48 5.23 5.07 4.85 4.82 4.82

US2 5.47 5.77 5.68 5.33 5.25 5.21 5.21
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Fig. 14. Comparison of lossy (between 0.50 and 3.00 bpp) compression with H.265/HEVC All-Intra, H.265/HEVC Random Access, JPEG 2000 Part 1 with

(4, 4, 0) decomposition, JPEG 2000 Part 2 using (4, 4, 2), JP3D using (4, 4, 2) and JP3D with intra-band block prediction enabled. For the JPEG 2000-based

compression, the results use the 9�7 wavelet kernel and code-blocks sizes that performed best (being 64�64�1 and 32�32�32). (a) CT1, (b) CT2,

(c) CT3, (d) CT4, (e) CT5, (f) CT6, (g) MRI1, (h) MRI2, (i) MRI3, (j) US1 and (k) US2.

Table 9

Execution times in million pixels per second (MP/s) for the encoding of volumetric medical images using respectively JPEG-LS, H.265/HEVC All-Intra and

H.265/HEVC Random Access, followed by respectively JPEG 2000 Part 1, JP3D and JP3DþDA with 5�3 and 9�7 wavelet kernels. Bottom row reports the

averages over the complete data set.

Image JPEG-LS

(MP/s)

HEVC-AI

(MP/s)

HEVC-RA

(MP/s)

5�3 kernel 9�7 kernel

J2K-P1 (MP/s) JP3D (MP/s) JP3DþDA (MP/s) J2K-P1 (MP/s) JP3D (MP/s) JP3DþDA (MP/s)

CT1 12.43 0.11 0.02 1.87 1.76 0.11 1.41 1.30 0.07

CT2 10.92 0.10 0.02 1.67 1.52 0.11 1.27 1.17 0.07

CT3 11.81 0.11 0.02 2.01 1.83 0.11 1.41 1.35 0.07

CT4 14.68 0.12 0.02 2.30 2.07 0.11 1.60 1.47 0.07

CT5 15.95 0.12 0.02 2.16 2.04 0.11 1.55 1.40 0.07

CT6 14.20 0.12 0.02 2.20 1.82 0.11 1.45 1.42 0.07

MRI1 17.95 0.12 0.03 1.91 1.79 0.12 1.41 1.34 0.06

MRI2 13.70 0.12 0.02 2.22 2.00 0.11 1.50 1.46 0.07

MRI3 10.76 0.12 0.02 1.57 1.40 0.11 1.17 1.10 0.07

US1 13.80 0.10 0.02 1.86 1.75 0.11 1.41 1.27 0.07

US2 13.33 0.10 0.02 1.96 1.79 0.11 1.45 1.30 0.07

Average 13.59 0.11 0.02 1.98 1.80 0.11 1.42 1.33 0.07
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Finally, it has to be noted that JP3D is a scalable codec

depicting an extremely fine granularity while HEVC is not.

Scalable extensions of H.265/HEVC are proposed though

delivering a coarse scalability at the expense of some loss

in terms of rate-distortion performance. Hence, with this

respect the reported experimental results were obtained

under very favorable test conditions for H.265/HEVC.

5.7. Computational complexity

In this section we present a selection of binary execution

times on a common hardware platform (Dual Intel Xeon

E5620 with 144 GB RAM) in order to provide some indica-

tion of the algorithmic complexity of the aforementioned

techniques. We opted to also include H.265/HEVC results to

provide an indication about the complexities of the tested

algorithms. However, it is of utmost importance to under-

stand that a direct comparison between two very different

implementations, in this case being our JP3DþDA codec and

the H.265/HEVC codec, is not straightforward to do, espe-

cially with these codecs representing two fundamentally

different techniques. Moreover, the implementations used in

this paper were not optimized for computational perfor-

mance. Hence, the reader should interpret the reported

computational complexity results with caution and rather

consider them as indicative measurements. Comparisons

between the different JPEG 2000 implementations are of

course much more informative, since they all build upon the

same code base.

The results, presented in Table 9, show that the H.265/

HEVC codec perform at consistent speeds, regardless of the

input data. As expected, the All-Intra mode is a magnitude

faster than the Random-Access mode. The pixel processing

speed of our codec, on the other hand, is dependent on the

image content. This is caused by the variation in the

number of bit-planes that EBCOT needs to process while

encoding the wavelet coefficients, which heavily depend

on the input data, the transform and the decomposition

Fig. 15. MOS results using 15 observers. (a) CT1 (slice 20) with 9�7, (b) CT1 (slice 20) with (6, 6), (c) CT2 (slice 20) with 9�7, (d) CT2 (slice 20) with (6, 6),

(e) MRI3 (slice 20) with 9�7 and (f) MRI3 (slice 20) with (6 ,6).
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structure. Furthermore, the difference between the 5�3

and the 9�7 wavelet kernels is mainly due to the

difference in processing speed between integer and

floating-point calculations on Intel CPU architectures. The

integer 5�3 kernel is clearly faster than the 9�7 kernel.

JPEG-LS is extremely fast and easily outperforms the other

codecs in computational load.

5.8. Visual comparisons

To complete this work we performed subjective experi-

ments in order to assess the perceptual quality of the

discussed methodologies. In particular we show the

impact on the perceptual quality of medical images when

using directional wavelet transforms, specifically at bit-

rates below 2.0 bpp. The observers were all experts in the

field of image and video coding and are able to easily

recognize compression artifacts that typically occur at low

bit-rates due to the applied compression techniques. We

advise that further studies be performed with professional

radiologists as observers if clinical validation is required.

Still, our perceptual study is a critical first step to deliver

unbiased verification of the usefulness of the described

coding methodologies in the context of medical volumetric

image coding.

The experiments were conducted in a well-controlled test

environment that complies with the specifications of ITU-R

BT.500-11 [63]. The test room is illuminated to 64 lux with

indirect fluorescent tube lights having a color temperature of

6500 K and is completely sealed to block external light

sources. The walls and ceiling are painted in mid-gray (RAL

7047). As such, the room conforms to the CIE Standard

Illuminant D65 specification. The actual display device used

during the experiments is a medical grade Barco Coronis

Fusion 6MP with a DICOM calibrated color profile.

The experiments use a single slice (slice 20) from a

selection of 3 medical images (CT1, CT2 and MRI3) encoded

at bit-rates of 0.25, 0.5, 1 and 2 bpp. For the wavelet trans-

form we applied (6, 6) and 9�7 kernels using (4, 4, 0) and

(4, 4, 2) decomposition modes, both with and without DA-

DWT. The DA-DWT enabled compression uses DA-blocks of

8�8�1 and 32�32�1 as is indicated in the results. The

presented images were manually converted to 8 bit pixel

depth enabling them to be properly shown on the monitor.

This conversion was done in a comparable way as used in

medical image viewers by manually selecting the lower and

upper luminance values that map to 0 and 255 respectively,

taking care that the resulting image clearly shows useful

content.

For the experiments, we employed the simultaneous

double-stimulus test [63] in which 15 observers were asked

to score the quality of the impaired image with a discrete

0–100 scale score. A score of 0 represents visible and

extremely annoying compression artifacts while a score of

100 means that visually no difference with the original image

is noticeable. The presented results are the Mean Observer

Scores (MOS), representing the average score per test-point

over all observers. The raw scores were first normalized and

outliers were removed [64]. All presented results are accom-

panied with the 95% confidence interval (CI95), indicated by

error bars.

Fig. 15 shows the MOS of the observed images. These

subjective results confirm what was observed from the

previously described objective BD-PSNR-based results.

Fig. 16. Visual crops of CT1 (a–d) and CT2 (e–h), using the (6, 6) kernel and resampled to 8 bit. (a) Crop of original CT1, (b) (4, 4, 0) at 0.25 bpp, (c) (4, 4, 2) at

0.25 bpp, (d) DA-(4, 4, 0) at 0.25 bpp, (e) Crop of original CT2, (f) (4, 4, 0) at 1 bpp, (g) DA-(4, 4, 0) at 1 bpp and (h) (4, 4, 2) at 1 bpp.
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Regardless of the content, no significant visual differences

exists between the classic DWT and the directional adap-

tive DWT. E.g. in the case of the (4, 4, 2) decomposition

with and without DA-DWT the curves are within the CI95

boundaries of each other. This shows that the visual

differences are extremely moderate to non-existent. On

the other hand, the subjective results also show a notice-

able difference between the (4, 4, 0) and the (4, 4, 2)

decompositions at bit-rates below 2 bpp, suggesting that

the final image quality indeed benefits from the extra axial

wavelet decompositions. At very low bit-rates, compres-

sion artifacts such as wavelet ringing and blurring effects

manifested more clearly. Fig. 16 provides some crops to

visualize the observed quality for two of the tested images.

5.9. Summarizing rate-distortion performance tables

Finally, we provide plain rate-distortion figures in

Tables 10 and 11 to supplement the previously reported

BD-PSNR values.

Table 10

Summary of the best of lossy compression performance results for 9�7 and (6,6) kernels at target bit-rates 0.5, 1.00, 1.50 and 3.00 bpp. J2K-P1¼ JPEG 2000

Part 1, J2K-P2¼ JPEG 2000 Part 2, JP3D¼ JPEG 2000 Part 10, JP3DþDA¼ JP3D with DA-DWT enabled. Code-block sizes for J2K-P1 and J2K-P2 were

64�64�1, while JP3D and JP3DþDA used 32�32�32.

Image Bit-rate PSNR for 9�7 (dB) PSNR for (6,6) (dB)

(bpp) J2K-P1 J2K-P2 JP3D JP3DþDA J2K-P1 J2K-P2 JP3D JP3DþDA

CT1 3.00 67.68 70.78 70.89 70.85 67.59 70.91 71.01 70.94

CT1 1.50 59.58 62.07 62.18 62.15 59.58 62.27 62.37 62.31

CT1 1.00 56.68 58.92 59.01 59.00 56.76 59.09 59.19 59.15

CT1 0.50 52.22 54.74 54.83 54.98 52.42 54.95 55.05 55.13

CT2 3.00 54.01 55.08 55.22 55.12 53.86 55.20 55.33 55.20

CT2 1.50 45.14 46.69 46.80 46.75 45.17 46.49 46.60 46.53

CT2 1.00 42.47 43.67 43.77 43.74 42.35 43.64 43.74 43.69

CT2 0.50 39.17 40.64 40.75 40.76 39.07 40.55 40.64 40.63

CT3 3.00 66.10 67.86 68.01 67.87 66.27 68.00 68.13 68.04

CT3 1.50 56.74 58.98 59.09 59.01 56.86 59.04 59.12 59.07

CT3 1.00 53.33 55.69 55.78 55.72 53.37 55.84 55.91 55.88

CT3 0.50 49.03 52.10 52.19 52.18 49.15 52.16 52.23 52.23

CT4 3.00 75.49 76.73 76.84 76.76 75.81 77.00 77.09 77.06

CT4 1.50 65.26 66.78 66.91 66.79 65.82 67.33 67.48 67.38

CT4 1.00 61.16 62.54 62.69 62.60 61.60 63.02 63.15 63.09

CT4 0.50 55.57 57.42 57.58 57.60 55.88 57.76 57.96 57.98

CT5 3.00 80.31 83.87 84.17 84.11 80.20 83.01 83.19 83.13

CT5 1.50 71.67 73.97 74.09 74.04 71.68 74.12 74.25 74.19

CT5 1.00 67.05 70.08 70.24 70.27 67.08 70.15 70.29 70.29

CT5 0.50 58.81 63.65 63.90 64.31 58.94 63.86 64.08 64.39

CT6 3.00 67.59 68.22 68.41 68.47 67.53 68.18 68.35 68.44

CT6 1.50 57.12 57.74 57.83 57.86 57.14 57.61 57.72 57.73

CT6 1.00 53.69 54.37 54.46 54.48 53.58 54.26 54.36 54.38

CT6 0.50 49.73 50.27 50.36 50.47 49.60 50.16 50.27 50.40

MRI1 3.00 76.35 78.89 79.03 78.98 76.58 79.09 79.16 79.12

MRI1 1.50 63.09 66.02 66.13 66.05 63.52 66.59 66.69 66.65

MRI1 1.00 57.17 60.37 60.51 60.44 57.62 61.02 61.16 61.11

MRI1 0.50 49.12 52.79 52.99 52.95 49.45 53.37 53.55 53.53

MRI2 3.00 59.36 63.48 63.69 63.60 59.49 64.10 64.31 64.24

MRI2 1.50 49.15 53.51 53.67 53.62 49.23 54.18 54.33 54.27

MRI2 1.00 45.73 49.71 49.86 49.82 45.72 50.29 50.42 50.37

MRI2 0.50 41.02 45.00 45.12 45.10 41.03 45.36 45.49 45.46

MRI3 3.00 60.88 61.02 61.16 61.11 60.66 60.95 61.11 61.00

MRI3 1.50 53.89 54.15 54.29 54.24 53.69 53.96 54.09 54.03

MRI3 1.00 50.61 51.16 51.26 51.26 50.42 51.08 51.18 51.16

MRI3 0.50 44.05 45.26 45.45 45.45 44.01 45.17 45.29 45.29

US1 3.00 46.46 47.60 47.74 47.72 47.46 48.38 48.53 48.51

US1 1.50 37.76 38.84 38.99 38.98 38.16 39.26 39.40 39.37

US1 1.00 34.16 35.57 35.73 35.73 34.46 35.72 35.86 35.85

US1 0.50 30.15 31.67 31.78 31.76 30.11 31.75 31.89 31.88

US2 3.00 44.94 45.80 45.93 45.92 45.90 46.42 46.59 46.57

US2 1.50 36.33 36.67 36.77 36.75 36.77 37.19 37.36 37.35

US2 1.00 32.92 33.07 33.24 33.24 32.85 33.22 33.36 33.35

US2 0.50 28.67 29.24 29.39 29.37 28.68 29.06 29.19 29.19
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6. Conclusions

First of all, in medical imaging, it is not well defined

what the optimal and most efficient settings for data

compression are. The actual context that determines when

to use lossless versus lossy compression and the actual

parameters for tweaking the compression system are left

to the judgment of the implementer and the use case.

Compression standards, such as JPEG or JPEG-LS, have a

very limited set of options regarding their setup. However,

in the case of JPEG 2000 a lot more options are available. In

this work, we have spent a huge effort into testing a wide

range of the possible settings for the compression of

volumetric medical images. Our results show that for

volumetric medical images the addition of two wavelet

decompositions along the axial dimension suffices to

optimize the compression efficiency in all cases for all of

the tested images. This means that the (4, 4, 2) wavelet

decomposition structure is in practice the advisable choice

for the compression of volumetric medical images.

Secondly, we also show that the addition of directional

adaptive wavelet filters can improve the compression

efficiency in some specific cases, but at the cost of

increased time and memory complexities. However, given

that the additional complexity cost is huge, and that the

achieved gains are often minimal, we conclude that the

use of directional wavelet transforms for the compression

of volumetric CT, MRI or US image data is not worth the

effort.

Third, it seems that the addition of an intra-band predic-

tion step can slightly improve the compression performance

for a wavelet based coding system for some specific images,

but again not without increasing the codec's complexity.

Moreover, efficiently managing the extra overhead is not

without difficulties and requires further study to avoid negat-

ing the achievable transform gains.

Fourth, when comparing JPEG 2000 with H.265/HEVC

we see that on most images JP3D, optionally with intra-

band block prediction, outperforms H.265/HEVC for almost

all images. Though, for those images where H.265/HEVC is

better, the bit-rate improvement is also significant. This

suggests that H.265/HEVC might not yet be well-tuned for

the compression of higher bit-depth image data (12 and 15

bits per sample). We also point out that, unless the All

Intra configuration is used, H.265/HEVC cannot not offer

random access functionality for partial and progressive

decoding of images, like JPEG 2000 inherently does. More-

over, the time-complexity experiments indicate that

H.265/HEVC demands a significantly higher computational

cost compared to the JPEG-2000 based coding techniques.

And lastly, given the fact that JP3D uses only core

technology of JPEG 2000 Part 1, we strongly recommend

it as the compression standard to use on volumetric

medical images. The JP3D standard does not suffer from

ambiguity problems concerning the signaling of slice

versus component data, it is not more complex than JPEG

2000 Part 1 and it offers significant improved compression

performances through use of both volumetric wavelets

and code-blocks. Compared to JPEG 2000 Part 2 MCT, JP3D

offers very similar compression performance, but it also

offers volumetric support for both code-blocks and region-

of-interest functionality. Even at very low bit-rates where

JPEG 2000 2D fails entirely regarding visual quality, the

volumetric counterpart is able to deliver images at a visual

quality that can still be considered useful.
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