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Abstract. In order to correctly analyze aeroengine whole-body vibration signals, Wavelet Correlation Feature Scale Entropy

(WCFSE) and Fuzzy Support Vector Machine (FSVM) (WCFSE-FSVM) method was proposed by fusing the advantages of the

WCFSE method and the FSVM method. The wavelet coefficients were known to be located in high Signal-to-Noise Ratio (S/N

or SNR) scales and were obtained by the Wavelet Transform Correlation Filter Method (WTCFM). This method was applied to

address the whole-body vibration signals. The WCFSE method was derived from the integration of the information entropy theory

and WTCFM, and was applied to extract the WCFSE values of the vibration signals. Among the WCFSE values, the WCFSE1

and WCFSE2 values on the scale 1 and 2 from the high band of vibration signal were believed to acceptably reflect the vibration

feature and were selected to construct the eigenvectors of vibration signals as fault samples to establish the WCFSE-FSVM

model. This model was applied to aeroengine whole-body vibration fault diagnosis. Through the diagnoses of four vibration fault

modes and the comparison of the analysis results by four methods (SVM, FSVM, WESE-SVM, WCFSE-FSVM), it is shown

that the WCFSE-FSVM method is characterized by higher learning ability, higher generalization ability and higher anti-noise

ability than other methods in aeroengine whole-vibration fault analysis. Meanwhile, this present study provides a useful insight

for the vibration fault diagnosis of complex machinery besides an aeroengine.

Keywords: Wavelet Correlation Feature Scale Entropy (WCFSE), Fuzzy Support Vector Machine (FSVM), aeroengine whole-

body vibration, fault diagnosis, WCFSE-FSVM method

1. Introduction

With the increase of the jet thrust, rotating speed, structural dynamic strength and vibration load of aeroengine,

more and more vibration faults occur during the operating phases. The vibration fault status is required to be ac-

curately monitored and diagnosed to improve aeroengine security, reliability and lifespan, enhance the aircraft air-

worthiness and reduce aircraft accidents and maintenance costs. The whole-body vibration fault is one of the faults

seriously impacting the aeroengine performance. Excessive vibration phenomenon during the flight operation al-

ways increase the abrasion and fatigue damage and even cause the rubbing fault and system damage. The aeroengine
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whole-body vibration fault diagnosis is kept to be one of the focus issues in academic researches and industrial appli-

cations [1]. Many vibration fault diagnosis techniques (wavelet (packet) analysis [2–5], information entropy [6–9],

Support Vector Machine (SVM) [9–13], etc.) is kept developing since 1980s. Fault diagnosis generally compromises

the feature extraction phase and the state recognition phase.

The feature extraction is a big bottleneck and directly affects the accuracy and validity of aeroengine whole-

body vibration fault diagnosis because of the existence of nonlinear and unstable weak fault signals with noise

or outliers. In fault diagnosis, the extracted feature is required to reflect the system operating condition and to

retain high sensitivity against abnormal signal. The wavelet entropy theory proposed in [2,6] based on wavelet

analysis technique is demonstrated to be effective in processing vibration signals in general industrial equipment,

however, directly employing the wavelet entropy method in aeroengine whole-body vibration fault diagnosis is

unreasonable since the fault signals with unclear information and low SNR are always disturbed by noise and

outlier. The Wavelet Corrective Feature Scale Entropy (WCFSE) method in [8] is capable to effectively overcome

the weakness of wavelet entropy method due to the WCFSE method with the scale wavelet coefficients in scale

domain managed to consider the complexity and uncertainty of the system model [4,5,7], which implies the failure

characteristic information by selecting effectively the WCFSE values to construct the feature vectors for aeroengine

whole-body vibration fault diagnosis.

On the other hand, the state recognition establishes a reliable state classifier by solving the eigenvectors. The

Fuzzy SVM (FSVM) applies fuzzy membership function in the SVM method to make sure different samples have

different penalty factors (different contributions) by constructing different target functions. Therefore, the weak fault

samples with noise and abnormal information may be effectively separated from other samples in [11–16].

To improve the precision of aeroengine whole-body vibration fault diagnosis, the Wavelet Corrective Feature

Scale Entropy and Fuzzy Support Vector Machine (WCFSE-FSVM) method is proposed to extract the fault features

based on the WCFSE method and to build the fault diagnosis model based on the FSVM method.

2. The WCFSE method for feature extraction

In this section, the WCFSE method for fault diagnosis is detailed based on the Wavelet Transform Correlation

Filter Method (WTCFM).

2.1. The WCFSE method

Information entropy was first proposed to measure information. Assuming that the status of an uncertain system

is denoted by a random variable X within finite values, where the probability of xj is pj = p{X = xj} (j =

1, 2, · · · , l) and
∑l

j=1 pj = 1, so the information quantity Ij of xj and the information entropy H(X) of X in [6–

8] are

Ij = − logPj

H(X) = −

l
∑

j=1

pj log pj
(1)

where pj log pj = 0 when pj = 0.

For rotor system, the information entropyH denotes the information measure of the vibration signal under a given

condition, i.e., the H measures the uncertainties of rotor vibration. The method is able to be applied to reasonably

estimate the complexity of random signal of the vibration system. The information entropy value H with disordered

level of a signal shows positive variation [6]. The WTCFM processes a vibration signal x(t) [4,5,8] and accurately

extract the important signal features by the correlative operation of wavelet transformed coefficients in each scale.

The method is reported to be robust for extracting weak fault information in [7]. The wavelet coefficients Dj =
{dj(k), k = 1, 2, · · · , N ; j = 1, 2, · · · ,m} of high SNR in scales and the scale coefficient Cm are expanded. The
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{Dj, (j = 1, 2, · · ·m,m + 1)} is regarded to be a repartition of signal x(t). Hence, according to the information

theory, the measurement pjk of Dj may be defined by.

pjk = dF (j)(k)

/

N
∑

k=1

dF (j)(k) (2)

where dF (j)(k) is the Fourier transformation of dj(k). The WCFSE value of Dj is

WCFSEj = −
N
∑

k=1

Pjk logPjk (3)

2.2. Extracting the WCFSEs of whole-body vibration fault signal

As is shown in the Eq. (3), the WCFSEj expresses the uniformity of energy distributing and the complexity of

the scale j in vibration signal, so the fault features of vibration signals are able to be quantized by the information

entropy. The WCFSE values vary with the high frequency vibration signal distribution that come from aeroengine

fault occurrence. The monitor and diagnosis of vibration status are accomplished by changing the WCFSE values

on each scale. The features of vibration signals of the whole-body faults are extracted according to the WCFSE

method. The specific steps are

– Get wavelet coefficients of each scale based on the discrete wavelet transformation of the vibration signals.

– Decompose the wavelet coefficients into five layers to avoid the distortion of the characteristic signals during

wavelet correlation filtering based on the WTCFM and achieve the higher SNR scale wavelet domains.

– Calculate the WCFSE values by the Eq. (2) and Eq. (3). The fifth layer WCFSE value is such a small low-

frequency gradient signal that the WCFSE6 can be ignored. A feature vector F = [WCFSE1 ,WCFSE2 , · · · ,
WCFSE5 ] is constructed by utilizing the entropy values. To avoid the WCFSE values to be overestimated

leading to a difficult analysis, the eigenvector may be normalized.

W =

⎛

⎝

5
∑

j=1

|WCFSEj |
2

⎞

⎠

1/2

(4)

The vector F is rewritten as:

F =

[

WCFSE1

W
,
WCFSE2

W
, · · · ,

WCFSE5

W

]

(5)

The WCFSE1 and WCFSE2 contain main information and majorly reflect the fault feature in high frequency band

for aeroengine whole-body vibration. Thus, the WCFSE1 and WCFSE2 are regarded as the characteristic parameters

to construct fault feature vectors Eq. (6) and to judge the vibration condition.

F = [WCFSE1 ,WCFSE2 ] (6)

3. FSVM diagnosis method

3.1. FSVM diagnosis method

Comparing with the SVM, the training samples of the FSVM embody a membership term besides the sample value

and category code (class number). Assuming that a training sample set is (((x1, y1, µ(x1)), · · · , (xn, yn, µ(xn))),
where xi ∈ R

N is the i th sample feature (value), yi ∈ {−1, 1} is category number and µ(xi) ∈ (0, 1] is member-

ship, the mapping relationship ϕ is defined as mapping the training samples from the original model space R
N to
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high dimensional feature space Z, symbolized by z = ϕ(x). From the fuzzy membership theory, µ(xi) indicates the
credibility of the sample xi belonging to yi. The ξi is the error of the objective function of the FSVM, and µ(xi)ξi
is the weight error. The optimal objective function [4,5] is

Φ(ω, ξ) =
1

2
‖ω‖

2
+ C(

n
∑

i=1

µ(xi)ξi)

s.t.

⎧

⎪

⎨

⎪

⎩

yi
[

(ωT · zi) + b
]

− 1 + ξi � 0

ξi � 0

i = 1, 2, · · · , n

(7)

where the constant C is a penalty factor, the ω is the weight of linear classification function yi. The discriminated
functions of xi is

f(x) = sgn

(

∑

xi

αiyiK(xi,x) + b

)

(8)

where K(xi,x) is a kernel function, the purpose of which is to convert the complex inner production in high-
dimensional feature space into a simple computational function in a low-dimensional model space.

From Eq. (7), the influence of ξi obviously become weak when µ(xi) decreases, which leads to the corresponding
xi unimportant. The penalty factor C is fuzzed in order to make different samples featured with different penalty
factors, so that the negative impacts of exception samples with noise or outliers are highly reduced and even elimi-
nated, on the other hand, the dominated samples of normal support vectors on the optimal classification surface are
retained. The fuzzy membership design is a key technique in designing the FSVM. To design the appropriate fuzzy
membership, the present study employs the membership function proposed in [12] to process the aeroengine whole-
body vibration signal, since the membership function building technique in [12] considers not only the relationship
between the samples of the given class and their class center, but also the relationship amongst the various samples
to distinguish the support vectors from the exception samples with noises.

3.2. Mathematical model of FSVM diagnosis method

The aeroengine whole-body vibration fault diagnosis is a multiclass signal process problem which requires es-
tablishing a multiclass FSVM classifier. The methods of constructing a multi-class classifier in [10,16] contains one
against all (1-a-a) method, one to one (1-a-1) method, directed a cyclic graph SVM (DAGSVM) method, etc., In this
paper, the FSVM multi-classifier is designed based on the 1-a-a method. For this purpose, a set of training samples
is assumed

(((x1, y1, µ(x1)), · · · , (xn, yn, µ(xn)))

where xi ∈ R
N and yi ∈ {1, 2, · · · , k} and 0 � µ(xi) � 1.

The class-radius is assumed to be r = max
xi

‖xi − x̄‖, the training samples are classified based on the 1-a-

a method, the k classifiers are trained through one sample xi owning one fuzzy membership µ(xi) in training
process. When the l th class is separated from the rest samples, the central point and class radius of the l th class
are respectively x+ and r+, while the rest samples are treated as the other class, the central point and class radius of
which are expressed by x− and r−, the µ(xi) is

µ(xi) =

{

1− ‖x+ − xi‖ /(r+ + δ) yi = l

1− ‖x− − xi‖ /(r− + δ) yi �= l
(9)

where the δ is a sufficiently small value to avoid µ(xi) = 0.
The FSVM training process is carried out to acquire all the two-classifiers. Then the k two-classifiers are obtained

f(x) = ωi × x+ bi =
∑

xi

αiyiK(xi,x) + b i = 1, 2, · · · , k (10)

Therefore, a new sample x is diagnosed to affiliate to the class number by

class(x) = argmax {f1(x), f2(x), · · ·fk(x)} (11)
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Table 1

Measuring point locations for aeroengine whole-body vibration

Section Location Measuring points

1-1 Through the pivots before fan 1-Measure horizontal vibration velocity

2-Measure vertical vibration velocity

2-2 Through intermediary casing 3-Measure horizontal vibration velocity

4-Measure vertical vibration velocity

3-3 Through LPT pivots 5-Measure horizontal vibration velocity

6-Measure vertical vibration velocity

4-4 External accessories casing 7-Measure horizontal vibration acceleration

8-Measure vertical vibration acceleration
5-5 Reducer 9-Measure horizontal vibration acceleration

Fig. 1. Aeroengine whole-body vibration fault diagnosis model

based on WCFSE-FSVM.

Fig. 2. Schematic illustration of aeroengine type location.

4. Integrated fault diagnosis model based on WCFSE-FSVM

The fault diagnosis model based on WCFSE-FSVM is shown in Fig. 1 which includes the feature extraction

and the fault diagnosis (state identification). The characteristic parameters of aeroengine whole-body vibration fault

signal are extracted by using the WTCFM. The WCFSE values reflecting the failure state were obtained based on

the information entropy theory. The WCFSE values full reflecting fault features are selected to build the eigenvector

set as the fault diagnosis samples (the input samples) of the FSVM model. In the fault diagnosis, some samples are

taken as the training samples to establish the FSVM fault diagnosis model, while the other samples are regarded as

the test samples to verify the FSVM model through aeroengine whole-body vibration fault diagnosis.

5. Aeroengine whole-body vibration fault diagnosis

5.1. Select aeroengine vibration testing points and SVM parameters

In this paper, an aeroengine fixed on test rig has been chosen. The five typical cross sections and the nine vertical

and horizontal points in aeroengine are regarded as the measuring points as shown in Table 1 and Fig. 2. Vibration

data are the test rig data and derived from an aeroengine research unit of China. The data (167 groups) of four

vibration modes (normal and three fault modes, i.e., rotor imbalance, rotor-to-stator rub and rig looseness) are

extracted and each one contains nine measuring points of vibration signals. The data set respectively are divided into

53, 34, 41 and 39 groups for four modes, respectively. The Radial Basis Function (RBF) k(x, y) = exp
(

− ‖x−y‖2

2δ

)

in [6,9] is taken as the FSVM kernel function. δ in the RBF and C in the Eq. (7) are respectively 4 and 287.
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Fig. 3. 3-D graphics of the vibration signals for rotor normal. Fig. 4. 3-D graphics of the vibration signals for rotor imbalance.

Fig. 5. 3-D graphics of the vibration signals for rotor-to-stator rub. Fig. 6. 3-D graphics of the vibration signals for looseness.

5.2. Build feature vector set

Through selecting the raw data, the graphic models of the vibration signals four vibration modes (normal and
three fault modes-rotor imbalance, rotor-to-stator rub and rig looseness), the data number of which are respectively
53 groups, 34 groups, 41groups and 39 groups, are shown in Figs 3–6. The three-dimensional (3-D) diagram is
comprised of measure point, number of data and vibration amplitude.

According to the WCFSEM method thought, the vibration signals and eigenvectors of four modes are analyzed
and extracted. The process is as follows:

– Extract the vibration signal features for each group data of nine measuring points to get the wavelet coefficients
in scale domains with high SNR (5-layer of wavelet decomposition).

– Calculate the WCFSE eigenvectors of each scale domain by the Eq. (1) to the Eq. (3).

F = [WCFSE1 ,WCFSE2 , · · · ,WCFSE5 ] (12)

– Select the WCFSE1 and WCFSE2 that fully reflect fault feature from Scale 1 and Scale 2 as the characteristic
parameters to build the eigenvector like the Eq. (6)

F
′ = [WCFSE1 ,WCFSE2 ] (13)

– In the data of nine measuring points in each group, F ′ of every point is arranged in sequence to construct the
vibration eigenvector T of every group data

T = (F ′
1,F

′
2, · · · ,F

′
9) = (T1, T2, · · · , T18) (14)

According to this method, 167 feature vectors of four fault modes are calculated as the diagnosis samples of
FSVM model. Every eigenvector has 18 eigenvalues which are the WCFSE values. Hence, the eigenvectors of four
typical modes of aeroengine whole-body vibration are gained in Table 2 (four vectors are listed only because of little
space).
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Table 2

Part feature vectors based on WCFSE values under different models

Measuring Feature of measuring point WCFSE eigenvector of four fault modes

point number F
′ WCFSE values T Normal Imbalance Rubbing Looseness

1 F
′

1
WCFSE1 T1 6.11 18.86 23.93 29.05

WCFSE2 T2 5.85 17.26 19.89 30.70
2 F

′

2
WCFSE1 T3 24.41 24.80 34.81 37.23

WCFSE2 T4 23.75 22.09 31.76 33.50

3 F
′

3
WCFSE1 T5 6.51 14.57 25.60 30.59

WCFSE2 T6 6.12 12.39 20.30 27.88

4 F
′

4
WCFSE1 T7 8.57 15.85 30.78 39.23

WCFSE2 T8 7.56 16.10 32.15 35.71

5 F
′

5
WCFSE1 T9 50.32 20.62 22.37 24.46
WCFSE2 T10 42.39 19.10 16.39 22.80

6 F
′

6
WCFSE1 T11 23.46 19.98 17.51 17.84

WCFSE2 T12 22.87 16.39 14.29 12.76

7 F
′

7
WCFSE1 T13 7.70 11.09 17.51 17.84

WCFSE2 T14 6.75 9.13 16.83 15.37

8 F
′

8
WCFSE1 T15 7.66 16.51 25.75 29.64

WCFSE2 T16 6.88 15.23 19.83 18.92

9 F
′

9
WCFSE1 T17 83.92 115.64 112.39 220.63
WCFSE2 T18 76.32 109.28 102.57 238.31

Table 3

Diagnosis results of four methods (SVM, FSVM, WESE-SVM and WCFSE-FSVM)

Fault modes Sample number SVM FSVM WESE-SVM WCFSE-FSVM

Correct Accuracy Correct Accuracy Correct Accuracy Correct Accuracy

Normal 43 39 90.70% 40 93.02% 42 97.67% 41 95.35%

Imbalance 24 20 83.33% 22 91.67% 22 91.67% 22 91.67%

Rubbing 31 26 83.87% 28 90.32% 27 87.10% 29 93.55%

looseness 29 25 86.21% 26 89.66% 26 89.66% 28 96.55%

Total/mean 127 110 86.61% 116 91.34% 117 92.13% 120 94.49%

5.3. Fault diagnosis and analysis

As is shown in the Table 2, the WCFSE1 s and WCFSE2 s of nine measuring points of aeroengine whole-body
vibration constitute the feature vectors {T }. These feature vectors were used for the fault diagnose for aeroengine
whole-body vibration. The 10 feature vectors of each model were looked as the training samples to establish FSVM
model. And then these samples were employed to test the validity of FSVM model established again. The result
shows that the fault diagnosis accuracy is 100%, which states the fact that the FSVM model possesses good learning

ability.
The FSVM model was used to classify (distinguish) the residual 127 feature vectors which contained the weak

and exceptional signals therein. The results are shown in Table 3. From the Table 3, it is verified that the model has
good generalization ability.

In order to highlight the feasibility and effectiveness of the WCFSE-FSVM method proposed, the method was

compared separately with other fault diagnosis method (SVM in [10], FSVM proposed in [12], wavelet energy
spectrum entropy SVM (WESE-SVM) in [6]) based on the same data and computing environment. The testing
results reveal that these diagnostic models are equally good learning ability since all testing accuracies are 100%
based on the same training samples. The diagnosis results of four methods are shown in Table 3.

As shown in the Table 3, the diagnostic accuracy (94.49%) of the WCFSE-FSVM method is significantly higher
than that (87.40%) of SVM method. It is explained that the SVM diagnostic effect is no ideal by directly diagnosing

the original data of vibration signal because these data contains the weak signals, noise and exceptional samples,
which affect seriously the classification results. In addition, it is indicated that the diagnostic precisions of the FSVM
method and the WESE-SVM method is respectively 91.34% and 92.13%, which are inferior to that of WCFSE-
FSVM diagnosis method. The reason is that the FSVM fault diagnosis method does not do well in handling the
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Table 4

Diagnosis results of four methods for anti-noise ability

Fault mode SVM FSVM WESE-SVM WCFSE-FSVM

Total accuracy (%) 83.46 89.76 89.76 93.70

Total reducing accuracy (%) 3.15 1.58 2.37 0.79

weak vibration signal samples although is good at dealing with the samples with noise and outliers, moreover, the

WESE-SVM is not of capacity to well process the fault with noise and outliers in spite of dealing commendably

with the weak signals. Thus, the conclusions are suffice to show that the WCFSE-FSVM diagnostic model is more

effective than other models because the WCFSE-FSVM method has higher generalization ability due to be good at

conquering the weak signals, the noise and exceptional samples.

In order to verify the WCFSE-FSVM diagnostic model’s anti-noise ability, 127 groups of input data (testing

samples) are overlaid by the noise signal, the mean and variance of which are respectively 2 and 5. These samples

were treated as the diagnostic samples of four fault diagnostic models. Through the anti-noise ability analyses, the

results are shown in Table 4.

From the Table 4, the accuracy of the WCFSE-FSVM fault diagnosis method is 93.70% and accordingly reduced

at 0.79% to no noise disturbing. Its anti-noise ability is significantly better than the other three methods (SVM,

FSVM and WESE-SVM), the precisions of which decline respectively at 3.15%, 1.58% and 2.37%. It is obvious

that the diagnostic system based on WCFSE-FSVM method is most effective in diagnosing the samples with noise

and is verified to be feasible and effective for aeroengine whole-body vibration fault diagnosis.

6. Conclusion

The objective of the effort is proposed the WCFSE-FSVM method to address the samples with noise, exceptional

and weak signals for aeroengine whole-body vibration fault diagnosis. Some conclusions are

(1) The WCFSE-FSVM method is advanced by fusing the WCFSE theory and FSVM; meanwhile, the mathemat-

ical model is established and applied in aeroengine whole-body vibration fault diagnosis.

(2) As shown from diagnosing the fault samples which are the feature vectors consistent composed of the WCFSE

values of aeroengine whole-body vibration signals, the fault diagnosis accuracy 94.49% of the WCFSE-FSVM

method is higher than those of other methods (SVM, FSVM and WESE-SVM) and verifies the effectiveness

and feasibility of the WCFSE-FSVM method which has good learning ability, generalization ability.

(3) Through the anti-noise verification, it is demonstrated that the WCFSE-FSVM method possesses good anti-

noise ability and fault tolerate capability because the precision of the WCFSE-FSVM method is superior to

those of other methods.
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