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Summary. Deconvolution problems are naturally represented in the Fourier domain, whereas
thresholding in wavelet bases is known to have broad adaptivity properties. We study a method
which combines both fast Fourier and fast wavelet transforms and can recover a blurred function
observed in white noise with O{n log.n/2} steps. In the periodic setting, the method applies
to most deconvolution problems, including certain ‘boxcar’ kernels, which are important as a
model of motion blur, but having poor Fourier characteristics. Asymptotic theory informs the
choice of tuning parameters and yields adaptivity properties for the method over a wide class
of measures of error and classes of function. The method is tested on simulated light detection
and ranging data suggested by underwater remote sensing. Both visual and numerical results
show an improvement over competing approaches. Finally, the theory behind our estimation
paradigm gives a complete characterization of the ‘maxiset’ of the method: the set of functions
where the method attains a near optimal rate of convergence for a variety of Lp loss functions.
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1. Deconvolution in white noise

Suppose that we observe the random process Yn.·/,

Yn.dt/=f Å g.t/ dt +σn−1=2 W.dt/, t ∈T = [0, 1], .1/

where σ is a positive constant, W.·/ is Gaussian white noise and

f Å g.t/=
∫

T

f.t −u/ g.u/ du: .2/

Our goal is to recover the unknown function f from the noisy blurred observations (1). The

blurring function g in convolution (2) is assumed to be known. Further, we assume that the
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function f is periodic on the unit interval T and that g has a certain degree of smoothness. There

is an extensive statistical literature on deconvolution problems; in particular wavelet methods

have received considerable attention over the last decade. References that are particularly rel-

evant to the present work include Donoho (1995), Abramovich and Silverman (1998), Pensky

and Vidakovic (1999), Fan and Koo (2002), Kalifa and Mallat (2003) and Neelamani et al.

(2003): these works in turn contain further references to previous literature.

An important application setting that is modelled by expression (1) is that of motion blur in

signals or images; see for example Bertero and Boccacci (1998). Here g is taken as a ‘boxcar’

g.x/ = .2a/−1
I[−a,a].x/, of half-width a. Owing to oscillations in the Fourier coefficients of g,

this situation escapes the assumptions of much wavelet literature, but recent work of Neelamani

et al. (2004) studied it explicitly with their ForWaRD algorithm.

Our aim in this paper is to study a wavelet deconvolution algorithm which can be applied

to many deconvolution problems including certain cases of boxcar blur. We are particularly

interested in obtaining adaptivity properties relative to a variety of error measures and func-

tion classes. Our theoretical investigation is conducted by using model (1), but examples and

software are provided for data sampled at a discrete set of n equally spaced points.

For ordinary smooth convolution where the Fourier coefficients of g decay in a polynomial fash-

ion, |gl|∼C|l|−ν , our proposal can recover the unknown function f with an accuracy of order
{

log.n/

n

}α

, α= sp

2.s+ν/+1
, .3/

performance being measured in an integrated Lp-metric, for any p>1. Here n denotes the usual

sample size and s plays the role of a smoothness index for our target function f (taken in a large

class which includes spatially inhomogeneous functions). For boxcar blur, we show that rate (3)

holds with ν = 3
2

, provided that the boxcar width is ‘badly approximated’ by rational numbers.

This notion is recalled in Section 2.2; it includes boxcars of width that is given by quadratic

irrational numbers such as
√

5; see also remark 8 following proposition 2.

Our rate result (3) is established for a class of convolution operators satisfying a decay con-

dition when averaged over dyadic Fourier blocks. Thus, if .gl/ denote the Fourier coefficients of

g, we suppose that for some fixed r> 0

(

2−j
2j+r
∑

l:|l|=2j

|gl|−2

)1=2

≍2jν

(condition Cν). (The notation aj ≍ bj means that there are constants c0 and c1 such that, for

all j, c0 �aj=bj �c1.) Condition Cν typically holds for ordinary ‘smooth’ convolution and also

covers certain oscillatory cases, such as arise with irrational boxcar blur; see for example Fig. 2

in Section 2.1 and proposition 2. It does not include ‘supersmooth’ kernels, such as the Gaussian

kernel, with exponential or faster Fourier decay.

For both theoretical and practical convenience, we use band-limited wavelet basis functions,

and in particular the (periodized) Meyer wavelet basis for which fast algorithms are available;

Kolaczyk (1994) and Donoho and Raimondo (2004). Our method can thus perform deconvolu-

tion in O{n log.n/2} steps. The WaveD software package that was used to prepare most figures

and tables in this paper is available at http://www.usyd.edu.au:8000/u/marcr/. It is

intended for use with Wavelab; see Buckheit et al. (1995).

We begin in Section 2 by describing an application of statistical deconvolution to remote

sensing. There follow short reviews of continued fractions, periodized Meyer wavelets, Besov

spaces and wavelet shrinkage. Section 3 describes our method specifically, and its relationship
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with the wavelet–vaguelette approach of Donoho (1995) and Abramovich and Silverman (1998).

Section 4 is concerned with numerical performance and competing approaches. In the imple-

mentation of our method the choice of tuning parameters is informed by asymptotic minimax

theory: this is discussed in Section 5. Proofs are summarized in Appendices A and B.

2. Motivations and preliminaries

2.1. Illustration from remote sensing

Deconvolution is a common problem in many areas of signal and image processing; see for

example Jain (1989). Here we shall focus on light detection and ranging (LIDAR) remote sens-

ing as in Je Park et al. (1997) and Harsdorf and Reuter (2000). LIDAR uses a laser device which

emits pulses, reflections of which are gathered by a telescope that is aligned with the laser. The

return signal is used to determine the distance and position of the reflecting material. Accord-

ingly, the distance resolution is limited by the time resolution of the LIDAR instrument. If the

system response function of the LIDAR detector is longer than the time resolution interval the

measured LIDAR signal is blurred and the effective accuracy of the LIDAR decreases. This

loss of precision can be corrected by deconvolution. In practice, measured LIDAR signals are

corrupted by additional noise which renders direct deconvolution impossible. Borrowed from

Harsdorf and Reuter (2000), we have depicted an ideal LIDAR signal in Fig. 1; this will be

our target function f for numerical illustrations throughout this paper. The system response

function of the LIDAR detector (denoted g.t/ in expression (1)) is calibrated a posteriori once

the LIDAR instrument has been built. We follow Harsdorf and Reuter (2000) and use system

response functions that have a strong low pass characteristic. In the WaveD software that was
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Fig. 1. Ideal LIDAR signal as in Harsdorf and Reuter (2000), corresponding to data for underwater LIDAR
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Fig. 2. (a) Log-spectrum of a Γ.1, 0:0065/ probability distribution function (smooth blur) and (b) log-spectrum
of a boxcar function g.x/D .1=2a/ I[�a,a].x/ with a D1=

p
353 (boxcar blur)

used to plot most figures in this paper, the system response function parameters can be changed

by the user to accommodate different calibration settings. In Fig. 2, we illustrate a smooth blur

and a boxcar blur scenario in the Fourier domain. These two examples of system response func-

tion shapes illustrate the possibilities that are offered by our assumption Cν , under which near

optimal rates are achievable. Finally, Fig. 3 shows artificial LIDAR data for a combination of

different noise levels and system response functions.

2.2. Boxcar blur and the continued fractions algorithm

A boxcar function is the indicator of an interval g.x/= .1=2a/I[−a,a].x/ where the parameter a

indicates a preferred spatial scale. The Fourier coefficients of such a boxcar are given by

gl =
sin.πla/

πla
, l∈Z: .4/

The convolution problem (1) that is associated with the boxcar, later referred to as boxcar blur,

has the problem that, for rational a=p=q, the coefficients gk vanish for any integer k multiple

of q. Hence, even without noise some frequencies are lost and f cannot be fully recovered.

The problem is less severe for irrational numbers, and particularly for those which are ‘badly

approximable’ (BA) by rational numbers. We briefly review the key tool in constructing such

numbers.
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Fig. 3. Simulated LIDAR signals (1) with ti D i=n, n D 2048, corresponding to the system response func-
tions of Fig. 2: (a) smooth blur with low (standard deviation sd = 0.05) noise level; (b) smooth blur with medium
(sd = 0.5) noise level; (c) smooth blur with high (sd = 1) noise level; (d) boxcar blur with low (sd = 0.05) noise
level; (e) boxcar blur with medium (sd = 0.5) noise level; (f) boxcar blur with high (sd = 1) noise level

2.2.1. The continued fractions algorithm

Let a0 be an integer and a1, a2, . . . be strictly positive integers. Define sequences .pk/ and .qk/

recursively by p0=q0 =a0, p1=q1 =a0 +1=a1 and p2=q2 =a0 +1=.a1 +1=a2/, and for n�2 let

qn =anqn−1 +qn−2,

pn =anpn−1 +pn−2:
.5/

The sequence of rational numbers .pk=qk/ that is constructed in this way has very special prop-

erties, the first of which being that

a0 + 1

a1 + 1

: : :+ 1
ak

= [a0; a1, a2, . . . , ak]= pk

qk

: .6/

In fact, any real number a that is not an integer may be uniquely determined by its continued

fraction expansion. To every real number corresponds a unique sequence .ak/ and vice versa:

a= [a0; a1, a2, . . . ]=a0 + 1

a1 + 1

a2+ 1
a3+:::

: .7/

For rational numbers the expansion stops as in equation (6) and ak =0 for later k, whereas for



552 I. M. Johnstone, G. Kerkyacharian, D. Picard and M. Raimondo

irrational number a the sequence of .ak/, ak > 0, is infinite. The rational numbers .pk.a/=qk.a//

defined at expression (5) are called the convergents of a. For any irrational number a, the con-

vergents have the property of best approximation: for n�1,

inf
1�k�qn

‖ka‖= |qna−pn|=‖qna‖, .8/

where ‖x‖ denotes the distance from x∈R to the nearest integer. The study of such Diophantine

approximations plays a central role in our analysis of the boxcar blur, since from equation (4)

2

π

‖la‖
la

�gl �
‖la‖
la

: .9/

We recall some basic properties, referring to Lang (1966) and Khinchin (1992) for further details.

The quality of best approximation satisfies

1

2qn+1
<‖qna‖<

1

qn+1
: .10/

(a) The denominators qn grow at least geometrically:

qn+i �2.i−1/=2qn, i=2k +1,

qn+i �2i=2qn, i=2k, k> 0:
.11/

(b) For all n�0,

an <qn=qn−1 �an +1:

Hence, the size of the elements in the continued fractions algorithm (5) determines the quality

of best rational approximation to a. It is customary to define families of irrational numbers a

according to the size of their elements as follows.

Definition 1. An irrational number a is called BA if

sup
n

{an.a/}<∞:

Definition 2. A rational number a is called BA of order n if a is the convergent of order k of

a BA number (a=pk=qk) and if qk−1 �n<qk:

The set of all BAs contains quadratic irrational numbers (e.g.
√

5). For the boxcar blur, we

prove (proposition 2 in Section 4) that condition Cν holds with ν = 3
2

for any scale a chosen in

the set of BAs. In the finite sample implementation (of size n) of model (1), our method will

remain numerically stable for any scale a that is chosen in the set of BA rational numbers of

order at least n (see remark 8 below proposition 2) and satisfying a uniform bound (in a) on

supn{an.a/}. We refer to Johnstone and Raimondo (2002) for a discussion of cases outside the

BA numbers.

2.3. Periodized Meyer wavelet transforms

Let .φ, ψ/ denote the Meyer scaling and wavelet function; see Meyer (1992) or Mallat (1999).

As usual,

ψκ.x/=ψj,k.x/=2j=2 ψ.2jx−k/, j, k ∈Z, .12/

is the dilated and translated wavelet at resolution level j and time position k=2j; here and below κ

denotes the bivariate index .j, k/. The functions φκ are defined similarly. Such wavelet functions
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define a multiresolution analysis of L2.R/; for any f ∈L2.R/ the following expansion holds:

f =
∑

k

αj0,kφj0,k +
∑

j�j0

∑

k

βj,kψj,k .13/

where

ακ =
∫

fφκ,

βκ =
∫

fψκ

.14/

are the wavelet coefficients of f . Quite naturally, we can define a similar multiresolution analysis

for periodic functions in L2.T/, T = [0, 1]. This is done by periodizing the basis functions

Φκ.x/=
∑

l∈Z

φκ.x+ l/,

Ψκ.x/=
∑

l∈Z

ψκ.x+ l/:
.15/

Here and in the rest of the paper .Φ, Ψ/ will denote the periodized Meyer scaling and wavelet

functions (Fig. 4). Thus, for any periodic function f an expansion that is similar to equa-

tion (13) holds with periodized basis functions .Φκ, Ψκ/ and bivariate index κ restricted to the

set I ={.j, k/ : j �0 and k =0, 1, . . . , 2j −1}. We use this basis for the following reasons.

(a) (b)

Fig. 4. Periodized Meyer scaling and wavelet function: (a) Φ3,4; (b) Ψ4,5
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(a) The Meyer wavelet is band limited. In particular, we have Supp.ψ̂/={w : |w| ∈ [2π=3,

8π=3]}, where ψ̂.ξ/=
∫

ψ.x/exp.−iξx/dx denotes the Fourier transform of ψ.

(b) An efficient algorithm, due to Kolaczyk (1994), is available to compute the periodized

Meyer wavelet transforms. It requires only O{n log.n/2} steps to derive an empirical

version of the coefficients (14) from a sample of size n of f .

Band-limited wavelets have been used in the deconvolution setting by Walter and Shen (1999),

Shen and Walter (2002), Pensky and Vidakovic (1999) and Fan and Koo (2002). General infor-

mation on band-limited wavelet bases may be found, for example, in Mallat (1999), Hernàndez

and Weiss (1996) and Walter (1994).

2.4. A wide class of target functions

Let us first introduce the standard Besov spaces of periodic functions Bs
π,r.T/, s > 0, π � 1 and

r �1. For this, define for every measurable function f

∆"f.x/=f.x+ "/−f.x/;

then, recursively, ∆
2
"f.x/=∆".∆"f/.x/ and similarly ∆

N
" f.x/ for positive integer N. Let

ρN.t, f , π/= sup
|"|�t

{
∫ 1

0

|∆N
" f.u/|π du

}1=π

:

Then, for N>s, we define

Bs
π,r.T/=

{

f periodic:

[
∫ 1

0

{

ρN.t, f , π/

ts

}r dt

t

]1=r

<∞
}

(with the usual modifications for r =∞ or π =∞).

In what follows, we shall also write Ψ−1 =Φ. In this setting, recall that the Besov spaces

are characterized by the behaviour of the wavelet coefficients (as soon as the wavelet is periodic

and has enough smoothness and vanishing moments). In particular, for f ∈Lπ.T/,

f =
∑

j,k

βj,kΨj,k ∈Bs
π,r.T/

⇔
∑

j�0

2j.s+1=2−1=π/r
(

∑

0�k�2j

|βj,k|π
)r=π

<∞: .16/

The Besov spaces have proved to be an interesting scale for studying the properties of statisti-

cal procedures. The index s indicates the degree of smoothness of the function. Owing to the

differential averaging effects of the integration parameters π and r, the Besov spaces capture a

variety of smoothness features in a function including spatially inhomogeneous behaviour; see

Donoho et al. (1995).

2.5. Wavelet shrinkage

Wavelet shrinkage is now a well-established statistical procedure for nonparametric estimation.

A wavelet estimator of an unknown function f ∈L2.T/, based on hard thresholding, is given by

f̂ =
∑

κ∈I0

α̂κ I{|α̂κ|�λj0
}Φκ +

∑

κ∈I1

β̂κ I{|β̂κ|�λj}
Ψκ .17/

where α̂κ and β̂κ are estimated wavelet coefficients and I0 and I1 are sets of indices. I0 =
{.j0, k/ : k = 0, 1, . . . , 2j0 − 1} corresponds to a coarse resolution level j0 and I1 = {.j, k/ : k =
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0, 1, . . . , 2j −1, j0 � j � j1} indexes details up to a fine resolution level j1. The procedure (17) is

non-linear since only large coefficients |β̂κ|�λj are kept; here λj is a threshold parameter. The

choices of parameters j0, j1 and λj as well as estimators α̂κ and β̂κ depend on the problem at

hand. For deconvolution problem (1) this will be discussed in the next section.

3. Wavelet deconvolution in the Fourier domain

3.1. Inverse estimation paradigm

Since the Fourier transform interchanges convolution and multiplication, it is natural to employ

Fourier representations for the deconvoluation problem. Let el.t/= exp.2πilt/, l ∈Z, and write

fl =〈f , el〉 and gl =〈g, el〉 for the Fourier coefficients of f and g respectively where 〈f , g〉=
∫

T
f ḡ.

Letting h=f Å g we have

hl =〈f Å g, el〉=fl ×gl: .18/

For the (real-valued) random processes Yn and W we write, with a slight abuse of notation,

yl =〈el, Yn〉=
∫

el dYn and zl =〈el, W〉=
∫

el dW . Calculating Fourier coefficients in expression

(1):

yl =hl +σn−1=2zl .19/

where zl are zero-mean Gaussian random variables. We denote by Ψ
κ
l the Fourier coefficients

of Ψκ, i.e. Ψ
κ
l =〈Ψκ, el〉. Combining equation (18) with Plancherel’s identity we obtain

∫

T

f Ψ̄κ =
∑

l

flΨ̄
κ
l =

∑

l

hl

gl

Ψ̄
κ
l : .20/

Noting that Ψ̄κ =Ψκ, we can recover wavelet coefficients

βκ =
∫

T

fΨκ =
∑

l

hl

gl

Ψ̄
κ
l : .21/

Here gl and Ψ
κ
l are known Fourier coefficients but the hls are not directly observable; in equa-

tion (19) we take yl as an (unbiased) estimator of hl and let

β̂κ =
∑

l

yl

gl

Ψ̄
κ
l .22/

be our estimator of βκ which can be computed from the observations (1). Of course, an estimator

α̂κ of ακ is defined in a similar fashion with Φ in place of Ψ.

Let Cj = {l : Ψκ
l 
= 0}—it is easily seen that this set does not depend on k. Indeed, from the

compact support of the Meyer wavelet, we have

Cj ⊂ .2π=3/[−2j+2, −2j]
⋃

[2j, 2j+2]:

3.2. The wavelet deconvolution method

For deconvolution problems (1) we shall use wavelet-based estimator (17) with coefficients (22).

Estimator (17) requires three input parameters: j0, j1 and λ. The coarse scale has the default

value j0 = 3 in software and is not important in the asymptotic theory. To specify the more

critical thresholds λj and finest scale j1, set

τj =
(

|Cj|−1 ∑

l∈Cj

|gl|−2
)1=2

, .23/
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where |Cj| denotes the cardinality of Cj. Then, for the thresholds,

λWaveD
j :=λn,j =ηστj

√
{log.n/=n}, .24/

where the default value of η is
√

2 in software—this is discussed further below. Finally, using

the decay parameter ν from assumption Cν , the finest scale j1 is determined from

2j1 ={n= log.n/}1=.1+2ν/
: .25/

If it is necessary to compute an estimate of the noise standard deviation σ, we adapt the

method of Donoho et al. (1995) that was developed for direct data. If yJ ,k =〈Yn, ΨJ ,k〉 denote

the finest scale wavelet coefficients of the observed data, then σ̂ =mad.yJ ,k/=0:6745, where mad

is the median absolute deviation.

We summarize the main steps of our wavelet deconvolution method, and we illustrate it in

Fig. 5. Here and in the rest of the paper we refer to this as the WaveD method.
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Fig. 5. WaveD method applied to the LIDAR signals of Fig. 3 (smooth blur) (the threshold values are
summarized in Table 1; levels 4–7 are shown as 100% thresholding occurs at level 8 or below): (a) low
noise, estimated wavelet coefficients (22); (b) low noise, estimated wavelet coefficients (22) after shrinkage
(24) with ηS D p

2; (c) low noise, estimated LIDAR signal; (d) medium noise, estimated wavelet coeffi-
cients (22); (e) medium noise, estimated wavelet coefficients (22) after shrinkage (24) with ηS D p

2;
(f) medium noise, estimated LIDAR signal; (g) high noise, estimated wavelet coefficients (22); (h) high
noise, estimated wavelet coefficients (22) after shrinkage (24) with ηS D p

2; (i) high noise, estimated
LIDAR signal
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Table 1. Level-by-level thresholds (smooth blur): λWaveD
j defined by expression (24)†

Noise level η Thresholds for the following levels of j:

j=5 j=6 j=7 j=8

Low (σ̂ =0:047)
√

2 0.0036 (31.35%) 0.0066 (62.5%) 0.0128 (95.31%) 0.0242 (100%)
Medium (σ̂ =0:491)

√
2 0.0375 (68.75%) 0.0688 (98.44%) 0.1328 (100%) Maximum level: j1 =6

High (σ̂ =0:955)
√

2 0.0729 (90.63%) 0.1338 (100%) Maximum level: j1 =5
Low (σ̂ =0:047)

√
6 0.0063 (31.25%) 0.0115 (81.25%) 0.0222 (99.22%) 0.0418 (100%)

Medium (σ̂ =0:491)
√

6 0.0649 (87.5%) 0.1192 (100%) Maximum level: j1 =5
High (σ̂ =0:955)

√
6 0.1263 (96.88%) 0.2318 (100%) Maximum level: j1 =5

†Indicated in parentheses are the corresponding fractions of shrunken coefficients. The first three rows correspond
to the smaller choice ηS =√

2. The last three rows correspond to the conservative choice ηL =√
{2.2ν +1/} with

ν =1. (In the WaveD software the (default) maximum resolution level (25) is set to be the level preceeding j.100%/
where j.100%/ is the smallest level where 100% of thresholding occurs.)

(a) Compute Fourier coefficients yl and gl and recover wavelet coefficients (22) by using

Kolaczyck’s algorithm (which requires only O{n log.n/2} operations); see Figs 5(a), 5(d)

and 5(g).

(b) Compute, if needed, an estimate of the noise standard deviation σ̂ as described above.

Find thresholds λj := λn,j as shown in equation (24) and illustrated in Table 1 for the

boxcar.

(c) Apply hard thresholding β̂κ I.|β̂κ|>λj/; see Figs 5(b), 5(e) and 5(h). Finally, invert the

wavelet transform to obtain an estimate of f ; see Figs 5(c), 5(f) and 5(i). (In the WaveD

software the (default) maximum resolution level j1 is determined from the data as follows:

j1 is set to be the level preceeding j.100%/ where j.100%/ is the smallest level where 100%

of thresholding occurs; see Table 1.)

(d) Cycle-spin the WaveD estimator in the fashion of Coifman and Donoho (1995) (optional).

This improves visual and numerical performance and was used in Fig. 7 and Table 2 later.

We refer to Donoho and Raimondo (2004) for an efficient algorithm which cycle-spins

the WaveD estimator over all circulant shifts.

3.3. Connection with the wavelet–vaguelette decomposition

Donoho (1995) gave the first discussion of wavelet thresholding in linear inverse problems and

introduced the wavelet–vaguelette decomposition (WVD). Specialized to convolution operators

on the circle, the WVD structure in part postulates the existence of biorthogonal systems .Uκ/

and .Vκ/ and pseudosingular values κj (not depending on the spatial index k) such that

g ÅΨκ =κjVκ,

ǧ ÅUκ =κjΨκ,

where ǧ.t/=g.−t/. In terms of Fourier coefficients, and setting sjl =gl=κj,

Vκ
l = sjlΨ

κ
l ,

Uκ
l =Ψ

κ
l =s̄jl:

.26/

The WVD class of estimators takes a co-ordinatewise thresholding rule δ.xκ, tj/ and level-

dependent thresholds .tj/ and sets f̂ =Σκ δ.〈Uκ, Yn〉=κj, tj/Ψκ. If we observe that
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〈Uκ, Yn〉=κj =
∑

l

ylŪ
κ
l =κj =

∑

l

.yl=gl/Ψ̄
κ
l = β̂κ

then it is clear that our estimator (17) formally can be viewed as being consistent with the WVD

recipe. However, the implementation of the estimator differs here—in the WaveD scenario (22)

the functions Uκ and Vκ are not constructed explicitly, and the coefficients β̂κ =〈Uκ, Yn〉=κj are

instead evaluated in the Fourier domain using the original wavelets Ψκ and filter g.

The key additional property that is needed to establish a WVD is that the systems .Uκ/ and

.Vκ/ each form Riesz bases—this property allows lower bounds and hence minimax rates of

convergence to be established over the Besov classes that are considered in this paper. The lower

bound arguments are given in detail in Donoho (1995) for L2-loss and, as noted there, the

methods can be extended to more general loss measures.

For the dilation homogeneous operators on R that were principally studied in Donoho (1995)

and Abramovich and Silverman (1998), the vaguelette systems are multiples of translates and

dilates of a single mother vaguelette U0,0 or V0,0, and the Riesz basis property can be established

as in Donoho (1995). See also Lee and Lucier (2001).

This dilation structure is no longer available for the candidate vaguelettes (26) corresponding

to convolution on the circle (e.g. Fig. 6). Nevertheless, we show in Appendix B that .Uκ/ and

.Vκ/ are Riesz bases if κj =τ−1
j and condition Cν holds and if in addition we have, for constants

C0 and C that are independent of j,

(a) (b)

(c) (d)

Fig. 6. Candidate vaguelettes corresponding to the boxcar convolution of Fig. 2: (a) V4,5; (b) U4,5; (c) V5,6;
(d) U5,6
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C0 � sjl �C,

∆sjl �2−jC,

∆
2sjl �2−2jC,











.27/

where the difference operator ∆sjl = sj,l+1 − sjl and ∆
2sjl =∆.∆sjl/.

These conditions hold if gl ≡C|l|−ν or more generally if c0|l|−ν � |gl|� c1|l|−ν and ∆
rgl �

|l|−ν−r for r =1 and r =2. For such convolution operators, we obtain lower bounds to the rates

of convergence over Besov spaces via the methods of Donoho (1995).

However, the sufficient conditions (27) are not satisfied by the boxcar kernel, owing to the

oscillations in gl which inflate ∆gl. We do not yet know whether the systems .Uκ/ and .Vκ/ form

Riesz bases in this case, and so yield vaguelettes; see Fig. 6. Thus the only lower bounds that are

currently available for this kernel are those which were established for Fourier hyperrectangles

and ellipsoids in Johnstone and Raimondo (2004).

3.4. Remarks on tuning

Asymptotic minimax theory gives insight into the choice of tuning parameters. For example, in

direct estimation problems Donoho et al. (1995) have shown near optimality of

λUNI
j :=λn = σ̂

√
{2 log.n/=n} .28/

where σ̂ is an estimated scale from the data and

2j1 =O{n= log.n/}: .29/

For deconvolution problems (1), our main result (proposition 1 in Section 4.1) states that, for

any constant η � 2
√

{8π.p∨2/} that is sufficiently large, the choices (24) and (25) are near

optimal for a wide variety of target function (Appendix B.1) and Lp loss functions.

It may be seen that the finest scale j1 that is suggested by equation (25) is considerably smaller

than that given by equation (29) in the direct case. The size of the thresholds in equation (24) may

in principle be larger than in equation (28), but in practice smaller thresholds than suggested

by the proof may be desirable.

Again, it is interesting to compare our results with the WVD approach. For dilation ho-

mogeneous operators with index ν, Abramovich and Silverman (1998) showed that, if (soft)

thresholding is to be used at all levels j < log2.n/, then near optimality of expected mean-

squared estimation error rates required the use of higher thresholds, which in our notation are

given by

λWVD
j :=λn,j = σ̂τj

√
{2.2ν +1/ log.n/=n}: .30/

We have tested our method with two choices of the parameter η: ηL = √
{2.2ν +1/} as in

Abramovich and Silverman (1998) and a smaller value ηS =√
2 that is similar to that of direct

estimation (28). The values of corresponding thresholds (for smooth blur) are given in Table 1.

In our simulation study (Section 4), we used the WaveD estimator with ηS as it led to slightly

better results than the conservative choice ηL.

4. Numerical performances of the wavelet deconvolution method

We compare several approaches to deconvolution which differ in the degree to which Fourier

and wavelet filtering are balanced. On the one hand, we have Wiener-filter-like methods which

have no wavelet component but use only Fourier inversion together with a regularization param-
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eter (below referred to as the FoRD method). On the other hand we have wavelet decomposition

approaches (like the WaveD method) where we perform Fourier inversion with no regularization

but use wavelet smoothing to remove noise. Between those two approaches lies the ForWaRD

method which combines Fourier regularization with wavelet smoothing. We give only a brief

description of the ForWaRD and FoRD methods, referring to Neelamani et al. (2004) and

references therein for further details.

4.1. Fourier regularized deconvolution

The FoRD estimator of f is defined in the Fourier domain:

f̃ αl :=gαlyl, .31/

where

gαl := 1

gl

|gl|2
|gl|2 +ασ2

: .32/

Then we take f̂ α as an estimator of f by using the Fourier series with coefficients f̃ αl. Here

α is a regularization parameter which balances the suppression of noise with signal distortion.

Small values of α give an unbiased but noisy estimate whereas large values of α suppress the

noise but also distort the signal. We use the terminology FoRD of Neelamani et al. (2004) since

our comparisons below use the regularization parameter choice in code that was graciously

provided by R. Neelamani.

4.2. Wavelet-regularized deconvolution

First apply filtering (31), deriving an estimator f̂ α of f . In the second step, we further smooth

f̂ α by using data-driven level-dependent wavelet thresholding (17). Here also α plays the role

of a regularization parameter which balances the level of noise and signal distortion. For α=0

the ForWaRD estimator is similar to a compactly supported WVD estimator of f whereas

for α > 0 the ForWaRD estimator is a hybrid of the FoRD and WVD methods. Although

it is difficult to derive an optimal choice of the regularization parameter α (see Neelamani

et al. (2004)), a data-driven algorithm to compute the ForWaRD estimator is available at

http://www.dsp.rice.edu/software/ward.shtml.

We compared the WaveD method with the FoRD and ForWaRD methods in a simulation

study using the LIDAR target that is depicted in Fig. 1. Performance was tested with different

blurring types and noise levels as illustrated in Fig. 3. For each combination of noise level and

blurring type we computed the Monte Carlo approximation to the MISE := E‖f̂ − f‖2
2. Our

results are illustrated in Fig. 7 for smooth blur and summarized in Table 2.

4.3. Analysis of the results

Regularized Fourier filtering tends to distort the original signal and the superiority of the

WaveD method becomes more apparent as the noise level increases. For smooth blur WaveD

outperformed both ForWaRD and FoRD in all cases with larger margins in high noise scenarios.

For all the methods we observe smaller margins and poorer performances in the boxcar blur

scenario (which confirms a larger DIP). For boxcar blur WaveD outperformed ForWaRD for

larger noise levels whereas ForWaRD outperformed WaveD for smaller noise levels. Both WaveD

and ForWaRD outperformed FoRD, whose performance is limited because of its linear nature.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7. (a) WaveD (low noise scenario); (b) WaveD (medium noise scenario); (c) WaveD (high noise sce-
nario); (d) ForWaRD (low noise scenario); (e) ForWaRD (medium noise scenario); (f) ForWaRD (high noise
scenario); (g) FoRD (low noise scenario); (h) FoRD (medium noise scenario); (i) FoRD (high noise scenario)

Remark 1. Cycle spinning the WaveD estimator mitigates its lack of translation invariance

and leads to a better visual appearance and smaller MSE. We refer to Donoho and Raimondo

(2004) for an efficient algorithm which cycle-spins the WaveD estimator over all circulant shifts

(used in the computations for Table 2 and Fig. 7).

Remark 2. Boundary corrections to deal with non-periodic signals and an extension to the

deconvolution of two-dimensional data are currently under investigation by the authors.

5. Asymptotic theory

5.1. Near optimality for a wide range of smoothness classes

Proposition 1. Suppose that we observe the random process (1) with σ =1, under assumption

Cν . Let p> 1 be an arbitrary number. If f belongs to Bs
π,r.T / with π �1, s�1=π and

0 <r �min

{

p.2ν +1/

2.ν + s/+1
,

.2ν +1/p−2

2.s+ν/−2=π +1

}

then, for η�2
√

{8π.p∨2/} the wavelet-based estimator (17) with threshold (24) with σ̂=1 and
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Table 2. Monte Carlo approximations to MISE = Ekf̂ � f k2
2†

Method Blur Means for the following levels of noise:

σlow =0.05 σmed =0.5 σhigh =1 σlim =1.25

WaveD Smooth 0.0024 0.0180 0.0388 0.0519

ForWaRD Smooth 0.0027 0.0208 0.0642 0.0950
FoRD Smooth 0.0084 0.0906 0.3201 0.3352
WaveD Boxcar 0.0223 0.0753 0.0831 0.0900

ForWaRD‡ Boxcar 0.0110 0.0573 0.0906 0.1030
FoRD Boxcar 0.0237 0.0950 0.3470 0.3610

†The results are means of 1000 independent simulations of model (1) with n=2048
as in Fig. 3. For each scenario, numbers in bold indicate the method which has the
smallest MSE.

maximum level (25) is such that

E‖f̂ −f‖p
p �C{n−1 log.n/}α, .33/

α= sp

2.s+ν/+1
, if s� .2ν +1/

(

p

2π
− 1

2

)

.34/

and

α= .s−1=π +1=p/p

1+2.s+ν −1=π/
, if

1

π
− 1

2
−ν � s<.2ν +1/

(

p

2π
− 1

2

)

: .35/

Remark 3. There is an ‘elbow effect’ or ‘phase transition’ in the rates of convergence, switching

from condition (34) to condition (35) as the assumed smoothness decreases. The existence of this

effect is familiar from the direct observation case (e.g. Donoho et al. (1995) and references cited

therein, where conditions (34) and (35) are respectively referred to as the ‘dense’ and ‘sparse’

cases). The additional presence of the parameter ν makes the sparse case (35) relevant even for

quadratic loss, p=2.

Remark 4. For p=2 and smooth convolutions, the rate α and dense case condition (34)

are consistent with results of Donoho (1995), Abramovich and Silverman (1998) and Fan and

Koo (2002). Pensky and Vidakovic (1999) obtained similar rates (in the density model) with the

additional restriction π =2 (Hilbert–Sobolev function classes) so that constraint (34) does not

appear.

Remark 5. For p = 2 Kalifa and Mallat (2003) proposed a related procedure which can be

applied for hyperbolic convolution where the convolution kernel depends on the sample size.

Such convolutions do not satisfy condition Cν ; hence their results are not directly comparable

with ours.

Remark 6. For p=2 and severely ill-posed convolutions such as boxcar blur, our results agree

with the degree of ill-posedness ν = 3
2

that was derived in Johnstone and Raimondo (2002).

Remark 7. For p 
=2 our result seems to be new in the deconvolution context.

The following proposition gives some examples of blurring type where near optimal results

of proposition 1 are achievable by our estimator.
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Proposition 2.

(a) For ordinary smooth convolution, |gl|∼C|l|−ν , where gl denotes the Fourier coefficients

of g and ν > 0, assumption Cν is satisfied.

(b) For boxcar blur, g.x/= .1=2a/I[−a,a].x/, where a is a BA number, assumption Cν is satis-

fied with ν = 3
2

.

Remark 8. Combining the results of propositions 1 and 2 for boxcar blur, we see that rates

(34) and (35) hold with ν = 3
2

provided that the boxcar width is a BA irrational number. In the

finite sample implementation of model (1) on a computer, Fourier coefficients gl are computed

up to l =n or l =−n, or more precisely for blocks Cj that are wholly contained in [−n, n]. Hence

condition Cν needs only to be satisfied for any j>0 where 2j+r �n. An examination of the proof

of proposition 2, part (b), shows that the latter condition holds for those BA rational numbers

that are of order greater than n discussed in Section 2.2.

Remark 9. For almost all irrational numbers (i.e. except for a set of Lebesgue measure 0),

the boxcar blur is also known to have a degree of ill-posedness of 3
2

, ignoring logarithmic terms

(Johnstone and Raimondo, 2002). Whether the WaveD estimator can be tuned to achieve rates

that are similar to expression (3) for boxcar blur in the almost all case remains open.

Remark 10. In the direct estimation setting, alternatives to co-ordinatewise non-linear

thresholding also have broad adaptivity properties (e.g. Efromovich (1999)); whether such re-

sults extend to the deconvolution is an issue for further work.

5.2. The maxiset approach

Near optimal properties of our proposal are direct applications of the following theorem which

has been borrowed from Kerkyacharian and Picard (2000). This theorem gives the ‘maxiset’

(condition (40)) for a general wavelet estimator of the form (39). It will be applied directly to

our procedure as outlined in Appendix A. We refer to Appendix B for condition (63) (known

as the Temlyakov property). First, we introduce some notation: µ will denote the measure such

that, for j ∈N, k ∈N,

µ{.j, k/}=‖σjΨj,k‖p
p =2j.p=2−1/σ

p
j ‖Ψ‖p

p,

lq,∞.µ/=
{

f , sup
λ>0

[λq µ{.j, k/=|βj,k|>σjλ}] <∞
}

:

Theorem 1. Let p > 1, 0 < q < p, {ψj,k, j �−1, k =0, 1, . . . , 2j} be a periodized wavelet basis

of L2.T/ and σj be a positive sequence such that the heteroscedastic basis σjψj,k satisfies

property (63) in Appendix B. Suppose that Λn is a set of pairs .j, k/ and cn is a deterministic

sequence tending to 0 with

sup
n

[µ{Λn}cp
n ] <∞: .36/

If, for any pair κ= .j, k/∈Λn, we have

E|β̂κ −βκ|2p
�C.σjcn/2p, .37/

P.|β̂κ −βκ|�ησjcn=2/�C.c2p
n ∧ c4

n/ .38/

for some positive constants η and C, then the wavelet-based estimator

f̂ n =
∑

κ∈Λn

β̂κψκ I.|β̂κ|�ησjcn/ .39/
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is such that, for all positive integers n,

E‖f̂ n −f‖p
p �Ccp−q

n ,

if and only if

f ∈ lq,∞.µ/ and sup
n

(

cq−p
n ‖f −

∑

κ∈Λn

βκψκ‖p
p

)

<∞: .40/

Remark 11. Through condition (40) and in the light of Appendix B.1 the theorem gives the

maxiset of the method, i.e. the set of functions where the method attains a given rate of conver-

gence. This way of measuring the performances of statistical procedures has been particularly

successful in the nonparametric framework. It has often the advantage of giving less arbitrary

and pessimistic comparisons of procedures than the minimax approach.

Remark 12. We shall prove (Appendix B.1) that the Besov spaces Bs
π,r.T/ are included in the

maxiset defined in expression (40) for q chosen such that c
p−q
n provides the rate that is given in

inequality (33). In particular, for appropriate choices of j1 and Λn (see expression (42)), we have

that

‖f −
∑

κ∈Λn

βκψκ‖p ≍‖f −PVj1
f‖p .41/

where PVj1
denotes the projection on the space Vj1

of the multiresolution analysis that is associ-

ated with the wavelet basis. In this case it appears more clearly that the second part of condition

(40) is directly linked to standard conditions for membership in Besov spaces. This part is

responsible for the condition s�1=π in the assumptions of proposition 1.
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Appendix A: Proofs

A.1. Outline of the proof of proposition 1
We shall prove that proposition 1 follows from theorem 1. For this, we shall consider the wavelet-based
estimator (17) with threshold (24) and maximum level (25). In the light of theorem 1, that is to say that
σj = τj as in equation (23) and

Λn ={.j, k/, −1� j � j1, 0� k �2j},

cn ={log.n/=n}1=2
,

2j1 =O{n= log.n/}1=.1+2ν/:











.42/

In this setting, and under assumption Cν , we shall prove the following claims.

(a) Inequalities (37) and (38) hold with η �2
√

{8π.p∨2/} (claim 1).
(b) The basis .σjΨjk/ satisfies condition (63) (see Appendix B.2) as soon as there is a constant C such

that, for any finite subset Λ of N,
∑

j∈Λ

2jσ2
j �C supj∈Λ

.2jσ2
j /, if 2 <p<∞, .43/
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∑

j∈Λ

2jp=2σ
p

j �C supj∈Λ
.2jp=2σ

p

j /, if 1 <p< 2 .44/

(claim 2). Note that for p=2 condition (63) holds without any condition on σj .
(c) Conditions (36), (43) and (44) are satisfied (claim 3).

Hence, under the assumptions of proposition 1, theorem 1 applies to the wavelet-based estimator (17)
which combined with remarks following theorem 1 gives the rate (33). To complete the proof we shall now
prove the claims.

A.1.1. Proof of claim 1
First, we derive the bias and variance of β̂κ. Taking the expectation in equation (19),

E.β̂κ/=
∑

l

hl

gl

Ψ̄
κ
l =βκ, .45/

under the assumptions of proposition 1 we have σ =1. It follows that

Bκ = β̂κ −βκ =
∑

l

yl −hl

gl

Ψ̄
κ
l =n−1=2

∑

l

zl

gl

Ψ̄
κ
l =n−1=2

∑

l

Ψ̄
κ
l

gl

zl,

as the zls are independent and identically distributed standard Gaussian random variables:

var.β̂κ/=E.BκB̄κ/=n−1
∑

l

∣

∣

∣

∣

∣

Ψ̄
κ
l

gl

∣

∣

∣

∣

∣

2

E.zl/
2 =n−1

∑

l

∣

∣

∣

∣

Ψ
κ
l

gl

∣

∣

∣

∣

2

: .46/

Note that Cj ={l :Ψκ
l 
=0} and that

Ψ
κ
l =2−j=2θjklψ̂.2−j ·2πl/, θjkl = exp.−2πilk ·2−j/, .47/

so |Ψκ
l |= 2−j=2|ψ̂|.2−j · 2πl/� 2−j=2‖ψ̂‖∞ = 2−j=2 since, for the Meyer wavelet, ‖ψ̂‖∞ = 1. Using definition

(23) and recalling that for the Meyer wavelet |Cj|=4π ·2j :

var.β̂κ/�2−jn−1
∑

l∈Cj

|gl|−2 =4πn−1τ 2
j , .48/

after recalling the notation of equation (23). As the β̂κs are Gaussian,

E|β̂κ −βκ|2p
�C2p var.β̂κ/p .49/

which combined with expression (48) yields

E|β̂κ −βκ|2p
�C2p

(

τ 2
j

n

)p

, .50/

hence proving inequality (37). Let Z ∼N .0, 1/; by using expression (48) we have that

P
(

|β̂κ −βκ|�
ητjcn

2

)

�2 P

{

Z>
η
√

log.n/

2
√

.4π/

}

�
4
√

2

η
√

log.n/
n−η2=32π:

Hence, for η �2
√

{8π.p∨2/} we have proved that

P.|β̂κ −βκ|�ητjcn=2/=P.|β̂κ −βκ|�λWaveD
j =2/� c2n

−.p∨2/ .51/

which proves inequality (38) for the WaveD threshold (24) with σ =1.

A.1.2. Proof of claim 2
The proof of claim 2 is a direct application of theorem 2 (see Appendix B).
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A.1.3. Proof of claim 3
Clearly conditions (43) and (44) will be true for any σj of the form 2jν , which follows from assumption Cν

if σj = τj . Next we prove inequality (36); under assumption Cν , σj ≍2jνC, ν > 0, we have

2j1

j1
∑

j=0

2jνp ·2j.p=2−1/ ≍2j1.νp+p=2/:

For p> 1, pν +p=2 > 1 is equivalent to ν > 1=p− 1
2
. Now by equation (25)

2j1.p=2/.2ν+1/ ≍ c−p
n ≍{n=log.n/}p=2,

which proves inequality (36).

A.1.4. Proof of proposition 2
Recall definition (23):

τ 2
j =|Cj|−1

∑

Cj

|gl|−2:

Here Ψ is band limited: hence Cj ={l : 2j � |l|�2j+r}, for some fixed r> 0. To simplify the exposition we
shall further assume that Cj ={l : 2j � l�2j+r}, noting that, by symmetry, bounds below hold for negative
values of l also. Under assumption .a/: |gl|∼C|l|ν ,

τ 2
j ≍|Cj|−1

2j+r
∑

l=2j

l2ν ≍2−j ·2j.2ν+1/ ≍22jν , .52/

which proves proposition 2, part (a). Under assumption (b), we shall prove that

τ 2
j =|Cj|−1

2j+r
∑

l=2j

g−2
l ≍23j , .53/

which by identification, 22jν = 23j , shows that condition Cν holds with ν = 3
2
. Result (53) follows from

condition (9) and the following lemma (see Johnstone and Raimondo (2002)). We refer to Section 2.2 for
the notion of a BA number.

Lemma 1. Let p=q and p′=q′ be successive principal convergents in the continued fraction expansion
of a real number a. Let q�4 and N be a non-negative integer with N +q<q′. Then, for BA number a,

c0q
2
�

N+q
∑

l=N+1

‖la‖−2
� c1.a/q2: .54/

Starting at equation (23) and using condition (9), we see that

τ 2
j ≍2−j

∑

l∈Cj

(

l

‖la‖

)2

≍2−j ·22j
∑

l∈Cj

‖la‖−2 ≍2j
∑

l∈Cj

‖la‖−2: .55/

Our task, then, is to show that Σl∈Cj
‖la‖−2 ≍22j .

We consider first the upper bound. Let m be the smallest index such that qm � 2j . Recall that Cj =
{l : 2j � l � 2j+2}: The geometric growth of the denominators qn (compare expression (11)) implies that
qm+2r �2rqm > 2j+r, so

Cj ⊂N∩ [1, qm+4/:

Introduce intervals D0 =N∩ [1, qm/ and Dτ =N∩ [qm+τ−1, qm+τ / for τ =1, . . . , 4 which together cover Cj .
Since a is BA, there is an integer K=K.a/ such that qn+1 �Kqn for all n. Hence there are at most K disjoint
blocks of length qm+τ−1 that cover Dτ . Apply lemma 1 to each of these blocks:

∑

l∈Dτ

‖la‖−2
� c1Kq2

m+τ−1, 1� τ �4,
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whereas Σl∈D0
‖la‖−2 � c1.a/q2

m. Since qm+τ−1 �Kτ qm−1, we combine over τ to obtain

∑

l∈Cj

‖la‖−2
�

4
∑

τ=0

∑

l∈Dτ

‖la‖−2
�C

(

K2 +
4

∑

τ=1

K2τ+1

)

q2
m−1:

Noting that qm−1 �2j , we recover the upper bound.
For the lower bound, a little care is needed to construct intervals [N +1, N +q]⊂Cj on which to apply

the lower bound of condition (54) in lemma 1. Define qm as before. Set N =2j and consider the following
three cases.

(a) For qm > 2j+1, set q = qm−1. Since qm−1 � 2j , we have N + q = 2j + qm−1 � 2j+1 < qm = q′ and so
[N +1, N +q]⊂Cj . In addition, q2 =q2

m−1 �K−2q2
m:

(b) For qm �2j+1 and qm+1 �2qm +qm−1 (where the second condition corresponds to am+1 �2 in expres-
sion (5)), set q = qm. We have N + q = 2j + qm � 3 × 2j so [N + 1, N + q] ⊂ Cj and N + q < 2qm <
qm+1 =q′.

(c) Finally, suppose that qm �2j+1 and qm+1 =qm +qm−1. Now set q=qm+1, so that N +q=2j +qm+1 �

2j +qm +qm−1 �2j +2j+1 +2j �4×2j . In addition N +q<qm +qm+1 �qm+2 =q′, and q2 =q2
m+1 �q2

m.

In each of cases (a)–(c), we have

∑

l∈Cj

‖la‖−2
�

N+q
∑

N+1

‖la‖−2
� cq2

m �22jc:

Appendix B

B.1. Embedding of Besov spaces
Our aim here is to investigate which particular periodic Besov space may be embedded in the spaces lq,∞.µ/
as well as imply the condition

sup
n

(

cq−p
n

∥

∥

∥

∥

f −
∑

.j,k/∈Λn

βj,kΨj,k

∥

∥

∥

∥

p

p

)

<∞: .56/

Let us recall that we shall concentrate on the case where

µ.j, k/=2j.p=2−1/τ
p

j , τj =2jν , 2j1 ={n=log.n/}1=.2ν+1/
, cn ={log.n/=n}1=2

and p−q=2α:

First, we observe that condition (56) will be satisfied when f belongs to B.ν+1=2/.1−q=p/
p,∞ .T/. Hence, we

only need to prove that Bs
π,r.T/ is included in B.ν+1=2/.1−q=p/

p,∞ .T/. For this we shall use two types of Besov
embeddings, setting appropriate conditions on s, π, r and q.

(a) In the periodic setting, we have

Bs
π,r.T/⊂Bs′′

ρ,r.T/, if 0 <ρ�π, s� s′′: .57/

(b) In the general case, we have the standard ‘Sobolev embeddings’

Bs
π,r.T/⊂Bσ′

ρ,r.T/, if ρ>π, and s−1=π =σ′ −1=ρ: .58/

To prove condition (56), we are interested in taking ρ=p. For the case p�π, s > 0 implies that only the
dense case (34) can occur; hence we need to prove that s� .ν + 1

2
/.1−q=p/= .ν + 1

2
/2s=.1+2ν +2s/. This

is always true for s> 0 since 1−q=p=2s=.1+2ν +2s/.
For the case p > π, we must prove that, in the dense case (34), σ′ � .ν + 1

2
/2s=.1 + 2ν + 2s/. This

is equivalent to 2sσ′ + .1 + 2ν/.1=p − 1=π/ � 0. But in this case the left-hand side is greater than
.1 + 2ν/.p=π − 1/.s − 1=π/� 0. In the sparse case (35), we must check that σ′ � .2ν + 1/s′=.1 + 2ν + 2s′/,
but this is equivalent to .2ν +1/p={.2ν +1/p−2+2pσ′}�1 or s�1=π.

Now let us turn to the problem of embedding a particular space Bs
π,r.T/ into lq,∞.µ/. First let us mention

that we shall simplify the problem by considering the embedding into

lq.µ/=
{

f : f =
∑

j,k

( |βj,k|
τj

)q

µ.j, k/<∞
}

:
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Using Markov inequality, lq.µ/⊂ lq,∞.µ/. We observe that in the dense case where

s= .2ν +1/

(

p

2q
− 1

2

)

.59/

we have

lq.µ/=Bs
q,q.T/,

hence deriving the advertised rate of convergence since here p−q=2sp={1+2.ν + s/}.
It remains to study the more intricate cases where we do not have π = r =q.

Proposition 3.

(a) Let q be defined by the relation (59); if 0 <r �q and

s� .2ν +1/

(

p

2π
− 1

2

)

.60/

then

Bs
π,r.T/ ,→ lq.µ/=Bs

q,q.T/:

(b) Let q be defined by

p−q= 2s′p

1+2.ν + s′/
,

s′ = s−1=π +1=p

1−2={.2ν +1/p}
;

.61/

if 0 <r �q and

1

π
− 1

2
−ν <s<.2ν +1/

(

p

2π
− 1

2

)

.62/

then

Bs
π,r.T/ ,→ lq.µ/=Bs′

q,q.T/:

Remark 13. Case (62) implies that

p>
2

1+2ν
:

For ν �
1
2

this not a restriction, since we are considering 1<p<∞: Moreover, in this case the first member
of inequality (62) is always true if we deal with 1�π, as 1=π − 1

2
−ν �0:

Proof. We have

∑

j,k

( |βj, k|
τj

)q

µ.j, k/=
∑

j,k

( |βj,k|
τj

)q

τ
p

j ·2j.p=2−1/ =
∑

j,k

|βj,k|qτp−q

j ·2j.p=2−1/

=
∑

j,k

|βj,k|q ·2j{.ν+1=2/p−νq−1};

recalling that q has been chosen in such a way that

lq.µ/=Bs
q,q.T/,

and using expression (16), we obtain the following characterization of Bs
q,q.T/:

∑

j,k

|βj,k|q ·2j.s+1=2/q−1 <∞:
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We shall now use embeddings (57) and (58), taking ρ=q.

(a) If s� .2ν +1/.p=2π − 1
2
/ and r �q we have q�π; hence, using condition (57),

Bs
π,r.T/ ,→ lq.µ/=Bs

q,q.T/:

(Let us observe in addition that p>q⇔ s> 0:)
(b) If s<.2ν +1/.p=2π− 1

2
/ and r �q we shall use condition (58) to find an embedding with a different

order of smoothness. This explains our definition of q. Solving

s− 1

π
= s′ − 1

q
, s′ = .2ν +1/

(

p

2q
− 1

2

)

, π <q,

and using condition (58) gives

Bs
π,r.T/ ,→Bs′

q,q.T/= lq.µ/:

We now must check that p>q, but this is equivalent to 1=π − 1
2
−ν <s:

B.2. Temlyakov inequalities
Let us recall the Temlyakov property for a basis en.x/ in Lp: there are absolute constants c and C such
that, for all Λ⊂N,

c
∑

n∈Λ

∫

|en.x/|pdx�

∫

{

∑

n∈Λ

|en.x/|2
}p=2

dx�C
∑

n∈Λ

∫

|en.x/|p dx

or, equivalently,

c′
∥

∥

∥

{

∑

n∈Λ

|en.x/|p
}1=p∥

∥

∥

p
�

∥

∥

∥

{

∑

n∈Λ

|en.x/|2
}1=2∥

∥

∥

p
�C′

∥

∥

∥

{

∑

n∈Λ

|en.x/|p
}1=p∥

∥

∥

p
: .63/

Obviously the left-hand side is always true for p � 2 with c = 1, whereas the right-hand side is always
true for p�2 with C =1: In this section, we shall prove the following result.

Theorem 2. Let φ be a scaling function of a multiresolution analysis and ψ the associated wavelet. Let
us assume that

|φ.x/|+ |ψ.x/|� C

1+|x| :

If there is a constant C<∞ such that for all A⊂N

{

∑

j∈A

.2j=2σj/
p∧2

}1=.p∧2/

�C′
{

∑

j∈A

.2j=2σj/
p∨2

}1=.p∨2/

.64/

then the weighted wavelet basis {2j=2σj ψ.2jx − k/, j ∈ N, k ∈ Z} ∪ {σ0 φ.x − k/, k ∈ Z} satisfies the
Temlyakov property.

Proof. We start by proving the theorem for the Haar basis. We introduce the weighted Haar basis
.2j=2σjhκ/ where as usual hκ.x/=hj,k.x/=h.2jx−k/ and h.x/=1[0,1].2x/−1[0,1].2x−1/:

Let us suppose first that p�2 and there exists C<∞ such that, for all A⊂N,

{

∑

j∈A

.2j=2σj/
2
}1=2

�C
{

∑

j∈A

.2j=2σj/
p
}1=p

: .65/

Typically this is true when σj =2jν : If inequality (65) is true, we have for all Λ⊂N×Z, pointwise,
{

∑

κ∈Λ

|2j=2σj hκ.x/|2
}1=2

�C
{

∑

κ∈Λ

|2j=2σj hκ.x/|p
}1=p

so in this case
∥

∥

∥

{

∑

κ∈Λ

|2j=2σj hκ.x/|2
}1=2∥

∥

∥

p
�C

∥

∥

∥

{

∑

κ∈Λ

|2j=2σj hκ.x/|p
}1=p∥

∥

∥

p
:
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Using inequality (65) for p�2,

∥

∥

∥

{

∑

κ∈Λ

|2j=2σj hκ.x/|p
}1=p∥

∥

∥

p
�

∥

∥

∥

{

∑

κ∈Λ

|2j=2σj hκ.x/|2
}1=2∥

∥

∥

p

�C

∥

∥

∥

{

∑

κ∈Λ

|2j=2σj hκ.x/|p
}1=p∥

∥

∥

p
:

Now we suppose that p�2 and that there exists C′ <∞ such that, for all A⊂N,

{

∑

j∈A

.2j=2σj/
p
}1=p

�C′
{

∑

j∈A

.2jp=2σj/
2
}1=2

: .66/

Then again we have pointwise, for all Λ⊂N×Z,

{

∑

κ∈Λ

|2j=2σj hκ.x/|p
}1=p

�C′
{

∑

κ∈Λ

|2j=2σj hκ.x/|2
}1=2

so in this case

∥

∥

∥

{

∑

κ∈Λ

|2j=2σj hκ.x/|p
}1=p∥

∥

∥

p
�C

∥

∥

∥

{

∑

κ∈Λ

|2j=2σj hκ.x/|2
}1=2∥

∥

∥

p
;

using inequality (66) for p�2,

1

C′

∥

∥

∥

{

∑

κ∈Λ

|2j=2σj hκ.x/|p
}1=p∥

∥

∥

p
�

∥

∥

∥

{

∑

κ∈Λ

|2j=2σj hκ.x/|2
}1=2∥

∥

∥

p

�

∥

∥

∥

{

∑

κ∈Λ

|2j=2σj hκ.x/|p
}1=p∥

∥

∥

p
:

Now we shall extend this result to a general wavelet by using the transfer lemma (below). For any locally
measurable function let us recall the definition of the Hardy–Littlewood maximal function. Let I denote
an interval of R and |I| its Lebesgue measure: for all x∈R,

fÅ.x/= sup
I,x∈I

{

1

|I|

∫

I

|f.y/| dy

}

:

Lemma 2 (transfer). Let us consider two sequences of functions .fn.x//n∈N and .en.x//n∈N. Suppose
that the sequence .fn.x//n∈N satisfies the Temlyakov property and that there exists A < ∞ such that for
all n∈N

|fn.x/|�A eÅ
n .x/ almost everywhere,

|en.x/|�A fÅ
n .x/ almost everywhere:

Then the sequence .en.x//n∈N satisfies the Temlyakov property also.
Theorem 2 follows from lemma 2 since, for f =1[0,1], fÅ.x/≍ c.1∧1=|x|/, and obviously, for all

x ∈ R, |f.x/| � fÅ.x/. Combining this with the assumption of theorem 2 we have that |ψ.x/| � C hÅ.x/
and |h.x/|�C ψÅ.x/, which is obvious.

To complete the proof we derive the lemma.

Proof. The key tool for deriving the transfer lemma is the Fefferman–Stein inequality (Fefferman and
Stein, 1971): for all p, q, 1 <p<∞, 1 <q�∞, there is a positive constant Cp,q <∞ such that

∥

∥

∥

{

∑

n

|fn.x/|q
}1=q∥

∥

∥

p
�

∥

∥

∥

{

∑

n

.fÅ
n /q.x/

}1=q∥
∥

∥

p
�Cp,q

∥

∥

∥

{

∑

n

|fn.x/|q
}1=q∥

∥

∥

p
:
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Using our assumption and the previous inequality we have, for all q, 1 <q�∞, and all Λ, Λ⊂N,

∥

∥

∥

{

∑

n∈Λ

|fn.x/|q
}1=q∥

∥

∥

p
�A

∥

∥

∥

{

∑

n∈Λ

|eÅ
n .x/|q

}1=q∥
∥

∥

p

�ACp,q

∥

∥

∥

{

∑

n∈Λ

|en.x/|q
}1=q∥

∥

∥

p

�A2Cp,q

∥

∥

∥

{

∑

n∈Λ

|fÅ
n .x/|q

}1=q∥
∥

∥

p

�A2C2
p,q

∥

∥

∥

{

∑

n∈Λ

|fn.x/|q
}1=q∥

∥

∥

p
:

So for all q, 1 <q�∞,
∥

∥

∥

{

∑

n∈Λ

|fn.x/|q
}1=q∥

∥

∥

p
≍

∥

∥

∥

{

∑

n∈Λ

|en.x/|q
}1=q∥

∥

∥

p
:

Using the previous computation for q=2 and q=p, we have
∥

∥

∥

{

∑

n∈Λ

|fn.x/|p
}1=p∥

∥

∥

p
≍

∥

∥

∥

{

∑

n∈Λ

|fn.x/|2
}1=2∥

∥

∥

p

and so
∥

∥

∥

{

∑

n∈Λ

|en.x/|p
}1=p∥

∥

∥

p
≍

∥

∥

∥

{

∑

n∈Λ

|en.x/|2
}1=2∥

∥

∥

p
:

B.3. Vaguelette properties
We use .uκ, κ∈I/ to denote a generic system of candidate vaguelettes on the circle T . With uκ.t/=Σuκ

l el.t/,
then uκ

l stands for sjlΨ
κ
l in the case of the .Vκ/ system and Ψ

κ
l =sjl in the case of the .Uκ/ system.

Adapting the definition of Meyer and Coifman (1997), chapter 8, page 56, we say that {uκ, κ∈ I} is a
system of periodic vaguelettes on T if there are exponents 0 <β <α and a constant C such that

(a) |uκ.t/|�2j=2C.1+|2jt −k|/−1−α, t ∈T ,
(b)

∫

T
uκ.t/ dt =0 and

(c) |uκ.s/−uκ.t/|�2j.1=2+β/C|s− t|β , s, t ∈T:

(In what follows, α=1 and 0 <β < 1.)
The proof of Meyer and Coifman (1997), theorem 2, page 56, goes through essentially unchanged for

L2.T/ under conditions (a)–(c) and so, for every sequence .ακ/,

‖
∑

ακ uκ.t/‖2 �C′ ‖ακ‖l2
:

From the remarks around Donoho (1995), theorem 2, this is sufficient for the Riesz basis property.
It remains, then, to verify conditions (a)–(c). Condition (b) is immediate, since for the Meyer wavelet

Ψ
κ
0,0 = ψ̂κ.0/=0. For the Hölder condition (c),

∆= |uκ.s/−uκ.t/|
|s− t|β �

∑

l

|uκ
l |

|el.s/− el.t/|
|s− t|β �2π

∑

l

|l|β |uκ
l |, .67/

as follows by considering |s− t|−1 � |l| and |s− t|−1 > |l| separately. Writing uκ
l =γlΨ

κ
l , we have

|uκ
l |= |γl| ·2−j=2|ψ̂|.2−j ·2πl/�

{

C|γl| ·2−j=2 l∈Cj ,
0 otherwise.

If |gl|∼C|l|−ν , then set κj =2−jνC and observe that, for l∈Cj , we have sjl ≍1 and so for either .Uκ/ or
.Vκ/ systems |γl|≍1 for l∈Cj . Combining with the two previous displays,

∆�C ·2−j=2
∑

l∈Cj

|l|β �C ·2−j=2 ·2j ·2jβ =C ·2j.1=2+β/: .68/
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For condition (a), we first observe that ujk.t/ = uj,0.t − 2−jk/, and so it suffices to show, for κ= .j, 0/,
that

.2jt ∧1/2|uκ.t/|�2j=2C, |t|� 1
2
: .69/

For |t|� 1
2
, we have t2 ∼|1− exp.−2πit/|2 and, setting ∆fl =fl+1 −fl and ∆

2fl =∆.∆fl/,

{1− exp.−2πit/}2
∑

l

uκ
l el.t/=

∑

l

.∆2uκ
l / el.t/:

Set rjl = ψ̂.2−j ·2πl/; from formula (47) for Ψ
κ
l , we obtain

uκ
l =

{

2−j=2wl l∈Cj ,
0 otherwise,

with

wl =
{

rjlsjl for Vκ,
rjl=sjl for Uκ:

If we suppose that

|∆2wl|�C ·2−2j , l∈Cj , .70/

then from our previous remarks

t2|uκ.t/|�C
∑

l∈Cj

2−j=2|∆2wl|�C ·2−j=2 ·2−2j · |Cj|�C ·2−3j=2:

If |t|�2−j , we simply bound |uκ.t/|�Σ |uκ
l | and retracing the argument from condition (67) to condi-

tion (68) with β =0 we obtain condition (69).
To establish condition (70), observe first that, since rl = ψ̂.2−j ·2πl/, we have ∆

rrl � .2π ·2−j/r‖ψ̂.r/‖∞ �

2−rjC for r =0, 1, 2. Some calculation shows that

∆
2.rlsl/=∆

2rlsl+2 +2 ∆rl ∆sl+1 + rl ∆
2sl:

∆
2

(

rl

sl

)

= ∆
2rl

sl+2

−2
∆rl

sl+1

∆sl+1

sl+2

+2
rl

sl

∆sl

sl+1

∆sl+1

sl+2

− rl

sl

∆
2sl

sl+2

,

and now condition (70) may be seen to follow from condition (27).
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