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Abstract:  We introduce a novel speckle noise reduction algorithm for
OCT images. Contrary to present approaches, the algoritbes dahot
rely on simple averaging of multiple image frames or demgjson the
final averaged image. Instead it uses wavelet decompasitibthe single
frames for a local noise and structure estimation. Basechiznainalysis,
the wavelet detail coefficients are weighted, averaged ecaohstructed. At
a signal-to-noise gain at about 100% we observe only a minampsess
decrease, as measured by a full-width-half-maximum regiucf 10.5%.
While a similar signal-to-noise gain would require avenagof 29 frames,
we achieve this result using only 8 frames as input to therdlgo. A
possible application of the proposed algorithm is prepssitgy in retinal
structure segmentation algorithms, to allow a better difiéiation between
real tissue information and unwanted speckle noise.
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1. Introduction

Optical Coherence Tomography (OCT) [1] has become a wibéshed modality for depth
resolved imaging of translucent tissues. Ophthalmology perticularly benefited from the
inventions and improvements made to OCT systems. In vivginggof the retina [2] is estab-
lished in daily clinical practise and measurements peréation these images aid the diagnosis
of pathologies by physicians [3, 4, 5, 6]. An example for songrasurements is determining the
thickness of single retinal layers [7, 8, 9].

To speed up the diagnosis and to avoid observer differenoeasurements have been au-
tomated by software methods. Regardless of the structube tobserved or automatically
segmented, e.g. retinal layers, drusens, or the optic rfegad, one common component in
modern OCT systems is the speckle noise suppression, $iad®@CT images are corrupted
by unwanted speckle noise. This noise is generated by teefén¢nce of multiple scattered
photons and complete loss of photons in the tissue. Suppnesgethods enhance the tissue
structure for better visualization and prevention of awdted segmentation errors. The devel-
opment of these methods is challenging, as speckle nofeedlif its properties from the zero
mean, isotropic Gaussian noise, which is usually assumied ppesent in natural scenes taken
with a CCD-sensor. Such a noise model is well understood imehaviour and removal process
[10].

The properties of OCT intensities and speckle behaviouewerestigated in [11, 12, 13].
Speckle is not pure noise. It also transports image infaonal hus, we differentiate between
speckle and speckle noise, where the later is the pure uedaotruption to an ideal OCT
signal. As the speckle is image information, its patterrsdus change if no physical parameter
of the imaging system is altered. The speckle and thus treeraye spatially correlated [14].
Their distribution properties change depending on thensitg scale space in which the images
are viewed, on the position in the image, and on the scagt@rioperties of the imaged tissue
[15].

State-of-the-art speckle suppresion methods can be rpegtégorized in frame averaging



methods and digital denoising algorithms. The first catggan be further split into systems
that alter parameters of the imaging system in between thgpteurecordings or rely on the

imaged subject itself to change the speckle pattern, liketample due to movement of the
eye when imaging the retina.

Parameters that are changed in OCT systems to decorrektklsmpf multiple recorded
frames are the incident angle of the laserbeam [16, 17, 18,ti® recording angle of the
backreflected light [20] or the frequency of the laser beaf.[Zhese methods can also be
utilized when the imaged object is static, as for examplehm imaging of paint layers as
performed by Hughes et al. [19]. In the case of imaging of tyes &he position of the object
of interest changes constantly due to: a) small motionsezhbyg respiration and heart beat;
b) movements of the eye itself, like for example saccadicionoiVith the development of
fast frequency domain OCT systems, multiple B-Scan reoggiat the same or nearly the
same positions became possible. To compensate for smatimedhat might have happened,
weighted averaging schemes were proposed [22] or the reuftigmes were registered by
cross correlation [23, 24]. An additional eye tracking veaice can compensate for transversal
motion before the scans take place [25].

A multitude of well known digital denoising methods have begapted for OCT images.
Simple average and median filters have been utilized in [@éfks et al. [27] formulated an
I-divergence regularization approach for despeckling.efvnimethod based on bayesian es-
timations in large neighborhoods was formulated by Wongl.€f28]. Diffusion filters have
proven to be well suited for OCT speckle suppression. Saltal. [29] proposed the use of
complex diffusion. This approach was further improved byraedes et al. [30]. Puvanathasan
et al. [31] included edge information and a noise estimatth@ir formulation of a nonlin-
ear isotropic diffusion denoising. Another prominent teicjue uses wavelet thresholding or
comparable methods. Wavelet methods have the advantagafofrping denoising on mul-
tiple resolutions, which is desireable when dealing witighborhood correlated noise. The
proposed formulations of wavelet denoising algorithms@&@T images range from spatially
adaptive wavelet filters [32] and the use of modern wavelebagositions, like the dual tree
complex wavelet transformation [33], to curvelets transfations [34].

An extensive comparison of standard digital denoising wasthas been performed by Oz-
can et al. [35]. Among others, wavelet thresholding withHtshivariant wavelets yielded the
best results. In addition to comparing various filters, @zegal. also adressed the question of
multiframe data and investigated if a denoising of the @rfigimes before averaging has advan-
tages over denoising the averaged frame. They conluddrtiatms of quantitative evaluation
metrics, no significant difference could be observed. Thamaation time however is much
lower when only the averaged frame is processed. Ozcan ptadessed the single frames
indenpendently before averaging.

We propose a new method for performing denoising of mulfiiiene data, were the single
frames are processed before averaging, but information &bframes is utilized. By compar-
ing a single frame to the other frames in the dataset, we dec@bifferentiate more precisly
between tissue structure and unwanted noise. We formuthieddea in the framework of
wavelet denoising, as wavelet denoising is widely ackndgéesl to provide good results for
OCT images. The concept, however, is not limited to wavedabising. It may easily be incor-
porated in other denoising techniques.

Multiframe denoising where single frames are denoised ttiging a multitude of frames are
known from other imaging modalities. Guo and Huang [36] jms®ezl a method for magnetic
resonance image denoising, where a low resolution referflame steers the denoising of a
second noise image with higher resolution. Azzabou andgResd37] denoised ultrasound
sequences by adding temporal filtering within the sequeas®)ming that the image content



does not vary to a large extend from frame to frame. As theiaitiun process in OCT is
much faster than in ultrasound and the scanning locationbedurther stabilized by the use
of an eye tracker or software motion-artifact correctior,@an assume no motion at all. The
algorithm in our work is inspired by Borsdorf et al. [38, 3Bhey reconstructed multiple images
from distinct selections out of a set of computed tomogrgi@ily) projections. By computing
correlations in between the reconstructions, a wavelebidamg approach could be enhanced.
Splitting projection data for multiple reconstructionsGi leads to a higher noise level on the
single frames. Thus, only a two frame denoising was propoa&ith OCT we can in theory
aquire a very large number of frames with equivalent noigell&Ve make use of this property.
Our algorithm expects at least 2 input frames, but more ifrpmes are favored.

The remainder of the paper is structured as follows: In sack we describe our dataset,
the proposed method for denoising multiple frame data, he@valuation process for gaining
guantitative results. Results and a comparison to starsiagle frame algorithms, namely
median filtering and wavelet thresholding, are presentesgation 3. Our work is summarized
in section 4. Here conclusions are also drawn and suggedtofuture work are given.

2. Method
2.1. Data

A dataset for the quantitative evaluation of our method wapuaed by scanning a pigs eye
ex-vivo with a Spectralis HRA & OCT (Heidelberg Engineerjighigh speed mode with 768
A-scans. The pixel spacing of the resulting images8’@min the axial direction and J4m

in the transversal direction. The resolution of the systethé axial direction is gm. The eye
tracker of the Spectralis was switched off during image &sitijon.

The eye was placed in front of the OCT device. It was rotatedraa the center of its lens.
Sets of 13 frames each were recorded at 35 eye positionespomding to a complete384mm
shift in the transversal direction. Speckle noise can bemasd to be uncorrelated in between
the scans from the varying positions. The opacity of the egs imcreased as the eye lost
humidity during transportation. Thus, the image qualitysvaiecreased by a lower signal-to-
noise ratio. This effect, however, is not unwanted in oudwaiion. Our goal is to deal with
and improve images with very low signal-to-noise levelsrasadten observed in daily clinical
practise, particularly in the scans of elderly persons wikaract, glaucoma or age-related
macula degeneration.

A gold standard image for the evaluation that should corasiittle speckle noise as possible
was created by averaging all 455 recorded frames. Therefoeefirst step the 35 image sets
corresponding to the acquisition at the 35 fixed positionsevaveraged. Although a large
amount of the speckle noise within these sets is correlateénprovement of the signal-to-
noise ratio was observed, as the uncorrelated part of tise moreduced. Next, the 35 averaged
images were registered. First, a manual registration wesnpeed. Afterwards, these manual
registrations were automatically optimized by minimizthe sum of squared distances (SSD)
between the averaged images. Only rigid transformatibas s translation and rotation, were
considered. A powell optimizer was utilized for the optiatibn. The rotation and translation
parameters are applied to all images before further proggdsigure 1 shows examples of:
the gold standard, an average of 8 random frames from theatates well as examples of two
single frames.

In addition to the pigs eye, the fundus of a normal human stibjas recorded to demon-
strate the applicability of our algorithm to real word siioas. In this case the eye motion was
compensated by the built-in eye tracker of the Spectralig 0 eye motion during the scanning
process the single frames of this human eye fundus dataeseasaumed to have uncorrelated
speckle patterns.
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Fig. 1. Example images from the pig eye dataset. (a) Golddatanimage, created by
averaging 455 frames. An exemplary region is magnifiedcateid by the white rectangle.
To allow a better visual comparison, this region will alsorbagnified on all subsequent
images shown in this work. (b) Average of 8 randomly selefituies. For display reasons,
this image and the remaining images in this work are cropfedl) Single frames from

the averaged dataset in (b).
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Fig. 2. Flow diagram of the proposed multiframe denoisirgpathm. The single images

F are scaled with a logarithmic transformation and wavelebdgosed. Weights are esti-
mated from the wavelet coefficients and applied to the detefficients. Averaging in the

wavelet domain and a wavelet reconstruction yields the finageR.

2.2.  Algorithm

A complete overview of the algorithm is shown in figure 2. Theqessing steps are logarithmic
scaling, wavelet decomposition, weight estimation, weagplication, averaging and wavelet
reconstruction. The steps will be explained in detail belble data input to our algorithm are
imagedF;, with i ranging from 1 ta\. N is the number of images. The denominations “image
and “frame” are treated as equivalent in this work, wherddtter better expresses the idea of
multiple captures with the same content.

Logarithmic transformation: A logarithmic transformation is applied to the intensitas
the input frames. This common practise allows the assumpti@ near additive noise model
in the logarithmic scale space. An ideal im&ges corrupted with noisé;. N; differs and is
assumed to be uncorrelated with other single frame acipurisit

Fi=S+N; 1)

Furthermore, the standard deviation of the n@ig®) at a positiorxis assumed to be approx-
imately the same for each image as the tissue propertiestdthange during the acquisition
process:

ai(x) = 0j(x) )

wherej is also a frame number amé j.

Wavelet decomposition:The single frames are decomposed by a wavelet transformatio
with a maximum decomposition level This decomposition yields approximation coefficients
Al and detail coefficientV! ,, wherel is the decomposition level ariithe direction (horizon-
tal, vertical, diagonal) of the detail coefficients. We use different wavelet transformations



and compare them to each other. The first is the discretessayi wavelet transformation [40]
with Haar wavelets (DSWT). No downsampling is applied indestn the wavelet decomposi-
tion levels. The second wavelet transformation is the deal tcomplex wavelet transformation
(DTCWT) [41]. In both wavelet decompositions, we store tperaximation coefficients for
each level, as they are used later on in the algorithm.

Coefficient weighting, averaging, and wavelet reconstru@n: The denoising of the im-
ages is performed by weighting the detail coefficients aitjposx with a weightG}‘D

\7\/i|,D(X) = G!,D(X) '\Nil,D(X) )

Where\INV'D are the weighted detail coefficients. After weighting, tle¢adl and approximation
coefficients are averaged:

N 1 A il
Wh (X) N_;VVI,D(X) (4)

| 13
AM(X) = N _ZlAimax(X) )

The coarsest wavelet decomposition level is denoteld,by The inverse wavelet transfor-
mation of the averaged coefficients yields the final resuiie Temainder of this subsection
presents the proposed Weigﬁiﬁo, which exploit the existence of multiple frame data.

Weight computation: Weights for the standard wavelet soft thresholding can baditated
as:

WL (x)—-SgNWh (x) )t
S e

0, otherwise

(6)

The omission of the frame numbiendicates the application of the weights on the averaged
data. The thresholding parameterrisWe compare our method to standard wavelet soft and
hard thresholding on the averaged frames. We also comparmidian filtering as a represen-
tative of non-wavelet based denoising methods. The latsraliosen as it has been succesfully
applied in OCT retinal layer segmentation preprocessi2g48, 44]. To allow for a fair com-
parison, we used a squared window for the median filter, aw#ivelet based methods do not
prefer a certain direction in advance. It must, however,dtedhthat in real applications it may
be advantageous to choose rectangular shaped windows.

Two different weights are proposed: A significance and agtation weight. A combination
of these two weights is also proposed. The significance weiglvides a local noise estimation
calculated on the detail coefficients. Contrary to the algor proposed by Borsdorf et al. [39]
for CT denoising, by having an expected number of input fratagger than 2 we can perform
our weight computation on single detail coefficients. Theamsquared distanass; p of the
detail coefficients of one image to the others is computedet &vel and positionx:

|2 1 s | | 2
Osip X =—= > (Wi,D(X)—Wj,D(X)) (7)
N-1. £ .
j=1Rj#i
In the case of the DTCWgs; p is calculated on the absolute values of the coefficientss Thi
measurement is motivated by the assumption that if a cosfiieit a certain position differs to
a large extend from the coefficients at the same position erother frames it is most likely



corrupted by noise. The significance weigBtg, which lower the influence of such coefficients
on the final result are then calculated by

1, ‘vv-' x’>ka'- X
Geigip(X) = ol ) =KoY (8)
a 6 (Wi p(X),.... Wi 5 (X)), otherwise
where the parameté&rcontrols the amount of noise reduction. Bsve choose
1 m-1 Wi
9|(W1;7Wm):— ’1__ (9)
1, W

6 is scaled to the intervd0; 1] after calculation for a single coefficient.

The correlation weighGeorr is calculated on the approximation coefficients and pravide
information on whether a structure is present in the curframte and position or not. The com-
putation we propose is derived from the work of Borsdorf ef28], but modified and adapted
to the larger input data sets OCT offers. It is motivated by fdct that if edge information
is present in a position of a single frame the correlatiorht® dther images calculated in a
small neighborhood around this position is higher than imbgeneous regions. If noise has
degraded the edge information on one single frame, thelatme will also be lower. So for
each approximation coefficient the median of the correfeticeach other image within a small
neighborhood is calculated:

| 1 | | P
Gho (9 = med (3 Comtv!(9.v/9) + 1) (10

Where\/iI is the vector of all approximation coefficients in a neighimmod (5x 5 pixels) around
the positionx in decomposition layel of framei. In the case of the DTCWT, again the ab-
solute values of the coefficients are used for the calcula@orr is the Pearsons correlation
coefficient.p is the parameter that controls the amount of noise reducTios weightGeorr; is
applied to the detail coefficients of all 3 directions.

The significance and the correlation weight can be combiDed.solution for the combina-
tion of the weights is modifying the parametein the calculation of the correlation weights
with the significance weights:

GIcomltgi (X) - GIcorr,i (X) with p= ﬁ (1* GIsig,i,D(X))2 +1 (11)
wherep'is a fixed parameter.

2.3. Evaluation

The goal of developing denoising algorithms in general igthuce the amount of noise without
changing the image information. To quantify our resultsmeasure both the reduction of noise
with the signal-to-noise ratio gain (SN&») and the integrity of the image information by the
integrity of the edges. As we want to avoid edge bluring, thevith-half-maximum reduction
(FWHM,¢q) at certain edges is calculated.
Noise reduction:In image processing, two common definitions for the signahaise ratio

(SNR) can be found: s s

o(S u(Ss

a(N)’ or SNRy = a(N) (12)
whereo(S) ando(N) denote the standard deviations of the ideal signal and tise mespec-
tively. u(S) is the mean value d. In our evaluation, we consider the improvement of the SNR

SNR; =



of the filtered image compared to a simple averaging. Botlhefdefinitions in equation 12
lead to the same formula:

SNRi(Fr) , _SNR(F) . 0o(Na) (13)

SNRi(Fa) = SNRy(Fa) o(Ns)

S’\”'-"gain =

whereF; andF, are the filtered and the averaged image respectivelyNanand N, are the
noise of these images. The real, unknown noise signal imatd by the difference of each
image to the gold-standard imaBg.

The SNR-gain is measured at different regions of intereSiBnd averaged. The 6 ROIs with
approximately to homogeneous intensities are shown agjueatas in figure 3.

Edge integrity: The full-width-half-maximum (FWHM) is a measurement foetbharpness
of the edge. We examine horizontal edges within a ROI, whHereblumns are assumed to be
perpendicular to the edge, i.e. the values of the columnesept the edge profile. The columns
within the ROI are registered by minimizing the mean squdistnce to the horizontal average
of all columns. The values in the direction of the edge are themmed up to reduce the
influence of noise. A logistic sigmoid functidi(x) is fitted to the resulting values with

02

r=qm+—m—
1+exp(—%)

(15)

whereq; to g4 are the parameters that are optimized by a nonlinear regnassing the Matlab
(Mathworks, Inc.)nlinfit method. The resulting function is called the edge respomsetibn.
Its slope and therefore its sharpness is described by iigatige ' (x) which is given by

r/(X) 02 eXp(_%)

~ )’ (19
(1+ exp(—f))
The FWHM measures the width 6f(x) at the half of the maximunT((—qs)/2).
— — — / —
FWHM — q4ln< 2d+1-v1 4d>‘, with d— (9% (17)
—2d+1++v1-4d 07]

The smaller the FWHM-value the sharper is the edge. To medbarblurring of the edge we
calculate the ratio FWHMy between the FWHM in the filtered image and the averaged image
generated with the same frames.

FWHM (F
FWHMyeq — FVHM(Fr)

-1 (18)
The FWHM<q is measured at edges with different contrasts. The 3 edge R@Imarked in
figure 3 as blue rectangles. The values for the differentedgeaveraged to get one sharpness
reduction value for each image.

All quantitative numbers were computed using randomly getieel sets of images. At most
one frame was randomly selected from each of the possibl@8figns (13 frames per posi-
tion) of the pig eye data set. To compensate for the randoncehbdO random sets were used
for each measurement and the results were averaged. Asriragtar choice allows setting the



Fig. 3. Gold standard image with the regions of interest mdror the two evaluation
metrics. Red rectangle regions are used iriNé&y,in measurement. Blue rectangle regions
are used in thEWHM,gq measurements.

strength of the denoising behaviour, we choose comparabiéts with a SNRain of around
100% as exemplary quantitative numbers and visual examples

The implementation of the algorithm was done in Matlab (Madtks, Inc., Natick, USA).
On a Macbook Pro with a 2.66 Intel Core Duo processor and 4GBehory, a 496 times
394 image set with 8 frames takes 42s to denoise, using theination of significance and
correlation weight. The algorithm was not optimized for eppeHowever, algorithm speed is
not within the scope of this work.

3. Results and Discussion

To assess the performance of our proposed algorithm, weateait quantitatively and qual-
itatively. We first perform a quantitative evaluation withetmetrics presented in section 2.3.
The algorithm behaviour with varying parameters is diseds#fterwards the performance is
guantitatively compared to state-of-the-art methods, elgrsimple frame averaging, median
filtering, and wavelet soft and hard thresholding. We codelthe evaluation with a visual
inspection of the results on both the pig eye data and the hayadata.

3.1. Parameter Behaviour

The behaviour of the algorithm can be adjusted by the follgwparameters: The choice of
the wavelet, the weight computation method, the paranieierthe significance weight, the
parametemp in the correlation weight, and the number of wavelet levele number of input
frames also has to be taken into account. Due to this largdauaf parameters, an evaluation
of all possible combinations is not feasible. We restriatself to parameter combinations that
have proven to provide good results in preliminary testsvangonly few parameters to provide
an understanding of the algorithm behaviour.

First, we compare the 3 different weight computation meghdthe results are computed us-
ing 8 frames and 5 wavelet decomposition levels. The quaiviitresults are computed for both
proposed wavelets and are shown in figure 4. The F\WddM plotted against the SNRn. An
ideal filter would completely leave the edge sharpnesstintddch corresponds to a FWHM
of 0%, while providing high SNRin values.
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Fig. 4. Sharpness reduction as measured by the full-widthrhaximum reduction
(FWHM,¢q) plotted against noise reduction as measured by the signatise gain
(SNRyain) for 8 frames and 5 wavelet levels using the wavelet multiframe noise cedu
tion method. Results are shown for: Significance weightgjmeaterk varied) and discrete
stationary wavelet transform with Haar wavelets (DSWTgn#icance weight (parameter
k varied) and dual tree complex wavelet transformation (DTIQMorrelation weight (pa-
rameterp varied) and DSWT; correlation weight (paramepesaried) and DTCWT; combi-
nation of significance and correlation weight (paramktend p* varied) and DSWT; com-
bination of significance and correlation weight (paramktand p* varied) and DTCWT.

We vary the parametdein 0.1 steps from 1 to 2 in the computation of the significance
weight results. Using the DSWT, we achieve 109% GhRwith a sharpness loss of B3.
The DTCWT performed worse. Here a comparable §¥Wf 106.0% lead to a sharpness loss
of 40.7%. This discrepancy can be explained by the length of thpmupf the two wavelet
transformations. The significance weight is computed fohegetail coefficient position inde-
pendently without any influence of the neighborhood. Howethee value of the detail coeffi-
cientis influenced by a larger neighborhood in the spatied@ia when the DTCWT is applied
compared to when Haar wavelets are used. Thus, noisy ceefichear edges have a higher
probabilty of influencing the appearance of the edge. For3®iiRain values, the significance
weight with the DSWT delivered the best quantitative ressult

In the case of the correlation weight, the support of the Vedsglays only a minor role, as
this weight is by itself computed in a window on the approximacoefficients. Thus, the cor-
relation weight, where the parameteis varied from 025 to 2 in 025 steps, shows comparable
results for both wavelets. With increasing SR, the FWHMeq rises almost lineary, yielding
an 113% FWHMeq at 988% SNRyain for the DTCWT.



If a high SNRyain is desired, the combination of the significance and the tiioa weight
provides the best quantitative evaluation results. All borations ofk ranging from 05 to
1.5 in 0.1 steps withp ranging from 025 to 25 in 0.25 steps were tested. The FWHMIis
lower than the correlation weight for all SN&, values, with the DSWT delivering better edge
preservation at high noise reduction rates. This effectastrtikely also related to the larger
support of the DTCWT.

One important question is the behaviour of the algorithmmtiéferent numbers of input
frames are used. We, therefore, also computed results amef. The same parameters were
used as with 8 frames. Figure 5 shows the amount of noise tiedyglotted against edge
degradation. When comparing the plots to the 8-frame resulfigure 4, two differences can
be observed. First, the significance weight performs belst @m a decreased range of small
SNRyain values. Second, the DSWT outperforms the DTCWT more clesnign both weights
are combined. Note, that the Sj and FWHMeq values in figure 4 and figure 5 do not repre-
sent abolute numbers (see section 2.3), but are compugidedb the average of the respective
number of frames, so only theehaviourof the curves allow an appropriate comparison.

The number of wavelet levels has only a minor influence on éselt. With fewer than
5 decomposition levels, the FWHM slightly increases. We therefore used 5 decomposition
levels troughout the results computation. We chose twoegtihown in table 1 to exemplify
this behaviour. Furthermore, table 1 presents the quéwtitavaluation results for a SNRn
of roughly 100%.

To sum up, we propose the usage of the significane weight fall amounts of noise reduc-
tion, for example for visualization purposes. For heavysaa@uppression, as is required, for
example, in segmentation preprocessing, a combinatioigoifisance and correlation weight
is feasible. Suprisingly, although the DTCWT is the moreaathed wavelet and delivers good
results with single frame denoising, as we will see in thetsextion, the DSWT with Haar
wavelets is better suited to the multiframe method due tshitster support.

3.2. Comparison to state-of-the-art

A comparison of the proposed multiframe method to averagimeglian filtering, and standard
wavelet thresholding methods is shown in figure 6. We chofie¢lsesholding for the DSWT
and hard thresholding for the DTCWT, as these outperforineddspective competitor in the
preliminary tests. The FWHM, of the frame averaging method was computed in relation to
the average of 8 frames (see section 2.3). We averaged ugtar®s. Exemplary numbers of
averages are marked in figure 6.

The traditional DSWT clearly exhibits the worst performenillowed by median filtering
with window sizes of 3x 3 and 5x 5. The quantitative evaluation results of the DTCWT used
on a 8-frames average are better than frame averaging ofifftames. If high computational
speed is required in preprocessing, this method shouldisdered. The multiframe method,
however, delivers better edge preservation in any case.aimunt of edge sharpness loss
compared to averaging is small. Averaging 29 frames lea@t8NRyain of 1000% and a
FWHM¢q Of 8.3%. A comparable SNRin achieved with only 8 frames and the multiframe
method yields a 16% FWHMggq.

3.3. \Visual inspection

It is known that good quantitative denoising performancesdoot necesssary lead to a vi-
sually pleasing image. Especially when using wavelet#faats of the denoising algorithm
may disturb the image appearance. We therefore chose ex@mgge results from the pig eye
dataset, of which quantitative evaluation results weremiwn table 1, for a visual inspection.
The images are shown in figure 7. The parameters of the régpetgorithms were adjusted
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Fig. 5. Sharpness reduction as measured by the full-widthrhaximum reduction
(FWHM,¢q) plotted against noise reduction as measured by the signatise gain
(SNRyain) for 4 frames and 5 wavelet levels using the wavelet multiframe noise cedu
tion method. Results are shown for: Significance weightgjmeaterk varied) and discrete
stationary wavelet transform with Haar wavelets (DSWTgn#icance weight (parameter
k varied) and dual tree complex wavelet transformation (DTIQMorrelation weight (pa-
rameterp varied) and DSWT; correlation weight (paramepesaried) and DTCWT; combi-
nation of significance and correlation weight (paramktend p* varied) and DSWT; com-
bination of significance and correlation weight (paramktand p* varied) and DTCWT.

so that the SNRin of all denoised images was roughly about 100%. At this highodsng
level, median filtering does remove details and weak edgeblarred (see figure 7b). The
standard wavelet hard thresholding with the DTCWT, as shiowigure 7c, is even more un-
pleasant to the observer, as the image already contaimgstemoising artifacts. Together with
the quantitative results shown in section 3.2 we can corcthdt the single frame denoising
with wavelet thresholding is only feasible for low amountsioise reduction. The use of the
multiframe method and the significance weight alone alsolresathe limit of its applicability
at an SNRain of 100%, as derived from the quantitative results. Very $mvalelet artifacts
are visible. Compared to the average image in figure 7a, teek&preduction, however, is
clearly observeable, as the large speckle grains in theageeémage became much finer and
evenly distributed. This behaviour remains intact in thevelaet multiframe results with the
combination weight shown in figure 7e. The noise reductiovely strong, while the blood
vessel wall shown in the magnification is still perfectlyact, better than in result of the signif-
icance weight. In addition, no wavelet artifacts can be oles® even at this high level of noise
reduction.



20T, L PN

%+ Multiframe Significance DSWT 8 Frames L7
181 Multiframe Combination DSWT 8 Frames * , + x
= + = Soft Tresholding DSWT 8 Frames ’ <
= + = Hard Tresholding DTCWT 8 Frames *'
1611 % Median 8 Frames ’
Averaging compared to 8 Frames 1
14

7

= =
o N

FWHM reduction in %
oo

0 50 100 150
SNR gain in %

Fig. 6. Sharpness reduction as measured by the full-widthrhaximum reduction
(FWHM,eq) plotted against noise reduction as measured by the signadise gain
(SNRyain) for 8 frames and 5 wavelet levels. Results are shown for: Wavelet sofistin
olding with Haar wavelets and the discrete stationary weiveansform (DSWT) (thresh-
old varied); wavelet hard thresholding with dual tree camplvavelet transformation
(DTCWT) (threshold varied); wavelet multiframe denoisingh significance weight (pa-
rameterk varied); wavelet multiframe denoising with a combinatidnsignificance and
correlation weight (paramet&rand p* varied); median filtering (window size of:33 and

5 x 5 pixels). Additionaly, the results averaging of up to 4(hies are shown were an av-
erage of 8 frames holds as a reference. The results of angragi 24, and 32 frames are
marked with dots.



Fig. 7. Result examples from the pig eye dataset, generated the same 8 randomly
selected frames: (a) Average. (b - e) Denoising resultaarReters for the methods were
adjusted so that the SNRn was roughly 100%. (b) Median filtering with a window size of
5x 5 on the average of 8 frames. (c) Wavelet hard thresholdirtig dvial tree wavelet on
the average of the 8 frames. (d) Wavelet multiframe dengisging the significance weight
with Haar wavelets. (e) Wavelets multiframe denoising gi$ite combined significance and
correlation weight with Haar wavelets.

@)

(b)

(©)

(d)

(e)



Table 1. Quantitative evaluation results of the differeemaising methods. The parameters
were adjusted so that the signal-to-noise-ratio gain (gNRwas about 100%, with the
exception of the wavelet soft thresholding using the Haareled, where a SNgjn of 100
can not be achieved due to artifact generation.

Method Wavelet | Levels | # Frames | SNRyain[%)] | FWHM req(%)
Averaging - - 8 0 0
Averaging - - 29 100 8.3
Median Filtering - - 8 96.3 18.6
Soft Thresholding | Haar 5 8 75.1 28.7
Hard Thresholding | Dual Tree 5 8 105.8 18.3
Median Filtering - - 4 103.6 16.7
Soft Thresholding | Haar 5 4 75.3 22.3
Hard Thresholding | Dual Tree 5 4 101.0 12.2
Significance Weight| Haar 5 8 109.6 13.8
Significance Weight| Dual Tree 5 8 106.0 40.7
Correlation Weight | Haar 5 8 107.2 12.9
Correlation Weight | Dual Tree 5 8 98.8 11.3
Weight Combination| Haar 5 8 101.2 10.5
Weight Combination| Dual Tree 5 8 99.6 10.7
Weight Combination| Haar 3 8 102.4 13.71
Weight Combination| Haar 4 8 99.9 11.9
Weight Combination| Haar 5 4 99.4 4.6
Weight Combination| Dual Tree 5 4 102.2 6.1

Applied on in-vivo data, the observations stay the samehasisin figure 8. The parameters
for the algorithms were the same as the ones in the quawntietaluation, where a SNR,, of
roughly 100% was achieved for 4 frames (see table 1). Agagnirtedian filter removes details
and the single frame wavelet thresholding produces a largaiat of artifacts. The multiframe
method significantly lowers the noise in the background arfitbmogeneous regions inside the
retinal layers, while preserving all edges and details efrétinal structure.

4. Summary and Conclusion

We presented a denoising method, that uses the single ea@siinput instead of the average
of multiple frames, as is common in OCT processing today. Jihgle frames are wavelet
transformed, and on the transformed data weights are cadpWe proposed two different
weights. A significance weight, that determines if noiseoisally present and a correlation
weight, that determines if structure is present within aalazeighborhood. A combination
of these weights is also possible. The wavelet detail coeffis are scaled with the weights,
averaged and transformed back.

A quantitative evaluation showes that the proposed methedpable of suppressing noise
better than median filtering or single frame wavelet dengisin the averaged data. The amount
of noise reduction can be adjusted with parameters. A signabise gain of 102% leads to
a sharpness reduction measured by full-width-half-maximeduction of 13%. This is only
slightly larger than a full-width-half-maximum reductiafi 8.3% when averaging 29 frames
instead of 8, where a comparable signal-to-noise gain a¥dli@tchieved. A visual inspection
of denoised images from a pig eye ex-vivo and in-vivo humdmaescans shows that the



Fig. 8. Result examples from the human eye fundus datagetvémage of 4 frames. (b -
d) Denoising results. Parameters for the methods weretadjssich that the SNRin was
roughly 100%. (b) Median filtering on the average of 4 franfesWavelet hard threshold-
ing with dual tree wavelet on the average of 4 frames. (d) é&senultiframe denoising
using the combined significance and correlation weight Wislar wavelets.

method reduces noise effectively without degrading stmeécor generating denoising artifacts.
At the shown noise reduction level, this could not be achdewéh single frame denoising
methods.

The proposed algorithm is applicable in OCT imaging in aictihsetting where the acqui-
sition of a large number of frames for averaging is not pdssfor example in elderly patients
or patients with severe eye diseases, but where a highyjteditlt is desired. The main appli-
cation area from our point of view is image preprocessingef@mple in the segmentation of
retinal layers, as the noise on the images is effectivelpsegsed without degrading structural
information severly. Other applications or automated cotatons that use multiframe OCT
data as input may also benefit from the ideas presented inwthrls
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