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Abstract—The wavelet transform provides a sparse represen-
tation for smooth images, enabling efficient approximation and
compression using techniques such as zerotrees. Unfortunately,
this sparsity does not extend to piecewise smooth images, where
edge discontinuities separating smooth regions persist along
smooth contours. This lack of sparsity hampers the efficiency of
wavelet-based approximation and compression. On the class of
images containing smooth 2 regions separated by edges along
smooth 2 contours, for example, the asymptotic rate-distortion
(R-D) performance of zerotree-based wavelet coding is limited to
( ) 1 , well below the optimal rate of 1 2. In this paper,

we develop a geometric modeling framework for wavelets that
addresses this shortcoming. The framework can be interpreted
either as 1) an extension to the “zerotree model” for wavelet coef-
ficients that explicitly accounts for edge structure at fine scales, or
as 2) a new atomic representation that synthesizes images using
a sparse combination of wavelets and wedgeprints—anisotropic
atoms that are adapted to edge singularities. Our approach enables
a new type of quadtree pruning for piecewise smooth images, using
zerotrees in uniformly smooth regions and wedgeprints in regions
containing geometry. Using this framework, we develop a prototype
image coder that has near-optimal asymptotic R-D performance
( ) (log )2 2 for piecewise smooth 2 2 images. In

addition, we extend the algorithm to compress natural images, ex-
ploring the practical problems that arise and attaining promising
results in terms of mean-square error and visual quality.

Index Terms—Edges, image compression, nonlinear approxima-
tion, rate-distortion, wavelets, wedgelets, wedgeprints.

I. INTRODUCTION

W
AVELETS have become pervasive in image processing,

with applications ranging from denoising and estima-

tion [1] to segmentation [2] and computer vision [3]. Indeed,

wavelets are the foundation of most state-of-the-art image

coders [4]–[7], including the recent JPEG-2000 standard [8]. A

number of factors, both practical and theoretical, contribute to

their success. Practically, the separable two-dimensional (2-D)
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wavelet transform of an -pixel image can be computed in

time. In addition, the multiscale nature of the transform

suggests a simple wavelet-domain modeling framework based

on zerotrees that has been successfully applied in general

purpose image coders [4]–[6].
The effectiveness of compression algorithms based on

wavelets and zerotrees can also be understood from a theoret-
ical standpoint. For a smooth image (potentially including a
finite number of point singularities), the wavelet decomposition
is sparse: most wavelet coefficients are approximately zero,
and only a few large coefficients (concentrated at coarse scales
and around the singularities at fine scales) are required to
accurately reconstruct the image [9]. Zerotree-based image
coders exploit this structured organization of the significant
coefficients, essentially constructing approximations from
wavelets arranged on a connected quadtree. Recent results from
nonlinear approximation show that, for smooth images with
isolated point singularities, such tree-based approximations
properly capture the significant coefficients and achieve optimal
asymptotic mean-square error (mse) decay [10]–[12]. These
results can also be extended to asymptotic rate-distortion (R-D)
bounds for simple zerotree image coders [12], [13].

Despite their success, however, wavelet-based image com-
pression algorithms face significant challenges when confronted
with piecewise smooth images, where geometric edge contours
create discontinuities between smooth image regions. Again, the
problem reveals itself in theory and in practice. Wavelet rep-
resentations of edges are significantly less sparse; tree-based
wavelet approximations of piecewise smooth images are not
asymptotically optimal [14]; and practical image coders tend to
introduce all-too-familar “ringing” artifacts around edges in the
image at low bit rates.

In this paper, we develop a geometric modeling framework in
the multiscale spirit of wavelets and zerotrees that is designed
to address these shortcomings. Theoretically, we demonstrate
that this framework yields a novel representation for images that
provides near-optimal asymptotic approximation and compres-
sion rates for a representative class of piecewise smooth im-
ages. Practically, we also incorporate these ideas into a new
coder for natural images, with promising improvements upon
a state-of-the-art wavelet–zerotree coder for images containing
strong geometric features.

A. Wavelets, Zerotrees, and Image Coding

We start with a brief overview of wavelets and zerotrees, the

foundation for our modeling framework. For the sake of illus-

tration, and to facilitate asymptotic analysis, we concentrate ini-

tially on images defined over a continuous domain.

1057-7149/$20.00 © 2006 IEEE
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The wavelet transform decomposes an image

into a superposition of 2-D atoms that are shifted

and dilated versions of bandpass mother wavelet functions
V H D and a lowpass scaling function

V H D

where denotes a 2-D coordinate in the unit square,

, and [9]. The

wavelet coefficients are indexed by a scale , a 2-D

location

,

and a subband denoting the orientation (vertical,

horizontal, or diagonal) of the wavelet basis function. Under cer-

tain conditions (which we assume for the rest of the paper), the

set forms an orthonormal basis with each com-

pactly supported on a square with sidelength [15].

The wavelet decomposition is multiscale and local; a wavelet

coefficient is affected only by image values

in the region . As such, each of the three subbands of the

wavelet transform can be naturally arranged in a quadtree .

Each node is associated with a wavelet coefficient

and a wavelet basis function (which is in turn associ-

ated with a square ). The children of node are the

four nodes at scale located directly around :

Continuing recursively through scale, we denote the descen-

dants of at scales as

and the subtree of rooted at node as

.

The wavelet basis functions possess a key sparseness property

that makes them especially well suited for representing images:

if is “smooth” over the region , then the corresponding

have relatively small magnitude (this can be made mathe-

matically precise if the have vanishing moments; see [9] and

[15] for details). In fact, since the supports of the descendants

nest inside , the entire subtree of wavelet coeffi-

cients representing the smooth region will have small magnitude.

Many wavelet-based compression algorithms (including

EZW [4], SPIHT [5], and space frequency quantization (SFQ)

[6]) exploit this sparsity by replacing subtrees of small co-

efficients with zerotrees, using one symbol to encode many

wavelet coefficients without incurring significant error. Effec-

tively, these coders construct an approximation of the image

using wavelets on a connected quadtree. Over regions where

the image is smooth, the quadtree is pruned back to a coarse

scale. Over regions containing singularities, the quadtree is

grown deeper to include wavelets at finer scales. In terms of

asymptotic mse decay (as the number of preserved coefficients

grows), this type of wavelet-based quadtree approximation is

optimal for images that are uniformly smooth [12], [13]. Let

denote the approximation to constructed from wavelets

on the set of pruned quadtrees V H D

V H D

(1)

and let denote the number of wavelets preserved in a pruned

quadtree. If (that is, if is -times continu-

ously differentiable), then there exists for every integer a set

of quadtrees such that V H D and1

(2)

The exponent in (2) is optimal; there is no orthonormal basis

in which the -term approximations asymptotically go to zero

more quickly for every image in . Amazingly, the approxi-

mation rate does not change if we introduce a finite number of

point singularities into .

Approximation results such as (2) give insight into the quality

of an image representation. A closely related measure of effi-

ciency is compression performance, where the number of bits

required to encode an approximation reflects the complexity

of specifying which coefficients are significant in addition to

their values. In the above scenario, the approximation result (2)

can be translated into a similar asymptotic R-D result using a

simple prototype coder [12], [13] that finds the quadtree ap-

proximation (1), codes the associated quadtrees , and then

quantizes the nonzero coefficients at each node of the .

Using bits for the quantized wavelet coefficients and

the quadtree , the quantized approximation can be

coded with distortion . Writing

the distortion in terms of the number of bits , we obtain the

R-D performance

(3)

for the prototype coder. For (potentially in-

cluding a finite number of point singularities), the number of

bits required is asymptotically equivalent to the Kolmogorov en-

tropy [12]; hence, the prototype coder comes within a constant

of the best possible R-D performance for this class of images.

The quadtrees used by the prototype coder [12] and by prac-

tical zerotree coders [4]–[6] adapt to each image. Using a tree-

pruning algorithm (as in [6]), we can find the quadtrees

that optimally balance the number of bits used against the dis-

tortion incurred. Given a , we can solve

(4)

with a dynamic programming algorithm similar to CART [16].

As becomes small, (4) will return approximations with many

terms (high values of ); as increases, the number of bits de-

creases. The solution to (4) for a given is the best approxima-

tion that uses the resulting number of bits.

1We focus in this paper on asymptotic approximation performance. We use
the notation f(k) g(k) if there exists a constant C , not dependent on k, such
that f(k) � Cg(k).
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Fig. 1. (a) Portion of the Wet Paint test image from Fig. 9 [18]. Ringing artifacts are pronounced in images compressed with wavelet-based coders: (b) JPEG-2000
[8], [19], and (c) SFQ [6]. (d) Ringing is reduced in our proposed WSFQ algorithm by combining wavelets with wedgeprints. Section V presents more details.

B. The Challenge of Geometry

Unfortunately, the success of wavelets does not extend to im-

ages containing geometrical features such as edges, ridges, or

other singularities persisting along contours. The prominence

and significance of these features [17] has forced researchers

in image modeling and compression to search for a framework

outside of wavelets and zerotrees.

The problem stems from the number of wavelet coefficients

needed to represent the geometrical regions of the image. To

approximate an edge accurately, a wavelet–zerotree coder must

code all coefficients whose supports overlap the contour out to

fine scales. The number of such coefficients grows as ;

that is, many wavelet coefficients are required to represent even

a simple, straight edge. This lack of sparsity is reflected in the

asymptotic performance of wavelet-quadtree based approxima-

tions and prototype coders [14]. For an image that is times

differentiable except along a smooth contour (across which it is

discontinuous), the approximation and R-D results of (2) and (3)

become stuck at and .

For , these asymptotic rates are considerably slower than

in the isolated singularity case (2), (3). In contrast, the Kol-

mogorov entropy for these piecewise smooth images behaves

the same asymptotically as for uniformly smooth images [12],

meaning that there exists a coder that can achieve

, where is the number of times the (1-D) contour

can be differentiated.

The failure of wavelets to represent edges succinctly plagues

practical image compression algorithms as well. The coder is

faced with an unfortunate dilemma: either use a large number

of bits to encode an edge, or suffer visually offensive “ringing”

artifacts in the compressed image [see Fig. 1(a)–(c)].

The abundance of wavelet coefficients describing geometry

is not an immediate barrier to effective wavelet-domain image

compression, however. There is, in fact, a strong coherency

among the coefficients imposed by the structure of the geom-

etry. For example, in the case of an isolated, sharp edge, the 1-D

information describing the trace of the edge contour completely

determines the values of the 2-D wavelet coefficients. This

coherency, however, is quite difficult to characterize explicitly.

Most wavelet-domain algorithms resort instead to modeling

collective quantities such as the variance of the coefficients

(see, for example, [7]). Such simplifications lead to suboptimal

R-D performance, however, and again lead to ringing artifacts

when quantization disrupts the geometrical coherency. In the

end, every wavelet-domain coder must face the challenge of

geometry.

C. Current Approaches for Geometric Image Compression

Recent work has focused on improving models and algo-

rithms for wavelet-based image compression. Techniques based

on level lines [20], redundant dictionaries [21], and an enhanced

quadtree prune/join algorithm [22] provide efficient solutions

for coding geometric image features. Such schemes can also be

applied in a two-stage algorithm for coding natural images: first

code the geometric contour information (using a representation

well-suited for geometry), and then code the remaining 2-D fea-

tures (using a representation such as wavelets that is well-suited

for smooth regions). Despite the efficiency of these geometric

coders, however, such a two-stage approach does not provide a

comprehensive framework for analyzing or considering the R-D

impacts of the classifications. For example, errors in identifying

or encoding a 1-D edge contour may produce unwanted artifacts

in the second stage, and it may not be straightforward to achieve

the R-D optimal balance of fidelity.

Additional work in harmonic analysis has focused on devel-

oping representations that provide sparse decompositions for

certain geometric image classes. Examples include curvelets

[14], [23] and contourlets [24], slightly redundant tight frames

consisting of anisotropic, “needle-like” atoms. In [25], bandelets

are formed by warping an orthonormal wavelet basis to conform

to the geometrical structure in the image. A nonlinear multiscale

transform that adapts to discontinuities (and can represent a

“clean” edge using very few coarse scale coefficients) is pro-

posed in [26]. Each of these new representations has been shown

to achieve near-optimal asymptotic approximation and R-D

performance for piecewise smooth images consisting of re-

gions separated by discontinuities along curves, with

( for bandelets). Some have also found use in specialized

compression applications such as identification photos.2

D. Geometric Modeling Framework for Wavelet Coefficients

In this paper, we propose an alternative approach for

representing and compressing piecewise smooth images,

demonstrating that the challenge of geometry can be addressed

in the wavelet domain by using a novel quadtree-based mod-

eling framework. Our scheme is based on the simple yet

powerful observation that geometric features can be efficiently

approximated using local, geometric atoms in the spatial do-

main, and that the projection of these geometric primitives

onto wavelet subspaces can therefore approximate the corre-

sponding wavelet coefficients. We refer to these projections

2Let it Wave. www.letitwave.fr
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as wedgeprints, noting the parallels to the 1-D footprints pre-

sented in [27]. Due to their organization on wavelet quadtrees,

wedgeprints fit naturally into the wavelet–zerotree pruning

and approximation framework. We outline the theoretical

asymptotic gains in approximation and compression afforded

by wedgeprints, and we discuss the practical application of

these principles to discrete image compression.

Wedgeprints can be interpreted in two different ways. First,

wedgeprints are an extension of zerotrees in that they implic-

itly model the coherency among wavelet coefficients in a sub-

tree (but in high-energy regions near edges) and can be en-

coded using relatively few bits. Alternatively, wedgeprints can

be viewed as an adaptive atomic representation that provides a

sparse approximation for geometric image features and can be

combined with wavelets for sparse approximation of piecewise

smooth images. This enables a new type of quadtree pruning for

piecewise smooth images, using zerotrees in uniformly smooth

regions and wedgeprints in regions containing geometric con-

tours, and it naturally leads to a top-down compression algo-

rithm for encoding a pruned wavelet–wedgeprint quadtree. In

this quadtree framework, optimizing bit rate allocation among

zerotree and wedgeprint representations is straightforward; we

present an efficient tree-pruning algorithm that uses an R-D cri-

terion to strike the proper balance.

We begin in Section II by presenting a simple formulation

of wedgeprints based on projecting elements of the multiscale

wedgelet dictionary [28], a collection of geometric atoms that

combine to form piecewise linear approximations to contours

and have a variety of applications in image representation and

analysis [29]–[31]. In Section III, we analyze the asymptotic

performance of a simple prototype wavelet–wedgeprint image

coder, nicknamed prototype Wedgelet-SFQ (proto-WSFQ). For

the illustrative class of continuous piecewise smooth images

containing smooth regions separated by edges along smooth

contours,3 we prove that this framework achieves the op-

timal approximation performance and

that the proto-WSFQ coder achieves near-optimal R-D perfor-

mance .

While this analysis illustrates the motivation and poten-

tial benefits of the wedgeprint framework, the application to

natural image compression is somewhat more involved. In

Section IV, we extend the proto-WSFQ framework into a coder

for natural images. As an extended version of SFQ [6] designed

to accommodate wedgeprints, our Wedgelet-SFQ (WSFQ)

coder is intended by design to leverage the existing work

in wavelet-based compression; the WSFQ codebook can be

viewed as a superset of the SFQ codebook. We identify, how-

ever, some practical limitations of the prototype wedgeprints

proposed in Section II, and we outline a series of refinements

designed to improve their practical compression performance.

Among these refinements, we allow local wavelet coding of

residual errors remaining from wedgeprint approximations; the

tree-structured optimization framework, however, allows us to

locally consider the R-D impact of each possible decision at

3Our choice of C smoothness relates to the approximation performance af-
forded by wedgelets; other smoothness classes can be approximated using geo-
metric atoms containing higher-order polynomial discontinuities [32].

each node. Thus, each wedgeprint is chosen to encode geometry

only when it improves the coder’s ultimate R-D performance.

Section V then tests the resulting WSFQ coder on natural

images. As demonstrated in Fig. 1(d), WSFQ offers the poten-

tial for improvements both in visual quality and mse over the

state-of-the-art SFQ performance. We conclude in Section VI

with a discussion and directions for future research.

II. WEDGEPRINTS FOR MODELING AND APPROXIMATION

State-of-the-art wavelet image coders such as EZW [4],

SPIHT [5], and SFQ [6] realize tremendous savings, both in

theory and in practice, by using zerotrees over smooth image

regions. The idea is simple: construct a quadtree-structured

wavelet approximation of an image, scalar quantize the coef-

ficients deemed “significant,” and then prune away (replace

with zero) those considered “insignificant.” For images that

are uniformly smoothed away from isolated point singularities,

simple zerotree coders are provably optimal (in an asymptotic

sense) [12]. We have seen, however, that this optimality does

not extend to piecewise smooth images with discontinuities

along smooth contours. It simply takes too many “significant”

coefficients to construct a usable approximation to an edge at

fine scales.

In this section, we introduce a quadtree-based approxima-

tion strategy for images that retain much of the structure of

the wavelet–zerotree paradigm, but is better suited for images

with edge singularities. As before, we use zerotrees to approx-

imate the behavior of wavelet coefficients in smooth regions of

the image (thus collapsing an entire subtree into one symbol).

Our strategy for wavelet coefficients around edge contours is

equally simple: we collapse entire wavelet subtrees into a single

wedgeprint, a primitive edge function projected onto a wavelet

subspace.

A. Wedgelets and Wedgeprints

To begin, consider a simple method for locally approxi-

mating an image region around an edge contour. Let be a

piecewise smooth image containing an edge singularity along

a -smooth contour , and let be a square

subdomain (corresponding to the support of a wavelet )

through which passes. The contour divides into two

subregions and , as shown in Fig. 2(a). At fine scales,

as the sidelength of becomes smaller, the region

becomes “simpler” in two ways.

• The contour becomes essentially straight as it passes

through and can be approximated by a straight line

denoted as ( represents both a position and an orienta-

tion for the line).

• The image becomes essentially flat over the two subre-

gions and ; , and can be approx-

imated by constants and .

Thus, inside , we can approximate using a

single wedgelet . A wedgelet (first introduced

by Donoho [28]) is a piecewise constant function on

that is discontinuous along the line , as shown in Fig. 2(b).

This wedgelet approximation reduces all of the information

in down to three parameters . We examine
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Fig. 2. (a) Square block S of a piecewise smooth image discontinuous along a smooth contour �. (b) Parameterization of wedgelet � (t; `;A; B): a line
index ` describes the position and orientation of the edge, and A and B specify the grayscale intensities on each side. (c) Example of a piecewise constant image
with a smooth edge contour. (d) A wedgelet tiling divides the domain of an image into dyadic squares and uses a piecewise constant wedgelet in each square to
approximate the image.

the accuracy of the wedgelet approximation (with smoothness

conditions on , , and ) carefully in Section III.

Instead of using a wedgelet in the conventional sense [28]

to approximate an image segment directly in the spatial do-

main, we will use the wedgelet parameters to approximate

the image on a wavelet subspace. Our approach is guided by

the observation that the wavelet coefficients on subtree

(whose supports nest inside of ) should behave similarly

to the wavelet coefficients of a wedgelet supported on .

Thus, in building an approximation to we propose to replace

all of the wavelets in in our approximation with a single

wedgeprint , a unit wedgelet orthogonally projected

onto the subspace (and

subsequently renormalized)

The expansion coefficient for is denoted

.

B. Wedgeprints as a Wavelet-Domain Model

Using a wedgeprint in an approximation implicitly defines

specific values for the wavelet coefficients in the underlying

wavelet subtree. To be precise, the approximated value for each

wavelet coefficient is given by

(5)

where is proportional to the wedgelet contrast . In

image regions containing edges that are nearly straight, we are

able to approximately specify an entire subtree of wavelet co-

efficients with just a line parameter and a coefficient . In

this sense, wedgeprints are analogous to zerotrees—large num-

bers of wavelet coefficients are efficiently described with a few

parameters—but wedgeprints do so in the high-energy regions

near edges. (In fact, when , a wedgeprint is equivalent

to a zerotree.) Zerotrees and wedgeprints are thus merely simple

models for wavelet behavior in smooth and edge regions, respec-

tively. Approximating a wavelet subtree with a wedgeprint en-

sures a geometrical coherence among the coefficients; as shown

Fig. 3. (a) Portion of an image containing a wedgelet through the block S .
(b) Spatial domain wedgeprint �V obtained by projecting onto vertical-band
wavelet subtree T V .

in Fig. 3, wedgeprints leave few ringing artifacts around approx-

imated edges in the spatial domain.

The wedgeprint construction is similar to the footprints dic-

tionary of Dragotti and Vetterli [27], a collection of scale-space

vectors that model wavelet coefficients at singularities in 1-D

piecewise polynomial signals. We consider only piecewise

constant primitives, however, and we intend to use only one

wedgeprint on a given subtree. Our 2-D implementation is also

different from the edgeprints presented in [33], where footprints

are applied separably to the rows and columns of a 2-D image.

The concept of projecting wedgelets into the wavelet domain

can be extended to other geometrical primitives. One possibility

would be to use surflets, a dictionary of binary functions that

are discontinuous along parabolas and higher order polynomials

[32]. Of course, we would need more parameters to specify

these higher-order primitives, increasing both the number of bits

an encoder has to use for a subtree and the computational com-

plexity for matching a primitive to a local region in the image.

Another approach, discussed in Section IV, is to project a tiling

of wedgelets with the same grayscale parameters , to ap-

proximate the image along curved edges [see Fig. 2(c) and (d)].

C. Wedgeprints as a Sparse Atomic Representation

We now have at our disposal two ways to prune a section of

a wavelet quadtree: using a zerotree, we annihilate all of the

coefficients in a subtree; using a wedgeprint, we replace all

the coefficients in a subtree with those of an ideal edge along

a specified line segment. Again, we can recast this process as

building up an approximation on a quadtree using wavelets
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and wedgeprints. This leads us to a second interpretation for

wedgeprints, as an adaptive atomic representation that can

be combined with wavelet basis functions to approximate

piecewise smooth images.

As in (1), let be an approximation to constructed from

wavelets and wedgeprints on the quadtrees V H D .

We will use wavelets on the interior nodes of the and

wedgeprints on the leaves:

V H D

(6)

A wedgeprint with specifies a zerotree in (6); .

We let denote the total number of wavelet and wedgeprint

atoms preserved on each pruned quadtree.

By augmenting the wavelet approximation with wedgeprints,

we can prune the quadtree back to relatively coarse scales both

over smooth regions in the image (using zerotrees) and also over

regions containing contours that are essentially straight (using

wedgeprints). In Section III, we show that for images that are

away from a contour, the wavelet–wedgeprint approxi-

mation (6) has asymptotic behavior

(7)

a marked improvement over the wavelet rate of —the com-

bined wavelet–wedgeprint representation is demonstrably more

sparse for this image class than are wavelets alone. Just as with

quadtree-based wavelet approximation [6], there exists a fast dy-

namic program (the CART algorithm) to find the quadtrees

and the wedgeprint parameter on the leaves of the that op-

timally balance the approximation error against the number of

terms.

III. PROTOTYPE WAVELET–WEDGEPRINT IMAGE CODER

In this section, we demonstrate the benefits of wedgeprints

by designing a simple prototype wavelet-based image coder

that combines wedgeprints and zerotrees and by proving that it

achieves near-optimal asymptotic R-D performance on a class

of piecewise smooth images. Our prototype proto-WSFQ coder

builds on the structure of the zerotree-based SFQ algorithm [6].

Due to their organization on wavelet subtrees, wedgeprints are

a natural fit for the quadtree-structured SFQ framework.

To quantitatively characterize the performance of the proto-

type wavelet–wedgeprint coder, we analyze its asymptotic per-

formance on the class of simple “ ” images. An image

consists of two smooth regions separated by a

smooth contour

where , and is a Horizon class [28]

image, , where repre-

sents a smooth “horizon” that separates the two image regions.4

Our proto-WSFQ coder encodes each wavelet quadtree from

the top down. To each node in quadtree , the encoder

assigns a label ( , , or ) corresponding to one of three

types of action.

1) [scalar quantization]: The wavelet coefficient at node

is scalar quantized using a predetermined (and uni-

form) stepsize. The encoder also assigns labels to the

node’s children .

2) [zerotree]: The wavelet coefficient at node is

scalar quantized while all descendants are jointly

quantized to zero. The encoder does not assign labels to

any descendant node.

3) [wedgeprint]: All wavelet coefficients in the subtree

rooted at node are jointly quantized using a

wedgeprint. The encoder specifies a line segment and

a single projection coefficient . The encoder does not

assign labels to any descendant node .

Our analysis of the proto-WSFQ coder has three key compo-

nents, each of which is described in detail in the remainder of

this section.

• Approximation: In Section III-A, we show that for an

image , there exists an approximation

resulting from pruned wavelet quadtrees V H D

using V H D wavelet–wedgeprint terms

with error .

• Quantization: In Section III-B, we show that we can quan-

tize the approximation using bits with total distor-

tion .

• Optimization: In Section III-C, we outline a fast dynamic

program to find the configuration of labels

that optimally balances the number of bits used to code

the image against the distortion.

Thus, the proto-WSFQ image coder is near-optimal; for the

class of images, the best asymptotic rate that any coder

can hope to achieve is [12], [14]. The proto-

WSFQ coder is also tractable; there exists a fast algorithm to

find the quantized wavelet–wedgeprint configuration that bal-

ances the number of bits used in the representation against the

distortion (quantized approximation error).

It can also be shown, although we will not do so here, that

the class on which the proto-WSFQ coder achieves

is slightly larger than . Isolated singular-

ities can be introduced into the curve (“kinks”) or the smooth

background without changing the asymptotic behavior.

A. Approximation

Consider the quadtrees V H D representing the three

wavelet subbands for an image , and fix a finest

scale . In this section, we construct [as in (6)] an ap-

proximation of by pruning each of these quadtrees,

using zerotrees and wedgeprints, to maximum depth . In the

4Our analysis is readily extended to the more general Star class of images
defined in [28].
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TABLE I
PROTO-WSFQ APPROXIMATION SUMMARY

resulting approximation, we have V H

D terms with error . We

construct this approximation treating each of the three quadtrees

in an identical manner; we therefore present the remaining dis-

cussion for a generic wavelet quadtree .

We classify the node as “type ” if the support of

intersects the edge contour ; otherwise we classify as

“type .” Since the supports of descendant wavelets nest inside

the supports of their ancestors, we know that if is of type

, then all of its descendants will also be of type . Similarly, if

is type , then all of its ancestors will also be type .

Since the contour is smooth, it has finite length. As such, the

number of wavelets at scale that it will touch grows inversely

to the sidelength of their support. We can bound the number of

type and type coefficients at scale by

The image is uniformly on the support of a type wavelet

; as a result, the coefficient magnitudes decay quickly across

scale [9, Ch. 9]. For type coefficients, the decay is much

slower. We have5

(8)

In order to correctly balance the number of wavelet and

wedgeprint atoms against the approximation errors, we construct

our approximation top-down in three stages (see Table I).

1) Scales . At the coarsest scales, we pre-

serve the wavelets at all nodes (using no zerotrees or

wedgeprints). This requires a total of basis

elements while introducing no error: .6

2) Scales . At the intermediate scales,

we keep all wavelets at type nodes while pruning below

all type nodes (using zerotrees at each type node not

already captured by an ancestor’s zerotree). For this stage,

the total number of wavelets kept is . The total

error incurred by pruning below type nodes at these

scales is

3) Scale . We prune below all remaining type

nodes at scale . Thus, we preserve a total of

wavelet atoms at type nodes and introduce truncation

error below these nodes. For each type

5We assume that the wavelets  have at least two vanishing moments.
6Because the wavelets form an orthonormal basis, ` wavelet-domain error

equals L spatial-domain error.

Fig. 4. Analysis of wedgelet approximation on square block S .

node at scale , we replace the entire wavelet

subtree with a single wedgeprint. The total number

of wedgeprints we use is . As shown next, the

error incurred by replacing the subtrees of wavelets with

wedgeprints is

(9)

This configuration of scales is carefully chosen for the

image class to balance the wavelet approximation errors (in

smooth regions) against the wedgeprint approximations (in edge

regions). In a more general setting, neither the image class nor

the edge locations may be known a priori, and so a tree-pruning

algorithm is required to make the proper decisions (see Sec-

tion III-C).

Combining Stages 1–3, we use

(10)

wavelet and wedgeprint atoms to construct the approximation

of the image with total error bounded by

(11)

Using (10) and (11), we can write the error as a function of the

number of terms in the approximation

(12)

This approximation rate agrees with the optimal bound achiev-

able for any orthonormal basis [34]. Our combined wavelet–

wedgeprint dictionary does not constitute a basis, however.

Instead, the wavelet–wedgeprint quadtree approximation is

adaptive, and the locations of the wedgeprints and wavelets are

not known a priori. For the approximation result to be mean-

ingful, we must carefully account for the complexity of this

adaptation. In the next section, we show that we can translate (12)

(with the addition of a log factor) into an asymptotic R-D bound.

To establish (9), we return briefly to the spatial domain and

examine how wedgelets can locally approximate around the

contour. Let be the square subregion of the domain of

with sidelength corresponding to the region of sup-

port of wavelet through which the contour passes. Inside

, we approximate using a straight line, denoted by . Since

, there is a strip of width around the line that

contains (see Fig. 4). In the subregions of on either side

of the strip (we label these regions and ), we approx-

imate with constants and . Since has bounded first

derivative away from , we can find and such that
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Using a wedgelet to approximate , we

have the errors

(13)

outside of the strip and

(14)

inside the strip. As a result,

.

In Stage 3 above, we replace an entire subtree of wavelets

rooted at node with a single wedgeprint. We can bound

the error of this replacement by translating our wedgelet ap-

proximation result into the wavelet domain. Using the Bessel

inequality, we have

Thus, the total error for Stage 3 is .

B. Quantization

In the context of image compression, we are interested more

in asymptotic R-D performance than approximation decay. An

image coder must spend bits not only on the expansion coeffi-

cients, but also on the addressing information specifying which

atoms were chosen for the approximation. For the combined

wavelet–wedgeprint representation, this addressing information

takes two forms: we must code the quadtree pruning map under-

lying the approximation, and we must quantize and encode the

line parameters of the wedgeprints used at the quadtree leaves

without introducing significant additional error.

The structure of the wavelet–wedgeprint approximation al-

lows us to translate (12) into an R-D bound without too much

difficulty. Given the quadtree-based approximation con-

structed in the previous section, our simple prototype coder en-

codes using bits with total distortion (approx-

imation error plus quantization error) .

The encoder starts by coding the symbols tree. Interior nodes

of are labeled with symbol ; leaves with zerotrees

below are labeled ; and leaves with wedgeprints below are

labeled . Using a straightforward, top-down algorithm, the

encoder spends bits on the labels.

At each node in , the encoder quantizes an expansion

coefficient (either a wavelet or wedgeprint) using a scalar quan-

tizer with fixed stepsize , forming a quantized approximation

. We have coefficients and suffer total ap-

proximation error . To ensure that

the quantization error does not

dominate the approximation error, we need ,

and so we choose7 .

7We assume that the constantsC andC are known to the encoder/decoder
pair. Otherwise, they can be calculated from the data and encoded without any
effect on the asymptotic results.

With the quantizer step-size fixed, the number of bits we will

use for a coefficient depends on its possible range of values.

From (8), we have that , and it is easily

shown that . Using step size

requires

quantization bins at scale , making the number of bits the en-

coder spends on each expansion coefficient

(15)

The total number of bits spent on quantizing expansion coeffi-

cients is

(16)

where is the number of wavelets and wedgeprint coeffi-

cients used in the approximation at scale in .

The total quantization error is of the same order as the approxi-

mation error, .

Finally, for each node, we need to quantize the line

parameter . Using bits, we can quantize (denoting

the quantized value ) of a unit wedgelet and suffer error

[35], [36].

Thus, we suffer total error while using

(17)

bits to code the wedgeprint line parameters.

Collecting the results above, our prototype image coder uses

(18)

bits to code a quantized approximation with total error

Writing the distortion as a function of the rate, we have

(19)

Thus, the proto-WSFQ coder comes within a logarithmic factor

of the best possible asymptotic R-D performance. The log factor

in our final bound (19) is a result of the bounds (16) and (17)

growing like rather than . It is worth noting that the bound

in (17) can be sharpened to by encoding the wedgeprint

line parameters jointly as in [31]. The additional factors

are really caused by the quantization of the expansion coeffi-

cients—to remove them, we would need in (15) to be

something like rather than . It is possible that

some joint encoding strategy for the wedgeprint coefficients

could tighten (16) to , giving us truly optimal asymptotic

distortion decay, but we will not pursue this question here.
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C. Finding the Optimal Configuration

We have shown the existence of an efficient configuration

of labels for each image . In this section, we

describe a straightforward tree-pruning algorithm that can be

used to find the best configuration (in an R-D sense) of symbols

on the quadtree. This technique is a variation on

the standard CART algorithm [16], where we seek to optimize

the total R-D performance for a fixed Lagrangian

parameter . Our R-D optimized approach is a straightforward

extension of the two-symbol tree-pruning used in the SFQ

coder [6].

For a node , we let
sym

denote the total rate required to

encode the subtree given that symbol

is encoded at node . Similarly, we let
sym

denote the total

distortion (approximation and quantization error) that results on

the subtree. Using a bottom-up approach, the tree-pruning algo-

rithm chooses a symbol at each node that minimizes the total

R-D impact on the subtree . We denote the minimum

R-D cost by

sym SQ ZT WP

sym sym
(20)

and the corresponding rate and distortion by and ,

respectively.

The per-symbol costs at node are determined as fol-

lows. To compute rate and distortion costs under option ,

we must account for the bits used to encode the particular map

symbol (among three options), the costs for scalar quantization

of [see (15)], as well as the (previously determined) costs

at the children nodes. For the wavelet coefficient at node ,

we denote its quantized value by . It follows that

SQ

SQ

Under the option , the costs are straightforward

ZT

ZT

Under option , let denote the number of bits required

to quantize both the wedgeprint line parameter and projection

coefficient. For each node , we denote the ap-

proximated wavelet coefficient by , as in (5). We then

have

WP

WP

After optimizing the symbol for each node at scale , the

tree-pruning proceeds upward until reaching the tree root. The

R-D optimized tree-pruning algorithm can be summarized as

follows:

1) Initialization. Choose a maximum scale and set

. For each node at scale , set ZT and
ZT .

2) Bottom-up progression. If , set . Oth-

erwise, terminate.

3) Subtree optimization. For each node at scale ,

choose the optimal symbol according to (20), and set

and accordingly. Then return to Step 2.

Due to the additive nature of the objective cost function (20),

this tree-pruning yields the configuration of map symbols that

minimizes the total Lagrangian cost . This operating point

corresponds to the lowest possible distortion achievable

by the prototype coder for the total rate [6]; the target rate

can be adjusted by changing the parameter . It follows that,

by constructing a series of tree-prunings as , the coder

will obey the asymptotic performance (19).8 The complexity of

this algorithm scales with the number of initial quadtree nodes

(approximately , or ), given previously computed can-

didate wedgeprints for each node; Section IV-A discusses this

added cost for discrete images. Thus, the proto-WSFQ coder is

tractable; the near-optimal rate-distortion performance is in fact

achievable using the quantized wavelet–wedgeprint configura-

tions obtained with a fast algorithm.

IV. EXTENSION TO DISCRETE IMAGES

The continuous-domain analysis of the previous sections il-

lustrates the fundamental principle underlying wedgeprints: we

can construct a sparse, efficient geometric image representation

that interfaces naturally with the standard wavelet representa-

tion for approximating piecewise smooth images. Using this

principle as a guide, we now turn our attention to the more prac-

tical problem of compressing images defined on a discrete do-

main. In this regime, the optimality analysis of algorithms be-

comes much more difficult; instead, a typical and more prag-

matic measure of performance is simply the operational rate-

distortion performance on natural images [37].

We begin this section by implementing a discrete version

of the proto-WSFQ algorithm in Section III. After identifying

some limitations with this approach, we propose some practical

modifications to the algorithm. In our discussion, we view a dis-

crete image as a partition of the unit square into square

pixels (with a constant intensity defined on each). All notations

regarding dyadic squares, quadtrees, and wavelets follow natu-

rally from their continuous-domain analogues.

A. Discrete Wedgeprints

To obtain wedgeprints for use in a discrete image coder, we

first must choose a candidate wedgelet for each dyadic square.

This is accomplished by searching a discrete dictionary of pix-

elized wedgelets for the best fit to the image square. For a

given node, we conduct this search on the square having

sidelength exactly ; this corresponds to the “idealized” sup-

port of the wavelet basis function and facilitates fast com-

8In this example it suffices to initialize each tree-pruning at a scale J that
meets (18), with a value R corresponding to the point where the curve (19) has
slope��; in practice with a discreteM�M image, we merely setJ = log M .
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Fig. 5. Obtaining a discrete wedgeprint. (a) Create a temporary image Y , using linear extensions at the border of S . (b) Take the wavelet transform of Y ,
and extract the subtree of wavelet coefficients rooted at node (j; k) (choosing the horizontal wavelet subband in this example). (c) A similar procedure is used for
projecting a wedgelet tiling.

Fig. 6. Cameraman test image coded at 0.169 bpp. (a) SFQ results, PSNR 26.37 dB. (b) Proto-WSFQ results, PSNR 26.45 dB. (c) WSFQ results using enhanced
wedgeprints, PSNR 26.73 dB. White boxes indicate the idealized support of each wedgeprint used in coding.

putation.9 Because some wavelet basis elements in extend

slightly beyond this square, however, we extend the wedgelet

outside the square to infer the wavelet coefficient values. In

practice, to minimize border artifacts, we use the simple pro-

cedure demonstrated in Fig. 5(a) and (b).

B. Proto-WSFQ Implementation

Using discrete wedgeprints, we implement the proto-WSFQ

coder outlined in Section III. As a basis for this implementation,

we use the discrete SFQ coder [6], which combines wavelets

and zerotrees and uses a bottom-up tree-pruning optimization.

In general, the extension of SFQ to accommodate wedgeprints is

intuitive and straightforward; we list in Appendix A the relevant

details of our modifications.

For our experiments, we implement both SFQ and proto-

WSFQ using biorthogonal 10–18 wavelets [39] in MATLAB.10

Fig. 6(a) and (b) shows the 256 256 Cameraman test image

compressed using SFQ and proto-WSFQ at a bit rate of 0.169

bits per pixel (bpp). (In each case, we encode a four-level

wavelet decomposition.)

9At first glance, the complexity for this search is linear in the number of pixels
and the size of the dictionary; however there exist techniques to amortize the cost
across scales and also to obtain fast approximate solutions [38], [41].

10Using Daubechies 7–9 wavelets [15], we observe slightly lower perfor-
mance for both SFQ and WSFQ, although the relative performance of WSFQ
to SFQ is slightly better.

We see in this example that 25 distinct wedgeprints are

used in the proto-WSFQ coding [white boxes in Fig. 6(b) in-

dicate the approximate spatial-domain support for each chosen

wedgeprint]. In addition to providing a small improvement

in visual quality in these regions (compared to the ringing

artifacts of SFQ), the proto-WSFQ algorithm also provides a

modest gain of 0.08 dB in PSNR.11 For comparison purposes,

compressing this image using the wavelet-based JPEG-2000

coder [19] yields a PSNR of 25.39 dB, well below the SFQ

performance, and also introduces strong ringing artifacts.

C. Discussion

The previous experiment demonstrates a tangible yet modest

gain for the proto-WSFQ algorithm; such performance is typical

on discrete images. This marginal gain is likely due to the fact

that natural images may not be well-modeled as func-

tions: image curves may not be and may be corrupted by

blurring and pixelization. In addition, the asymptotic optimality

derived in Section III does not necessarily translate to efficient

performance at low bit rates.

We do observe, however, in such practical experiments that

wedgeprints are chosen in the tree-pruning proto-WSFQ op-

timization. We take this as a validation of the fundamental

11Peak signal-to-noise ratio (PSNR) is a commonly used measure of
distortion; assuming a maximum possible pixel intensity of 255, PSNR :=
10 log (255 =mse).
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Fig. 7. (a) Wedgelet tiling can be interpreted as a pruned quadtree, where each node includes a set of wedgelet parameters and leaf nodes specify the pictured
wedgelets. (b) Wedgelet on a dyadic square. (c) MGM predictions for the square’s children, considered to be their most likely configuration. (d) A slightly less
likely configuration for the children. (e) A significantly less likely configuration.

principle underlying wedgeprints, but we also see the results

as an indication that such simple wedgeprints are not suited

to the challenges of natural images. Because the proto-WSFQ

framework is quite flexible and is designed to leverage the

performance of the SFQ algorithm, one solution is clear: by

designing wedgeprints better suited to the geometric features of

natural images, we can expect to realize better practical coding

gains.

In the remainder of this section, we propose a series of minor

modifications designed to improve the practical performance of

wedgeprints; compression results incorporating these changes

into our WSFQ coder are presented in Section V. In general,

these enhancements are not derived from rigorous mathematical

models (which are elusive for real-world images); rather, they

are the result of our own experimentation. For the sake of illus-

tration, the proposed changes are intended as direct responses

to the particular shortcomings of wedgelet-based “prints”; other

possibilities are further discussed in the Conclusion.

D. Wedgelet Tilings

We begin by developing a more explicit geometrical primi-

tive for wedgeprint projections. Consider a quadtree node .

In Section II-A, we constructed a wedgeprint based on a single

wedgelet on the square . Of course, this is not the only

available representation for the geometry on . We propose

to use not a single wedgelet but a tiling of smaller wedgelets

to more precisely describe the geometry on . As shown

in Fig. 7(a), a dyadic wedgelet tiling can be interpreted as a

pruned quadtree [28], where each node includes a

set of wedgelet parameters describing the corresponding dyadic

square . Leaf nodes of the pruned quadtree are

used to assemble the picture of the wedgelet tiling, and dividing

a leaf node into four children yields a finer approximation to a

contour. Discrete wedgeprints can be obtained from wedgelet

tilings using the procedure shown in Fig. 5(c).

Wedgelet tilings allow more explicit representations of geom-

etry on dyadic squares; compared to a single coarse wedgelet, a

multiscale tiling generally offers an approximation with lower

distortion. To fully exploit these benefits in image compression,

we must also be able to efficiently encode such a tiling. As

demonstrated in Fig. 7, there exist strong correlations among

wedgelet parameters in a given tiling. We have developed a mul-

tiscale geometry model (MGM) to capture these dependencies

[31], [35]. The MGM is a simple Markov-1 model that defines

a probability distribution on a wedgelet line parameter condi-

tioned on the line parameter of its parent node. This model

permits a straightforward top-down, predictive algorithm for

encoding a wedgelet tiling and supports R-D optimized tree-

pruning, similar to the algorithm discussed in Section III-C, for

determining the optimal tiling. In exchange for the R-D bene-

fits of wedgelet tilings, computational complexity is increased:

the optimal tiling must be recomputed for each value of the R-D

parameter , and because the choice of wedgelet at each node

may also be R-D optimized (rather than simply using the best

fits), the complexity of each tree-pruning becomes quadratic

in the wedgelet dictionary size (however, this can be greatly re-

duced by accepting a near-optimal solution). The MGM and its

associated algorithms for discrete wedgelet processing are de-

scribed in depth in [31] and [35].

E. Edge Profile Smoothness

As an additional practical extension to our geometric repre-

sentation, we include a notion of smoothness across the profile

of an edge. While a sharp edge makes an abrupt step transition

from to in profile [see Fig. 2(b)], a smooth (or blurred) edge

may take several pixels to transition from to .

We enhance our geometric representation by including a

parameter that specifies the profile smoothness of the

wedgelet tiling on . This parameter is used as an index into

a discrete dictionary of smoothing filters having a variety of

shapes and supports; after first constructing the approximation

on using sharp wedgelets, we then apply the blurring filter

indicated by . The coder reserves the option of operating

with sharp wedgelets, but on occasion the blurring filter may

provide a worthwhile reduction in distortion for a minimal cost

in rate.

An iterative algorithm allows us to choose the parameter

for a given node. Optimal tree-pruning is difficult because

the effects of the smoothing filter are not localized to the

dyadic square of each wedgelet. Thus, the tree-pruning simply

uses sharp wedgelets at each iteration; based on the resulting

wedgelet tiling, we then search the smoothness dictionary for

the smoothing filter that yields the closest match to the image

square. The tree-pruning then repeats using sharp wedgelets,

except that we adjust the Lagrangian penalty at fine scales to

reflect the estimated smoothness for the underlying edge (when

the edge is blurred, the accuracy of a fit from a sharp wedgelet

becomes less important).
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Fig. 8. (a) Synthetic piecewise smooth test image containing a smooth discontinuity: Images coded at 0.10 bits per pixel, (b) JPEG-2000, PSNR 30.93 dB,
(c) SFQ, PSNR 32.92 dB, and (d) WSFQ algorithm combining wavelets and wedgeprints, PSNR 34.27 dB.

F. Texture Compression

Even with these geometric enhancements, wedgeprints do

not offer a complete representation for all of the information

contained in a wavelet subtree. In (13) and (14), we saw for

the image model that within wedgeprint blocks, the

geometric error (inside the “strip”) dominated the error in the

surrounding smooth regions. In practice, however, an image

may contain texture adjacent to an edge that may not be well

approximated by the piecewise constant wedgeprint model.

In principle, on each dyadic square it would be desirable to

encode only the geometry using a wedgelet tiling and encode

the remaining information using an alternative representation.

Of course, this separation is difficult, if not impossible, to

implement properly.

We propose the following technique to capture the informa-

tion neglected by the wedgelet tiling: following the encoding of

a wedgeprint at a subtree node, we compute the resulting sub-

tree of residual wavelet errors and encode this residual subtree

using SFQ (the specific details of this modification are included

in Appendix B). The ultimate coded subtree of wavelet coeffi-

cients can be viewed as its own wedgeprint, combining a geo-

metric primitive with a set of additional wavelet corrections.

We note that the residual wavelet coefficients will contain two

fundamental types of information: ridge-like geometric artifacts

resulting from the limited precision of the wedgelet tiling, and

texture-like features away from the geometry. While the residual

SFQ approach will be faced with coding both types of informa-

tion, it is free to neglect those features that it cannot efficiently

encode. In fact, by using a symbol at a subtree root node,

the residual SFQ encoder may elect not to correct any residual

errors.12

Ultimately, for any particular node, the two stages of this ap-

proach (first encoding a R-D optimized wedgelet tiling and then

using SFQ for residual coding) may fail to yield the strictly op-

timal joint tiling/SFQ strategy for encoding that node. We stress,

however, that the encoder will compare this tiling/SFQ option

with the standard SFQ options (quantization and zerotree), and

so wedgeprints will be selected for coding only when they im-

prove the coder’s ultimate R-D performance. These decisions

are made locally, as opposed to a global two-stage approach that

12When the coder does correct for residual errors, it risks the reintroduction
of “ringing” artifacts due to wavelet quantization of the ridge-like features. In
practice these are moderate compared to the original SFQ artifacts; see Sec-
tion V for results.

might encode geometry and then residual. As demonstrated in

Section V, the fact that such tiling/SFQ nodes are chosen in the

ultimate tree-pruned WSFQ configuration is confirmation that

these wedgeprints are helpful in reducing the coding cost.

V. EXPERIMENTAL RESULTS

To highlight the performance of WSFQ using the wedgeprint

enhancements in Section IV-D–IV-F, we first consider a syn-

thetic 256 256 image consisting of a sharp Horizon-class

image added to a lowpass-filtered Brodatz grass (D9) texture

pattern.13 Fig. 8 shows the uncompressed image as well as the

compressed JPEG-2000, SFQ, and WSFQ versions at 0.10 bpp;

for both SFQ and WSFQ we encode a four-level wavelet de-

composition. As a simple example using a natural image, we

also consider the 1024 1024 Wet Paint image (available at

[18]). Fig. 9 shows the compression results at 0.010 bpp, using

a five-level wavelet decomposition for SFQ and WSFQ. Table II

contains a summary of the performance, listing PSNR values for

each coder and detailing the number of quantized wavelets and

wedgeprints.

As expected, in regions where WSFQ chooses wedgeprints,

ringing artifacts are noticeably reduced compared to the JPEG-

2000 and SFQ versions (see Fig. 1 for a close-up version of the

Wet Paint results). Moreover, due to the strong, simple geometry

of the artificial image, WSFQ offers a substantial gain in PSNR:

1.35 dB over the state-of-the-art SFQ technique and 3.34 dB

over JPEG-2000.14 For the Wet Paint example, WSFQ offers

a considerable improvement of 0.45 dB over both JPEG-2000

and SFQ. We note also that WSFQ offers a practical advantage

by encoding explicit geometric information about the image.

This information may be useful in situations that benefit from a

physical understanding of the scene.

Fig. 10 compares the performance of SFQ and WSFQ against

JPEG-2000 for the standard Peppers, Cameraman, and Lena

test images. The WSFQ result for Cameraman is also shown in

Fig. 6(c). In general, both algorithms outperform JPEG-2000

at most rates; for images containing strong geometric features,

WSFQ typically outperforms SFQ by 0.2–0.3 dB at low rates.

At higher rates, however, WSFQ has diminishing performance

gains relative to SFQ. This behavior has several possible causes.

At these high rates, for example, it is essential to accurately

13The USC-SIPI Image Database. sipi.usc.edu/database/
14By decreasing the energy of the texture, we observe gains up to several

decibels above standard SFQ.
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Fig. 9. (a) Wet Paint test image. Images coded at 0.010 bpp: (b) JPEG-2000, PSNR 29.77 dB, (c) SFQ, PSNR 29.77 dB, and (d) WSFQ, PSNR 30.22 dB. White
boxes indicate the idealized support of each selected wedgeprint. See Fig. 1 for a close-up zoom.

TABLE II
PERFORMANCE OF WSFQ CODER COMPARED TO JPEG-2000 AND SFQ

encode textures very near edges. In addition, wedgelet tilings

may not offer high enough precision to code natural instances

of geometry at high rates. Similar challenges are presented by

images that contain softer edges with surrounding textures,

such as Lena, for which WSFQ gains are more modest (below

0.15 dB) relative to SFQ. Such considerations can be incorpo-

rated into future implementations of WSFQ, as discussed in the

Conclusion.
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Fig. 10. Performance improvement of WSFQ (solid line) and SFQ (dashed line) relative to JPEG-2000 compression for (a) Peppers, (b) Cameraman, and (c) Lena

test images.

VI. CONCLUSION

Wedgeprints provide a flexible, adaptive, and powerful tool

for geometric image modeling, approximation, and compres-

sion. Viewed as an atomic representation, wedgeprints allow

sparse representation of piecewise smooth images. Viewed as a

wavelet-domain modeling framework, our work highlights an

important misconception regarding transform-domain image

compression. In particular, sparsity is not essential for efficient

compression of transform coefficients. Indeed, all complete

transforms provide the same information—it is simply the

accessibility of convenient models (of which sparsity is one)

that enables efficient compression. In our case, despite the lack

of wavelet sparsity, the quadtree-structured organization of the

2-D wavelet transform, combined with the localization of the

wavelet basis functions, was sufficient to develop an effective

wavelet-domain model that allowed efficient compression.

Our approach leads to many natural extensions. For example,

geometric primitives may be further extended to capture more

sophisticated instances of geometry. More important, the con-

cept of wedgeprints may be generalized beyond geometry to

other types of image features. In fact, any efficient localized

image description may be projected to a tree-structured wavelet-

domain representation in similar fashion; the process of projec-

tion allows the critical information to be encoded in the more

convenient domain. As we have done with WSFQ, the two-

symbol SFQ tree-pruning algorithm may be easily extended to

incorporate a multitude of options for each node. The primary

obstacles of implementing such extensions are the increase in

computational complexity, the added bit rate required to specify

each symbol, and the support of the wavelet basis functions (as

encountered in Section IV-A). In the future, we hope to examine

these issues further while extending WSFQ.

APPENDIX A

WEDGELET-SFQ IMPLEMENTATION DETAILS

We present here the relevant implementation details of the

WSFQ coding algorithm and optimization scheme. Many of

these details follow naturally from the SFQ algorithm [6].

The relevant innovations in this paper concern the encoding

of wavelet coefficients; any standard technique may be used to

additionally encode the scaling coefficients. We compress the

scaling coefficients in a raster scan, predicting each coefficient

from its quantized causal neighbors. We quantize and encode the

prediction errors, using a quantization stepsize optimized for a

generalized Gaussian distribution [7].

A. WSFQ Quantization

WSFQ encodes each wavelet quadtree in a single pass

from the top down using a strategy similar to the prototype

coder of Section III. For a small savings in bit rate, we make the

following adjustment: each map symbol indicates the quantiza-

tion strategy only for descendants of that node and not for the

wavelet coefficient at the node itself (the quantization scheme

for a given wavelet coefficient is actually specified at one of its

ancestors). To be precise, the labels correspond to

the following actions.

1) [scalar quantization]: Each child is quan-

tized according to a pre-determined uniform stepsize .

Quantization bin indices are encoded using adaptive arith-

metic coding [40]. An additional map symbol is subse-

quently encoded at each child node to describe the quan-

tization of its descendants.

2) [zerotree]: The descendants are set to zero. As

such, the encoder does not encode labels for any node

.

3) [wedgeprint]: The encoder specifies a wedgelet for the

square and uses the resulting wedgeprint to represent

the descendant wavelet coefficients in (see Fig. 5).15

The encoder does not encode labels for any node

.

At the coarsest wavelet scale , we tie together small collec-

tions of quadtree root nodes and encode a symbol describing

their collective quantization.

B. WSFQ Tree-Pruning

Before encoding the map symbols, the WSFQ coder must

determine the proper quantization strategy. This strategy is a

combination of two primary factors: the quantization stepsize

and the configuration of map symbols. As in Section III-C, we

fix a value for the Lagrangian parameter and seek the strategy

that minimizes the overall R-D cost .

15Up to three subbands may request a wedgelet on the same square. In such a
case, the wedgelet is encoded only once (to be used for wedgeprints in multiple
subbands), but for simplicity, we do not reduce the anticipated cost R in

each subband.
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To minimize for a fixed , we consider several possible

values for and determine the optimal map configuration for

each scenario. For a fixed value of , we use a method similar

to the tree-pruning algorithm of Section III-C. However, due to

the entropy coding of quantization bins as well as the predictive

coding technique for map symbols, the rate costs in our scheme

are not strictly localized to subtrees. As discussed below, we use

a generalization of the two-phase SFQ tree-pruning algorithm

to obtain a configuration of map symbols that is near-optimal

in terms of R-D cost: Phase I iteratively prunes the tree based

roughly on the rate and distortion costs of quantization, while

Phase II adjusts the configuration to account for the rate cost of

encoding map symbols. After pruning for several values of ,

we select as our strategy the value of (and the corresponding

configuration of map symbols) that minimizes .

Phase I (Quantization Costs): Phase I starts pruning from

the bottom of the tree and proceeds upward. The algorithm

initially assumes that all coefficients are scalar quantized and

must make decisions regarding whether to insert zerotree or

wedgeprint symbols. The coder uses several bottom-up iter-

ations until the tree-pruning converges. At the beginning of

each iteration, the coder estimates the probability density of

the collection of “significant” wavelet coefficients (those to be

quantized). This yields an estimate of the entropy (and hence

rate cost) of each scalar quantization.

During each iteration of the Phase I optimization, only nodes

currently labeled significant are examined. The coder has three

options at each such node : maintain the scalar quantiza-

tion (symbol ), create a zerotree , or create a wedgeprint

. The coder chooses the option that minimizes the total R-D

impact on the subtree .

The per-symbol costs at node are assigned as follows.

For symbols and , Phase I ignores the rate required to

encode each map symbol

SQ

SQ

ZT

ZT

Unlike the cases and , which we expect to be relatively

common, we expect relatively few symbols to be encoded,

since each wedgeprint represents many possibly significant

coefficients. Each symbol , therefore, requires a nontrivial

number of extra bits to encode. We find it useful, then, to add a

rough estimate of this added cost to the wedgeprint rate

before assigning the Phase I costs

WP

WP (21)

As in Section III-C, the optimization proceeds bottom-up. Once

the top of the tree is reached, the process repeats bottom-up

if any significant map symbols have changed. Convergence is

guaranteed because the number of significant coefficients can

only decrease. Despite the complications presented by the en-

tropy coding, we believe (as in [6]) that the Phase I tree-pruning

algorithm converges to a configuration of map symbols that is

near-optimal in terms of R-D cost.

Phase II (Map Symbol Costs): Phase II adjusts the

tree-pruning to better account for the specific costs of en-

coding map symbols. These costs are estimated by considering

how the symbols will be encoded. Specifically, in the top-down

encoding of the quadtree, map symbols are predicted based on

the variance of local, causal quantized wavelet coefficients. Low

variances among nearby coefficients indicate the likelihood

of symbol , while high variances indicate the likelihood of

symbols and . We encode whether a particular symbol is

according to this expected behavior, and we then distinguish

between symbols and using adaptive arithmetic coding.

Phase II adjusts the tree-pruning to better account for the first

of these costs, scanning the quadtree to determine if any nodes

should be changed to (or from) symbol . A switch is made

if the savings in map symbol rate exceeds the loss in Phase I

R-D efficiency. This Phase II implementation is a relatively

straightforward extension of the SFQ version [6].

APPENDIX B

RESIDUAL TEXTURE COMPRESSION

As described in Section IV-F, we implement standard

SFQ compression on each residual subtree resulting from

a wedgeprint. That is, encoding a symbol at node

involves the following four steps:

1) encode the wedgelet tiling on and compute the

wedgeprint ;

2) compute the residual error subtree

where ;

3) prune and encode the subtree using symbols and

of SFQ with the same parameter , quantization step-

size , and probability model used elsewhere;

4) add the quantized residual to the wedgeprint coeffi-

cients for the final encoded values.

We adjust the costs (21) before assigning the Phase I symbol

at node . Because these costs now may vary with the

changing probability model , we do allow the tree-pruning

algorithm to analyze nodes on subsequent iterations, but

to ensure convergence we only allow a symbol to change

to .
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