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Abstract—We build discrete-time compactly supported Other work in the signal processing literature uses two tech-
biorthogonal wavelets and perfect reconstruction filter banks njques: either cascade structures or one-to-multidimensional
for any lattice in any dimension with any number of primal and  y5nsformations. Although using cascade structures it is easy to

dual vanishing moments. The associated scaling functions areb ild orth | or biorth | ltidi . | filter bank
interpolating. Our construction relies on the lifting scheme and ulla orthogonal or biorthogonal multidimensional filter banks

inherits all of its advantages: fast transform, in-place calculation, [27], [28], one cannot guarantee vanishing moments which
and integer-to-integer transforms. We show that two lifting steps are a necessary condition for both stability and smoothness.
suffice: predict and update. The predict step can be built using One-to-multidimensional transformations include the method
multivariate polynomial interpolation, while update is a multiple ot genaraple polyphase components which cannot achieve
of the adjoint of predict. While we concentrate on the discrete-time - .

case, some discussion of convergence and stability issues togethe‘?encect reconstruction for compactly _supported filters 1], [4]
with examples is given. as well as the McClellan transformation [20], [32]. The latter
one preserves perfect reconstruction as well as zeros at aliasing
frequencies and works only for zero-phase filters [4], [28],
[26], [51].

I. INTRODUCTION In the approximation theory literature, one can also find

Yany constructions of multidimensional wavelets. These con-
r

O VER the last decade, several constructions of c:ompacﬂ1 i t b i quct latti i
supported wavelets have originated both from signal pr uctions otten use box splines on proguct fattices as scaling
nctions and again focus mostly on low dimensions [6],

i h ical lysis. In si | i i
cessing and mathematical analysis. In signal processing, c 1, [39]. In [37], the Quillin-Suslin theorem is used to build

cally sampled wavelet transforms are known as filter banks ; :
subband transforms [34], [44], [55], [57]. In mathematical ana1:_ompactly supported box spline wavelets on separable lattices
' ’ ' 3. Recently, the lifting technique emerged providing a new

ysis, wavelets are defined as translates and dilates of one fi)'@&t

function and are used to analyze and represent general fu?l'agle for studying wavelet constructions [48], [49]. The orig-

tions [23], [33]. Multiresolution analysis provided the conned-nal motivation behind lifting was to build time-varying perfect

tion between filter banks and wavelets [30], [33]. Thislead to t con;tructlo_n fll_ter b_anks, or se_cgnd-generatlon wavelets.
construction of smooth, orthogonal and compactly support en in the time-invariant settlng_, lifting offers several ad\{ar?-
wavelets [13]. The generalization to biorthogonality allowed t | ges a’?d_ CO'?”eC‘S_ to many e_arller_ approaches. T_he basic idea
construction of symmetric wavelets and thus linear phase filt hind lifting is a simple relationship betweef‘ all fllter.banks
[8], [58]. For background material and more references on filt at share the same lowpass or the same highpass filter, also

banks and wavelets, we refer the reader to [14], [47], and [59]. §erved by yetterli and Herley in [58]. Lifting also leads to
An obvious way to build wavelets in higher dimension i filter bank implementation known as ladder structures [2].

hrouah tensor oreducts of one.dimensional (L.by constr MOTEOVer, it is known that all 1-D FIR filter banks fit into
ug produ i I (1-D) u ng [15], [31], [43], [53].

tions resulting in separable filters. However, this approa(J:'ltut' e it id | recioe based
gives preferential treatment to the coordinate axes and onh}.n f's tp))a_pl)de_r, V\ﬁta'rg okprowd €a gle rt1era rque ased on
allows for rectangular divisions of the frequency spectru ing olr ttl'“ mgdl erban bs anf queles |gndy ||rnen§|ohr),
Often, symmetry axes and certain nonrectangular divisions of any ta I'(I':e an Eny nlur(? ero pnn;]a ar; ut"." vanlst Ingt]'
the frequency spectrum correspond better to the human visgments. 1o our knowledge, no such systematic construction
system. exists. Our main result is a generalization of [48, Th. 12] which

In the early 1990's, several solutions, both orthogonal ar%escribes a 1-D family of biorthogonal wavelets associated to

biorthogonal, and using different lattices became available [‘} ,e interpolating Deslauriers-Dubuc scaling functions. This

[10], [28], [36], [45]. These are typically concerned with twd onstruction involves only two lifting steps, predict and update,

and three dimensions as the algebraic conditions in higher Wbere update is the adjoint of the p_redict quideq bywe
mensions become increasingly cumbersome. show that the same result holds in higher dimensions and for

M channels as long as the update is chosen as the adjoint of
the predict divided by\/. The predict filter belongs to a class

Manuscript received January 8, 1998; revised July 13, 1999. The assoc%teﬁlters we call Neville f'”terS’ which Can be C.onStrUCted u3|_ng
editor coordinating the review of this manuscript and approving it for publicdhe de Boor-Ron algorithm for multidimensional polynomial

Index Terms—interpolation, multivariate filter banks, wavelets.

tion was Prof. Kannan Ramchandran. interpolation [17], [18].
The authors are with Bell Laboratories, Lucent Technologies, Murray Hill, o . e e

NJ 07974 USA (e-mail: jelena@bell-labs.com; wim@bell-labs.com). Our construction inherits all the built-in advantages of lifting
Publisher Item Identifier S 1057-7149(00)01515-3. such as custom design, in-place computation, integer-to-integer

1057-7149/00$10.00 © 2000 IEEE



KOVA CEVIC AND SWELDENS: WAVELET FAMILIES OF INCREASING ORDER 481

transforms, and speed, the last one being particularly importéinwe let » = ¢ thenA(e') becomes the discrete-time Fourier
in multiple dimensions. We show that the speed-up due to liftiigansform of the impulse response. Note that we use capital let-
is a factord on the synthesis side, while it is at most two on thiers to denote operators as well as Fourier transforms of se-
analysis side. As our construction results in interpolating scaliggences. The meaning will be clear from the context.
functions and halfband filters, it connects naturally to multidi- We often use differentiation with respectdoto make state-
mensional interpolating subdivision [21], [38]. Our techniquesients about filters. It is convenient to define a scaled version of
allow the construction of a wavelet basis associated with athe differentiation operator as
interpolating scaling function. Also, all wavelets built from in- d
terpolating scaling functions fit into our predict/update lifting A= —.
framework. ¢ dw

This paper is organized as follows. Section | contains back/e also combine this symbol with thenotation. Keep in mind
ground material including an overview of multiresolution anakhat the differentiation is always with respecti@and thatz is
ysis in the multivariate case. Section Il introduces Neville filtensothing more than a place holder fef. For examplez® is
and shows how to build them. We then present our main ressiitnply ¢*>~ and there is no ambiguity evendfis a noninteger.
in two stages. Sections Il deals with the two-channel case afdusA z* = « 2> for all real «. We also define
contains several examples. The two-channel case sets the stage

for the construction in thé{-channel setting, presented in Sec- A" Az) = A(n)(z) = Z a_y k" 2*
tion IV again including several examples. Finally, Section V dis- k
cusses the fast transform algorithm. so that

Il. NOTATION AND BACKGROUND MATERIAL A" A(2Y) = oA (%),

A. Signals and Operators

A signal z is a sequence of real-valued numbers indexed & Multidimensional Filters

the index seC In the multidimensional settingC = Z¢) we can use exactly
v = {zx € RJk € K} € RF the same machinery for de_a_llng with fllt_ers as in the 1-D case
as long as we use the multi-index notation. In other words, we

wherek can be either a finite or an infinite set. In this paper, wiink of an index: € Z? as avectotky , - - - , k4) wherek; € Z.
focus on signals defined on a latticedrdimensional Euclidean Similarly we think ofz as(z1, - - -, z4), n as(n1, - - -, nq) and
space and thus always take= Z?. We say that a sequence is¥ as(ai, - - -, aq). Now k™ andz* have to be understood as
finite if only a finite number ofr;, are nonzero. 4 4

For two sequences andy of 2= EQ(IC)_, we use the stan- = H Y. and 2% = H 2% (1)
dard inner productz, y). We often work with linear operators ol ’ o ’

A: /2 — ¢% and define the adjoint (or transpose) 4fto be

the operatord* so that{A z,y) = (x, A*y) for all x andy in  The size of a multi-index is

2%, Let n(x) be a multivariate polynomial (with € R%). Let d
7(Z%) (or for short) be the sequence formed by evaluating this In| = Z n;,
polynomial on the lattic&¢ =

n =n(Z) = {n(k)|k € Z%}. so that the degree of the monomidl = z7* - - - 2} is |n|. The

. differentiation operator is given b
We usell,, to denote the space of all polynomial sequences o%ﬁ P g y

total degree strictly less than glnl

A" = :
T 9wy - Dute

B. One-Dimensional Filters
When a linear operatat is time invariant we call it a filter. !f we adhere to these rules, it is still true, as in one dimension,
Its action is convolution with the impulse response sequenﬂ‘b.at

. =7 .
{anlk € K = 7} A" A(z) =A™ (z) =) a k" z* and
(A.’L’)l = (a*x)l = Z Al Tl k
by A" A(z%) = o A (%), (2)
In thig work, we assume all impulse responses to be finite, tgbte that the above equations are vector equations. We will also
is, A is an FIR filter; therefore, the action of a filter on a polyy,se1 to stand for(1,---,1) € Z%.

nomial sequence is well defined.
The z-transform of the impulse response sequence is a Lau- [ attices and Sublattices

rent polynomial If Disad x d matrix with integer coefficients, we can find

AR) = =" a sublattice ofC = Z* asD Z“. The determinant oD is an
= integer denoted by, |D| = M € Z. Then there ar¢M — 1)
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distinct cosets each of the forf Z¢ + ¢, with ¢; € Z* and 1) Multiresolution Analysis:In this section, we study the

1 <5< M- 1. We know that continuous-time setting. Consider a lattice= Z¢ and theM
sublattices induced by the dilation matdXx where M = D.
M—-1 . . .
74 — U (DZ +t,) Consider also a compactly supported scaling funcién) €
et ’ L»(R?) that satisfies the following refinement relation:
wheret, = 0 and the union is disjoint. The are unique if we o(x) =" hxp(Da—k)
restrictD~ ¢; to be in the unit hyperculje, 1]¢. Given a lattice kCK

L = DZ¢ +t, we can sample a polynomial on this lattice as _ i
where théi, form the impulse response of a filtéf. The trans-

(L) = {r(DK + t)|K € Z%}. lates and dilates af(x) are defined as

Note thatr(£) € RZ"; hence, it is a sequence indexed 2/ win(z) = M 2p(Diz — k) with ke K =2%

and not byZ. We also introduce D: R* — RPX thatis, the

downsampling operator connected with the dilation mafvix Using a vector function notatiof; = {¢; x|k € K} and the

Its adjoint is the upsampling operatprD. To define upsam- filter operations, we can express the refinement relations further
pling in the z-domain we need to defing” as as

ZD:{2’,01172’,0127...72:0{(1}7 (3) ¢j:M71/2H¢j+l

whered; is theith column vector of matrixD and =% is as \yhereH is defined ag| D) H. We say that a scaling function
defined in (1). . is interpolating if it is one at the origin and zero on the other
So far, we only considered data sampled on the canonigglints of the lattice: that isp(k) = 6. It is well known that if
lattice K = Z¢. Sometimes, however, the data is sampled Qe scaling function is interpolating then the refinement fifier
amore general lattick = F_Zd’ wherel"is an invertibled x d  is interpolating as well. Note that the converse is not true.
matrix. An example we will use in Section IV-A4 is the two- \we also consider a dual scaling functig) and its trans-

dimensional (2-D) triangular lattice where lates and dilates which are biorthogonal to the primal scaling
_ 1 1/2 @ functions
triang — 0 \/3/2 .

(Pik, Pikr) = Op k-

We can now find sublattices by premultiplyidg by I'. Given _ o

that our construction relies on polynomial interpolation and caMVe write the dual refinement relation & = M*?2H®; 4,
celation, and that polynomial spaces of fixed degree are whereH = (| D) H. (Note the different normalization for the
variant under affine transformations, we can, without loss @fial function.) Biorthogonality then implies that

generality, assume thatis the identity. The only place where -

I" plays a role is in choosing neighborhoods for the interpolants. HH" = 1.

We will come back to this in the examples. ) )
Introduce nowM — 1 wavelet functionsp; € Lo(R?) with

E. Interpolating Filters 1 < ¢ < M — 1 and their translates and dilatgs,; ;. The

Definition 1: A multidimensional filterH is an interpolating wavelet functions satisfy refinement relations given by

filter if its impulse response satisfiég,, = 6. For example,

in one dimension with dilation 2, a filter is interpolating in case
hop = 6x; this means the filter is zero in all even location ex:
cept0. Such filters are also called half band filters. In genera?
the filter has to be zero in all locations of the Oth coSBtZ)
except the origin. When applying an interpolating filter after up- Gign(@) with jeZ, kekK, 1<i<M-—1
sampling, the values at the original sample locations are leftun- " ’ ’ - -

changed and the values at the new sample locations are a lifgahs an unconditional basis for,(R<). Dual wavelets,
combinations of the values at the old sample locations. To €Xzict as well and they also satisfy refinement relations With

press an interpolating filter in the-domain, sum the-trans- 1 g5 wavelets are biorthogonal to the primal wavelets so
form of  along all the cosets; on tHe Z lattice (Oth coset) only 4t the expansion of a functighe L(R<) can be found as
one term is nonzero. Thus, a filter is interpolating ifitérans-

;= MY2G; @,

ur aim now is to findlH andG; so that the associated collec-
fon of wavelets

form can be written as M-1
M—1 F=3000 37 Wigser Pt
H(z)=1+ Z St R;(ZD) JCZ keK i=0
=1

Wavelet expansions are efficient in the sense that for a large
wheret; are coset representatives. Such filters are callgtd class of functions, the majority of the wavelet coefficients will
band filters. be small. In particular for smooth functiorfs the error of the
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Fig. 1. Suppose we are given a polynomiabf ordern < N sampled on the lattice of integes A Neville filter P of order N applied to this sampled
sequence (points on the solid line) results in a sequence that can be obtained by sampling the same polynomial, just(pfigeshyn the dashed line).

wavelet expansions decaysﬂgix’ whereN is the number of can be checked by computing the eigenvalues of a finite matrix,

vanishing moments of the dual wavelets, that is the size of which depends on the length of the filters.
. To actually compute the Sobolev regularity, we need to find
/ 2P z/ji(x) dr=0 forlp| < N the transfer operat@r' and its invariant submatriX’,.. Then we
compute the eigenvalues @¥. and use the fact that an estimate
This is equivalent to the primal scaling functions being able f%f the lower bound on the Sobolev exponent s given by [9]
reproduce polynomials up f[o degrée exactly. Similarly, the_ log p log p
primal wavelet hagVv vanishing moments and the dual scaling 2 108 A <s< 2 108 Ao (8)

functions can reproduce polynomials up to deg¥eén Section

[, we go into more detail on the interaction of filter banks Witl’where)\maX’ Amin @re the maximum and minimum eigenvalues

polynomials. of the dilation matrix, respectively, andis the maximum non-
The above properties of the scaling function and waveledpecial eigenvalue of’,.. Special eigenvalues are eigenvalues

can be easily translated to the filter sequences of the refinRat correspond to a polynomial left eigenvector (see [47] for a

ment relations. The vanishing moments conditions imply thétscussion of the role of special eigenvalues).

(1<i<M-1)

~ lll. NEVILLE FILTERS

G;m =0, formellg, and _ _ o o

G 7 =0, formelly. ) We_lntrodupe a class of filters which is cr_uqal m_the con-

structions of filter banks and wavelets using lifting. Since these

These conditions are sometimes referred to as “sum rules” di§"S are closely connected to polynomial interpolation, we

are closely related to the approximation order of the scalir?&” them Neuville filters in honor of Neville and his algorithm
function [24]. for 1-D polynomial interpolation, see, e.g., [46]. We show how

Neville filters generalize well-known filters such as Coiflets and

The biorthogonality requirements imply that ' )
Deslauriers-Dubuc filters.

M- A Neuville filter applied to a polynomial sampled on a lattice
H"H+ Z G/ G; =1 (6) results in that same polynomial, but now sampled on the orig-
i=1 inal lattice offset byt (see Fig. 1). More precisely, we have the
following.

2) Convergence and Smoothness of Scaling Functiéns: 9 _ ) ) I _
multiresolution analysis implies the existence of a perfect recorﬁpef'n't'ond:,)" Afilter P is a Neville filter of orderV with
struction filter bank with filterst, H, G, and(. On the other St 7 € R%if
hand, given a perfect reconstruction filter bank, an associated
multiresolution analysis may not always exist, i.e., the wavelets
may not form a stable basis or even belongoThe existence Note thatr need not be an integer vector.

of a basis depends on the spectrum of the transfer opéFator Consider a simple example of a linear polynomigt) =

and the dual transfer operaf®, where t + « sampled on the integer§Z) = k + a, k € Z. We show
T=(|D)M'HH* and T=(D)MHH". (7) that_ the fi!terP with pg = p_1 = 1/2is aNeville fil_terof ord_er
2 with shift 1/2. To that end, we convolve(Z) with P as in
The following result is known. (9) (we perform the convolution in the-domain since it then
Theorem 2:If N andN are at least one and the transfer op@mounts to simple multiplication)
erator and dual transfer operator have all eigenvalies< 1

Pr(Z% =7(Z+71), forxmclly. 9)

except for a simple eigenvalie= 1, then an associated mul- P(2)- () =(1/2+1/22) - Y _ (k+a)-z "
tiresolution and a stable biorthogonal wavelet basis exist. k
This combines results relating the stability of the wavelet :% Z (2k+2a+1) 27"

basis to the Sobolev regularity of the functions [12] and results k
relating the Sobolev regularity to the spectrum of the transfer _ Z (k+a+1/2) R
operator [9], [25], [40]. If the filters are FIR, then this condition T
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This last expression is thetransform ofx(Z + 1/2) which
means that” is a Neville filter with shift1/2. Let us find the
equivalent of (9) in terms of the impulse respokigg}. Substi-
tute a monomiak™ into (9)

D pk(+k)=(1+7)" for|n| < N.
k
Given that polynomial spaces are shift invariant it is sufficient
to considerl = 0

S pwkt=7", forln| < N (10)
k

where according to (2), the left-hand side is equalt6’(1).
We thus showed the following proposition.

Proposition 4: A filter P is a Neville filter of orderNV with
shift T if and only if its impulse response satisfies

> pxkt=P™MQ)=7", for|n| < N.
k

Continuing our simple example from above, let us check the
condition of Proposition 4. We need to show that

Z p—r k" (%)n’
k

We have that

for |n| < 2.

n = 0: p0-00+p_1.10:%+%:
n=1: po-0'+p -1'=0+3

1
1
2

Note that the scalar multiple of a Neville filter is not a Neville
filter. The next proposition shows that the adjoint of a Neville
filter, that is, the filter obtained by time-reversing its impulse
response and thus replaciagwith 2, is a Neville filter as
well.

Proposition 5: If P is a Neville filter of order/V with shift
T, thenP* is a Neuville filter of orderN with shift —t.

Proof: Letq be the impulse responseBf. ThenQ(z) =
P(z71). Given thatA »=' = —2~1 it follows from Proposi-
tion 4 that

Q™ (1)

(_1)|n| p(n)(l)

= =(-7)" for|n| < N.

[
The following proposition shows how Neuville filters interact:
Proposition 6: If P is a Neville filter of order/V with shift

T, and P’ is a Neville filter of orderN’ with shift 7/, thenP P’

is a Neville filter of ordemmin(N, N') with shift  + 7/.

Proof: The proof is left as an exercise to the readerm
Proposition 6 also shows that the Neville filters of a fixed order
form an Abelian group. We conclude by showing how Neville
filters interact with upsampling.

Proposition 7: If P is a Neville filter of order/NV with shift
7,thenQ(z) = P(2P) is a Neville filter of order/V with shift

Dr.

A. Examples of Neville Filters

Here we consider some well-known filters that fit into the
definition of Neville filters.

3)

4)

5)

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 3, MARCH 2000

TABLE |
DESLAURIERS-DUBUC FILTERS FOR

ORDERS1 TO 8. THESEFILTERS ARE THE SHORTESTNEVILLE FILTERS WITH

SHIFT 1/2. THE EVEN ORDER ONES ARE THEMOST INTERESTING AS
THEY HAVE LINEAR PHASE

Numerator Denominator

N\ k 3 2 1 0 -1 -2 -3 -4
1 1 1
2 1 1 2
3 3 6 ~1 28
4 -1 9 9 -1 24
5 -5 60 90 —20 3 27
6 3 -25 150 150  —25 3 28
7 42 -175 700 525 —70 7 210
8

[
oo

49 —245 1225 12258 245 49 -5

1) The identity filter, where the impulse response is a Kro-
necker delta pulse, is obviously a Neville filter of order
infinity with shift 0. Similarly, a monomial filterz* with
k € Z% is a Neville filter of order infinity with shiftk.
This shows that we only need to worry about building
Neville filters with shifts in the unit hypercube. Any other
shift can be obtained by multiplying the original Neville
filter with the correct power of.

2) Deslauriers-Dubuc interpolating subdivision uses filters
which can predict the values of a polynomial at the half
integers given the polynomial at the integers [19]. Hence
these filters are Neville filters with shift/2. As an ex-
ample, let us construct a Neville filter of ordar = 4 by
solving the following set of equations:

1
> prkt=1/2", foro<n < 4
k=—2

leading toP*(z) = (—z + 9+ 927 — 272)/16. Table |
gives the Deslauriers—Dubuc filters up to order

We saw that interpolating filter& can be written as
H(z) = 1+27! P(2?).If PisaNevillefilter of shiftl /2,

as are the Deslauriers-Dubuc filters, then we can use the
earlier propositions to see th&tis a Neville filter of the
same order and shift Given thatH (») + H(—=z) = 2,

H has the same number of zerosat —1. ThusH is a
Lagrangian halfband filters as defined in [56].

Every FIR filter is a Neville filter of orde? with the shift
equal to the first moment = H®)(1).

The lowpass orthogonal Daubechies filters [13] of order
2 or more satisfyd (? (1) = (H®(1))? [22]. In fact, this

is true for any orthogonal lowpass filters of order at least
2 [50]. Consequently, these filters are Neville filters of
order3 with shift their first momentq () (1).

Coiflets are filtersH with zero moments up tév, ex-
cluding the zerth moment which is one (1) = &,
forn < N [14]. They are thus Neville filters of ordey
with shift zero. Consequently, polynomials of degree less
than are eigenfunctions of Coiflets. Using Propositions
5 and 6 we see that the autocorrelation of any Neville filter
is a Coiflet of the same order.

Neville filters are closely connected to the one-point
quadrature formula from [50]; If a Neville filter has
order NV, then the one-point quadrature formula for the

6)

7
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analysis/dual part synthesis/primal part

Fig. 2. Thed-dimensional two-channel analysis/synthesis filter bank.

corresponding scaling function has degree of accuragg opposed to fixing the degree of the polynomial space and
N+ 1. then asking which configurations are possible, they fix a con-
8) The ideal Neville filter with shift- and order infinity is figuration of points and then find a space of polynomials in
the allpass filtee™. However it is not an FIR filter unless which to solve the interpolation problem. The particular space
7 IS an integer vector. One has to be extremely carefdépends on the configuration of the points, but for any values at
by applying such a filter to a polynomial sequence as thike points, there is a unique interpolating polynomial from the
summation converges only conditionally. These filters agpace. An efficient algorithm to evaluate this polynomial exists.
thus of limited practical use but can be thought of as the To construct Neville filters, we follow the same strategy.
limiting case for FIR Neville filters with fixed- asN goes We first fix a neighborhood of points aroundand use the

to infinity. de Boor—Ron algorithm to compute the space in which the
_ . _ interpolation problem can be solved. The ordérs then found
B. Construction of Neville Filters as the largest for whichIIy belongs to the space. If we want

Building Neville filters in d dimensions with a certain pre-t0 get a largerV, we enlarge the original neighborhood until
scribed ordefV and shiftt reduces to polynomial interpolation.the desiredV is obtained.
There are

N+d-1

(1) To simplify the exposition, we first consider two-channel
) ] ) filter banks. Once the construction in the two-channel case is
equations like (10) to satisfy, so one would expectwe need  clear theis-channel case can easily be understood.
q filter taps. To avoid extrapolation one should choose fhe  The framework for a two-channel filter bank is depicted in
filter taps in the neighborhood of The Neville filter can the be Fig 2t involves two analysis filter® (lowpass) ands (high-

found by solving & x ¢ linear system. In one dimension, thigyass) and two synthesis filtef$ (lowpass) and? (highpass).
system has a Vandermonde matrix and is always invertible. Tl pefore, let

leads to classic Lagrangian interpolation; Neville's algorithm
[46] provides a fast way of computing the interpolant at a given H=(|D)H, G=(lDG

oint.
P In higher dimensions, the situation is more complex and t@@d similarly for the duals. Consequentil” = H* (T D).
linear system is not always solvable. It can either be overdet¥Ye want to obtain a perfect reconstruction filter bank, that is,
mined or underdetermined; thus, to achieve offeone may analysis followed by synthesis gives the identity
need either more thapor less thary filter taps. For example, . .
consider three point&ey, 1), (22, 42), (x3,y3) in the plane H'H+G G=1 (12)
R?, each with an associated function valug z; andzz. One  gng synthesis followed by analysis is the identity as well. In
would expect there to be a unique plane, given by a linear polyger words,
nomialz = az + by + ¢ that interpolates these points. However,
in case the three points1, 41), (z2,%2), (x3, y3) are collinear, HH* =1, HG*=0, GH*=0, GG*=1.
infinitely many such planes exist. In this case the interpolation N
problem reduces to a 1-D problem along the common line tA&is implies thatH* H is a projection operator and the filter
three points are on. In this direction, a unigmeadraticand bank thus corresponds to a splitting in complementary sub-
single variableinterpolating polynomial exists. This then carfpaces. Note that the perfect reconstruction condition for filter
be extended to a unique solution in two dimensions by lettifnks is identical to the necessary condition for biorthogonality
the polynomial be constant in the direction orthogonal to tH€)-
common line.

This example shows that the degree of interpolation deperﬁts
not only on thenumberof interpolation points but also on their How does a filter bank interact with polynomial sequences?
geometric configurationit is not clear a priori how many inter- Since all filters are FIR, we can let them act on polynomial se-
polation points and which geometric configurations are needgdences. This will lead to the definition of two important charac-
to uniquely solve the interpolation problem for a space of polyeristics of a filter bank: the number of prim@V) and dual{ V)
nomials up to a certain degree. de Boor and Ron provide @anishing moments. These correspond to the degree of polyno-
elegant solution by posing the question differently [17], [18mials which are annihilated by the highpass filters, as in (5).

IV. TWO-CHANNEL INTERPOLATING FILTER BANKS

Vanishing Moments



486 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 3, MARCH 2000
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Fig. 3. The lifting schemeP andU stand for prediction and update operators, respectively.

Definition 8: We say that a filter bank ha¥ primal andN Here, we design thé filter so that if the input sequence is a

dual vanishing moments if polynomial sequence, then the prediction of the odd samples
is exact, highpass coefficients are zero and DM is satisfied. In
Gr =0 forrelly, and the second step, we use an update filteto update the even
Gr=0 forre I~ (13) samples based on the previously computed highpass or wavelet

coefficients. Here we desigi to satisfy PM.
Using perfect reconstruction (12), one can see that the dual moJo start, use Fig. 3 to identify the polyphase matrix as
ment condition implies thall* Hx = «. Indeed, if the high-

pass filter kills polynomials, these polynomials have to be pre- P |:-E[e -E[o:| _ {1 U} { 1 0}
served in the lowpass branch of the system. Similarly the primal G. G, 0 1][-P 1
moment condition implies that* H* H = «*. The number of _ [1 -upr U} (14)
primal vanishing moments concerns the degree of the moments - —-P 1
of an input sequence that are preserved by the lowpass branch,
or, equivalently, the number of zero moments of elements in th@€ inverse adjoint polyphase matrix is
highpass branch. Indeed, it makes obvious sense for the mean N
or DC component of the signal to appear only in the lowpass P*~! = [ge g‘)} = { }J* 1 1;* P*} (15)
branch. In summary, we want to build filter banks that have the e Mo B B
following three properties: From the polyphase decomposition we can find the filfeas
1) PR: Perfect reconstruction property as given in (12);
2) DM': Dual vanishing moments as given in (13); H(z) = H(2"”) + 2" H,(2").

3) PM: Primal vanishing moments as given in (13).

In the next section, we show how lifting allows us to obtaif\ote thatH is interpolating since.(z) = 1. The DM condi-
these properties. tion now becomes

B. Lifting éW(Zd) =G, w(D Zd) + G, (D Zd+t) =0.

Several methods have been introduced in the literature $@bstituting values from the polyphase matrix (14) yields
build filter banks that satisfy PR, DM, and PM. Typically,

they try to satisfy all three conditions at once which may Pr(DZY) = n(DZ* +1). (16)
lead to cumbersome algebraic conditions, especially in high
dimensions. Given that this has to hold for alt ¢ HK, and that the space

The main feature of lifting is that it allows us to satisfy eachls; is invariant undetD, the above equation is equivalent to
condition separately. First, every filter bank built with lifting
automatically satisfies PR. Most often, we build a filter bank Pr(Z%) =7m(Z'+ D *t), forrelly.  (17)
starting from a trivial filter bank and then we enhance its prop- ~
erties using lifting steps. In this paper, two lifting steps will sufThus, to satisfy DM/ has to be a Neville filter of ordeN and
fice: the first one, called predict, ensures that DM is satisfieghift 7 = D~ . This connects to the intuition behind the pre-
while the second one, called update, ensures that PM is saist operator. If we input a polynomial sequence of degree less
fied. We show how each step can be designed separately. than V', then all highpass coefficient (lower branch in Fig. 3)
The trivial filter bank we use to start lifting is the polyphaséave to be zero to obtain vanishing moments. This implies that
transform which splits the signal into even- and odd-indexdlie prediction is always exact. Thus, the predict filter applied to
components as in Fig. 3. The result is that the filter bank whiénhpolynomial sampled on the “even” lattid@Z“ has to result
is not time invariant because of downsampling, becomes tiriiethe same polynomial on the “odd” lattid@ Z* + ¢. This is
invariant in the polyphase domain. In the first lifting step, werecisely (16).
use a predict filtet” to predict the odd samples from the even Similarly, to satisfy PM, use (15) to get
ones. The even samples remain unchanged, while the result of
the predict filter applied to the even samples is subtracted frorf# 7(Z¢) = Ge 1(DZ%) + G, n(D 2 + 1)
the odd samples yielding the highpass or wavelet coefficients. =—U'n(DZY+ (1 -U*P)n(DZ4+t) =0



KOVA CEVIC AND SWELDENS: WAVELET FAMILIES OF INCREASING ORDER 487

for = € Ilv. We already know thal” is a Neville filter of order 1
N and shiftr. Thus, if N < N we use (17) to obtain 0.8
~U*n(DZ +n(DZ* +t) - U*n(DZ% =0, 06
form eIln 0.4
or 0.2
0 -
QU 1(DZY) = n(DZ + t). 0 05 1 15 2 25 3
1;
Therefore,2U has to be a Neville filter of ordeN with shift 0.8
—7 = —D~1¢. A natural choice is to let/ be the adjoint of 0.6
a predict filter with orderV divided by 2. We now have the 0.4
following theorem. _ 0.2
Theorem 9:Let N < V. We can build a filter bank withV 0 :
primal vanishing moments amdl dual vanishing moments by 0 05 1 15 2 25 3

letting the predict filter be a Neville filter of ordey with shift
= D ltand choosing the update filter as half the adjoint d—']dg 4. Two-channel 1-D case: magnitude Fourier transforms of the
analysis/synthesis filter pairs, for the example wkh= 4 dual andN = 2

a Neville filter of orderV and shiftr. primal vanishing moments. Note how the four dual vanishing moments make
Remarks: the dual (analysis) highpass filter smoother at the origin than the primal

1) The theorem results in a Neville filte?™ with shift+ = (synthesis) highpass filter

D~'t and the updat& = PN* /2 which is a multiple of _ _ .
a Neville filter PV* with shift —+ — —D~1+. Note that Ve now have the complete system according to Fig. 3. To find

U per se is not a Neville filter. the actual filters as in Fig. 2, we use (14) for the dual/analysis

2) The conditionN < N is not very restrictive. In image filters yielding N
compression itis known that the number of dual moments (z) = H.(2%) + z *H, (%)
is more important than the number of primal moments. — (24 — 822 +1624+46+ 1621 — 8272 + z_4)/64
The dual moments take care of polynomial cancelation = (14 222t — 223 — 522
as well as of the smoothness of the primal functions. If, : : : “

~ = —1 -2
for some reason, one would nedd > N, one can +282—5—22" +2 7)/64.
always exchange the role of the primal and dual filters. I8imilarly, for the primal/synthesis filters we use (15)
that case thanalysislowpass filter is interpolating and H(z) = (_23 19241649271 — 273)/16

the analysis functions are smooth. 14, 3 9
3) While the connection between the predict and Neville fil- —(1+27)%(" 42" + 2)/16.

ters is intuitively clear, there is much less intuition behindhe factorizations off () and H*(z) given above demonstrate

the update filter. The purpose of the update operator istitat we indeed have primal and4 dual vanishing moments

turn the “even” samples into lowpass samples which hag#ce there arg and4 zeros at = —1in H(») andH*(»), re-

the same average as the original sequence. The averaggpgttively, which is equivalent to havidgand4 zeros at = 1

two numbers is always one number pre halimes the in G*(z) andG{(z), respectively. Note also that the primal/syn-

difference. This explains why a factay2 is needed. To thesis lowpass filtetf* is interpolating. The magnitude Fourier

get the same effect for higher order polynomials, we ned@nsforms of the analysis/synthesis pairs are given in Fig. 4.

Neville filters. Given that the “odd” grid?Z< + ¢ can be Note how the analysis highpass filter is smoother at the origin

obtained from the “even” gridZ¢ by a relative shift of than the synthesis highpass.

—7 itis natural that aradjoint Neville filter is needed. Using Theorem 9, one can build the entire biorthogonal

wavelet family from [48]. These wavelets can be thought of as

C. Examples of Two-Channel Interpolating Filter Bank biorthogonal Coiflets; they were also derived independently,
Families but without the use of lifting, by Reissell [35], Tian and Wells

1) Haar: To build a filter bank in one dimension witN = [52], and Strang [47]. _
N =1, we need the simplest predict and update filtgté:) = 3) Shapnop:The I|m|t|ng1| gase_ of the 1-D family uses the
1 andU(z) = 1/2. This results in the filtergf (z) = 1 + .~  ideal Neville filter P(z) = z /2. Given that
andG(z) = —1/2 + =1 /2, that form the unnormalized Haar /2 Z (—1)* o
filter bank. i —~ (k+1/2) "

2) One-Dimensional Filter Bank Families of Higher _ 1 obro2 , ,
Order: Let us now construct 1-D filter bank families with' we see thatl(z) = 1+ 2 P.)(z. ) is the ideal Shanno_n1;|2lter
primal andN dual vanishing moments, whefé < N. As an of height 2 on[—=/2,x/2]. Similarly letU(z) = 1/227%/%,

; _ _ —1/2
example, we let predict bB* and update”?* /2 from Table I, leading K.)P(.Z) U(z)._ 1/2 and G(2) . 1/22 . 1/2.
! Thus, this is the ideal Shannon filter of height 1/2 on
and thus according to Theorem 9

. PR [—7, —7/2] U [7/2,#]. We thus recover the ideal filter bank
P(z) =P (z) = (-2 +9+927 —277)/16, or Shannon wavelet up to a normalization constant. The 1-D
U(z) =1/2P*(z) = (z + 1) /4. family from Section 11I-C2 thus forms a natural bridge between
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Fig. 5. Quincunx lattice with its units cell and the lattice in the sampled domain with neighborhoods. The small black dot within the first ringirg the po
T = (1/2,1/2) at which we want to interpolate.

that Haar and the Shannon wavelets. Note that both of these TABLE I

are orthogonal while the other members of the family ar&UINCUNX NEVILLE FILTERS. THE RINGS CORRESPOND TCRINGS GIVEN IN
FIG. 5. THE NUMBERS IN PARENTHESESGIVE THE NUMBER OF

biorthogonal. - _ . o POINTS IN EACH RING
4) Causal Lifting: Using polynomial extrapolation instead
of interpolation, it is possible to build both causal and anticaus Numerator Denominator
Taps Order \ Ring 1(4) 2(8) 3(4) 4(8) 5(8) 6(4) 7(8)

Neville filters. By letting the predict be a causal Neville, and thi

.. . . . o . 4 2 1 22
update be the adjoint of an anticausal Neville filter, it is possibl 12 4 0 -1 2
to build a filter bank with only causal lifting steps. R 1500 —aar0 om s 75 9 —sa 2
For example, a causal predict filter of order 2 is given by
Prausal(z) = —1/2271 4 3/2
while an anticausal predict of order 2 is given by also called the “symmetry” matrix. Fig. 5 depicts the quincunx
Panticausal(?) = 1/2+1/2 2. lattice together with its unit cell and the coset representative.
) ) . Since coset representatives come from the unit square it fol-
Thus, by takingP, as the predict and /2 P? . = . .
y 8" causal P /2 Pasticansan ws thatt; = (1,0). According to Theorem 9, the shift for

1/4271 + 1/4 as the update, we can build a causal transfor

L AR .
with two primal and two dual moments. Note that in this exne NheV|IIe ﬁdl'tf(?rs IST = D ; f = (1/2’ 1/_2)héseﬁ F'dg' 5)- q
ample the predict filter uses extrapolation and there is no gife choose ditierent sizes of symmetric neighborhoods aroun

sociated continuous scaling function. This is a very simple e&ﬂnd use the de Boor-Ron algorithm to compute the interpola-

ample. To get practically useful causal filters, we would neélfm order and weights for the prediét The results are given
many more filter taps. in Table Il. . ) ~

Upon finishing this paper, we learned of the work of Schuller As anexample, I?t us again constructa filter bank Witk= 4
[41], [42] concerning low-delay filter banks and applicationgmdN = 2. According to Theorem 9
in audio coding. This work, done independently from lifting, P(z1,22) = P21, 20)
f|ts_|n_to the lifting frqmework anq illustrates apother feature —(10% (1 +Z;1 + 251 + 21712271)
of lifting, namely minimal-delay filter banks. It is known that _2 5 T 1 1
a filter bank with causal filters only typically achieves perfect —ET AT s A %2
reconstruction only up to a delay. In several applications, par- + 21+ 22+ 2yt 2 ) /20
ticularly audio coding, delay is undesirable. Orthogonal filt o P2+
banks have delay proportional to the length of the filters. Wﬁﬁ/here the updaté’is P~ /2 and thus
lifting, however, one can build polyphase matrices with deterd/(z1, z0) = P*(1/21,1/22)/2 = (1 + 21 + 22 + 2122) /2.
minant one that contain only causal filters. Consequently, tl:rph
inverse polyphase matrix has causal filters as well and the filter B -
operations do not introduce any delay. The only delay in the H(z1,22) = H.(2P) + 2 " H,(z")
system comes from the polyphase representation and is propor- =H (212,21 )2) + 2 " Ho (2122, 21/ 22),
tional only to the number of subbands. Moreover, lifting com-
pletely characterizes all filter banks with minimal delay.

5) Quincunx Interpolating Filter Bank FamiliesThe quin- Using (14) we finally obtain
cunx lattice is a 2-D nonseparable lattice with = 2. One of ~
the possible dilation matrices is given by H(z,z) =1-Ulaiz, 1 /z)P(n122, 21/ 22)

D <1 1) + 2, YU (2129, 21 [ 22),

2

en, the actual dual/analysis filters from Fig. 2 are given by

é(zl, 22) = ée(zlzg, 21/22) + Z_t1 60(2122, 21/22).

1 -1 6(21,22) Il—P(leg,Zl/Zg).
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Fig. 7. Two-channel 2-D quincunx case: fifth iteration of the primal and dual
wavelets withV = 4 dual andN = 2 primal vanishing moments, respectively.
Note that this combination does not lead to a stable biorthogonal basis, as given
by Sobolev regularity in Table III.

0 TABLE Il
(b) SOBOLEV REGULARITY OF SCALING FUNCTIONS. THE FIRST Row GIVES THE
REGULARITY OF THE PRIMAL SCALING FUNCTION OF A GIVEN ORDER NN (2
THROUGH 8) WHILE THE REMAINING ROWS GIVE REGULARITIES OF DUAL

Fig. 6. Two-channel 2-D quincunx case: magnitude Fourier transform . -
of the analysis/synthesis highpass filters with = 4 dual andN = 2 %CALING FUNCTION WITH ORDER NV < N. NEGATIVE VALUES MEAN THAT

primal vanishing moments. The four dual vanishing moments make the dual THE BIORTHOGONAL BASIS ISNOT STABLE. FOR EXAMPLE, THE PAIR

(analysis) highpass filter a much smoother function at the origin than the primal (N, N) = (4,4) GIVES A STABLE B'ORTHOGONAJ‘ Basis. NoTe How
(Synthesis) highpaSS filter. REGULARITY INCREASESBOTH WITH N AND NV

N\N 2 4 6 8
1.577646 2447930  3.154570  3.777470

In a similar manner, we could obtain the synthesis filters. One
can now easily check that

A"G(z1,22)|00) =0 for0<|n| < N=4 and
AnG(Zl,ZQ)|(070) =0 for0< |7’L| < N=2.

Fig_ 6 shows the magnitudes of the Fourier transforms of tlb@SiS is stable. The results are given in Table Il1. All the primal

analysis and synthesis highpass filters while Fig. 7 shows thealing functions and all the duals witfi > 2 have positive

fifth iteration of the dual and primal wavelets, respectively. Sobolev smoothness. Note how the smoothness increases with
To examine the regularity of the filters we obtained, we conoth N and VL.

pute Sobolev regularity for the primal and dual lowpass filters 6) FCO Interpolating Filter Bank FamiliesThe FCO or

with N and N vanishing moments, respectively. We look at théace centered orthorhombic lattice is the counterpart of the

eigenvalues of the invariant transfer mafili, as explained in quincunx family in three dimensions. This= 3 andM = 2,

Section I-F. For our dilation matrix, both eigenvalues gf2  as in Fig. 8. One of the possible dilation matrices is given by

—0.337026 —-0.185245 —0.116082 —0.075940
- 0.341393 0.492785 0.586692
- - 0.936194 1.088348
- - - 1.501143

=R NN

thus the special eigenvalues are powers/@fand the Sobolev 1 0 1
regularity iss = log, p with p the largest nonspecial eigen- D=|1 10
value. According to Theorem 2, ¥ and N are at least one and 0 1 1

both transfer matrices have all eigenvalues inside the unit cwclqMter finishing this work, we learned that th@. 2) fiter pair from this

e_xcept for one\ :._1 (which is equivale_nt to both Scaj"ng func'familywas developed independently by Uytterhoeven. For more details we refer
tions having positive Sobolev regularity) then the biorthogonail [54].
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Fig. 8. FCO lattice and the relevant neighborhood on the same lattice. The black point is the one to be interpolated, the white points constiting thfle
the checkered points constitute the second ring.

TABLE IV TABLE V
FCO NeVILLE FILTERS. THE RINGS CORRESPOND TORINGS GIVEN IN FIG. 8. CHECKERBOARDNEVILLE FILTERS IN d DIMENSIONS
THE NUMBERS IN PARENTHESESGIVE THE NUMBER OF POINTS IN EACH RING
e T owter\Ring 120 2(s(5))
Taps Order \ Ring 1(6) 2(8) 2d 2 =
6 2 1 6! 4 N 1
14 4 4 ~1 2 2d+ 8 4 -— -
( 3 ) ad 16( g )
The coset representative ts = (1,1,1). According to ) . ) )
Theorem 9, the shift for the Neville filter is = D~'t, — Agdain we use two lifting steps for thah channel(1 < ¢ <

(1/2,1/2,1/2). Table IV gives Neville filters achieving linear # — 1), one predic(;) and one updatél;) as in Fig. 9.
and cubic interpolation. We will not explicitly constructNOte that theith predictor predicts the elements from tig
filters here, as the process is the same as in the previ&gas_etbased on the elements fromattecoset (original sampled
two sections. The only difference is thaf in this setting is attice). o o

(2122, 2223, 2173). Note also that sinceD/D is not unitary, The polyphase matrix is now a x M matrix given by

it is misleading to look for the neighborhoods in the sampled Lty Uy oo Unar]
domain; instead, they are found on the original lattice. o1 0 - 0
7) General Checkerboard Latticesthe quincunxandFco 2= (0 0 1 -~ 0
lattices are special cases of the so-caligd or checkerboard P T :
lattice [11]. In the generali-dimensional case, a one-ring o0 0 --- 1]
neighborhood containgd elements while the second ring 1 0 0 --- 07
contains3(§) elements. The weights are given in Table V. P, 10 --- 0
-P, 01 0 (18)
V. M-CHANNEL INTERPOLATING FILTER BANKS —Py_1 0 0 .- 1
In this section we consider thef -channel filter banks. Here r M-1 T
|D| = M and we haveM — 1 cosets of the fornD Z¢ + ¢; 1- Z Uik Uy Us -or Uy
wheret; € Z¢. We haveM polyphase components which we i=}) 1 0 0
number with subscript8 to M — 1, thus = ol (19)
-P 0 1 .. 0
M-1 .
H(z) = 27t Hy(2P). : oo : :
iz:% L —Prr_q 0 o .- 1
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(o1)
<)

Fig. 9. ThelM -channel lifting schemeP; andU; stand for predict and update filters, respectively.

vt

with adjoint inverse (see (20) and (21) shown at the bottom of Remarks:
this page). The condition for dual vanishing moments DM can 1) The theorem results in NewlleﬁlteBN with shifts; =

now be found, similarly to the two-channel case, as D~1¢;, and update$’; = PA */2 WhICh are not Neville
N N M-1 filters per se, butare scaled versions of Neville f|ItE’f§
Gim(Zh) = GIn(Z%) + Y Gim(Z* +1;) = 0. with shifts —7; = —D=1 ¢;.
i=1 2) As before, if we needv > N , we can always exchange
Substituting values from thgth row of the polyphase matriR the role of the primal and dual filters.
we get 3) Not all of the predict filters have to be of the same order;
Pyr(DZ%) =n(DZ" +1t,;) each predict filter has to be at least of ordérSimilarly,

formell~,j=1,---,M—1 each update filter has to have order at le¥st
N? ? ? *

This implies thatP; is a Neville filter of orderN with shiftr; =
D1 t,;. Similarly, the primal moments condition PM becomed. Examples oM -Channel Interpolating Filter Bank Families

M-1 . . -
U (D7 — U Pra(DZY+ ¢, .1) One-Dimensional M-Channel FamiliesCoset represen-
i ) ; j B ) tatives are heré, = ¢ (0 < ¢ < M) and the corresponding
d _' _ shifts arer; = ¢/M. ThusPF, is a Neville filter with shifti /M.
+m(DZ+1t;) =0, form € lly, Given thatr; = 1 —73,_;, we have thaf’;(z) = z Py_i(1/2).

forj=1,.--,M — 1. Given thatP’; is a Neville filter of order Tapjes VI and VII give predict filters for the three- and four-
N with shift 7;, if ¥ < N the above expression reducesto  channel cases.
MU} (D 24 =r(DZ4+t;), forrelly. 2) Two-Dimensional Separable Familiegtn obvious
extension to multiple dimensions is the tensor product of 1-D

ConsequentlyM U7 is a Neville filter of orderv with shift 7;. | = o P
two-channel solutions. Then the dilation matrix is diagonal

We have thus just shown the following theorem:
Theorem 10:Let N < N. We can build a filter bank witdv 2 0
primal vanishing moments and dual vanishing moments by D= <0 2) ’
letting the predict filters be Neville filters of ordé¥ with shifts The coset representatives from the unit cell are
7; = D~'t; and choosing the update filters B8V times the

adjoints of Neville filters of ordefV with shifts —;. to=(0,0), t;1=(1,0), t2=(0,1), t3=(1,1)
1 0 0 0171 P Pr - PY_,
-U; 10 0l lo 1 o 0
Pl =-U3 01 0 0 0 1 0 (20)
~Ut_, 0 0 - 1 0O O o - 1
1 Py s Py
Uy 1-uUrpr  -Uip; - —UrP_,

—Us -UP 1-UsPy e —UiPi 1)

_Uv;\(/l—l _l]X4—1Pf _UYX/I—IPQ* A l/vlT/I—IPIT/I—l
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TABLE VI
THREE-CHANNEL NEVILLE FILTERS. TABLE GIVES PREDICT FILTER P,

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 3, MARCH 2000

as in Fig. 12. The neighborhoods for the three cosets are ro-
tated copies of each other. Table IX gives the prediction filters

Wi Py(z) = zP(1/= - .
HILE Pa(2) 1(1/2) of order2, 4, and6. Note that the orde2 prediction will lead

to piecewise linear scaling functions (pyramid functions), while

Numerator Denominator

Nk 3 2 1 o a1 2z 2 -4 the orded is the well-known Butterfly subdivision scheme [21].
2 L2 S 3 The values for orde6 were obtained from the big Butterfly
6 8 70 560 280 56 7 38 scheme [29].

8 -44 440 -2310 15400 7700 -1848 385 -40 39

5) Triangular Face Lattice: As opposed to the tridiagonal
edge lattice, where the interpolation points are on the edges,
the interpolation points in the triangular face lattice are in the
middle of each triangle. A possible dilation matrix is given by

(2 1).

Fig. 13 depicts the triangular face lattice together with its unit
cell and the coset representatives which#re (¢, 0) with ¢ =

TABLE VII
FOUR-CHANNEL NEVILLE FILTERS. TABLE GIVES PREDICT FILTER P,
WHILE P; CORRESPONDS TO THEDESLAURIERSDUBUC PREDICT FILTER
AND P3(z) = z P (1/2)

Numerator Denominator

N\E 3 2 ! ° ! 22 0,1,2. According to Theorem 10, shifts for the Neville family
‘ T z we want to constructare = D=1, = (i/3,4/3),i = 1,2. We
5 o5 wo0s avon mews maors aasos dods now have to find a way of predicting tfe, ¢> points given the

points on the tridiagonal lattice. Fig. 13 gives neighborhoods for
P;. The neighborhoods faP, can be found on the same figure
with the corresponding shifts as well. Table X gives weights farf; and interpolation orders
2, 3, and5.

71 = (1/270)7 T2 = (07 1/2)7 73 = (1/271/2)

Fig. 10 shows the original lattice as well as lattices in the sam-
pled domain with interpolation neighborhoods. It is interesting
to note that for the predict filterB; andP; neighborhoods turn

out to be 1-D and thu#; and P; can be taken from Table I. |n this section, we discuss the implementation of the

Moreover, the neighborhoods fdt, are the same as those inyavelet transform using lifting. Start with an input sequence
3) Two-Dimensional Hexagonal Familie®ne of the pos- sequences = {si|k € K} and M — 1 highpass sequences
sible sampling matrices in the hexagonal case is given by d; = {dix|k € ';Q 1< S M?Y. Note that we can link each
D— <2 2 ) sample of the output sequences to a unique sample of the
A\l -1/

input sequencey, corresponds ta p , andd;.;, corresponds to

) . ) e . Zpw+t;- This correspondence combined with the lifting steps
Fig. 11 depicts the hexagonal lattice together with its unit ceAhDOWS for in-place computation; instead of allocating new
and the coset representatives. The coset representativﬁe%rememory for thes and d; sequences, we simply overwrite the
(,0) for « = 1,---,3. According to Theorem 10, shifts for corresponding elements in thesequence. Lifting guarantees
the Neville family we want to construct are = D™'ti = that we will never overwrite a sample we need later.
(i/4,i/4),i = 1,2, 3. We now have to find a way of predicting  penote the impulse response of the predict filleto bep,.;
thet,t,,¢; points given the points on the hexagonal latticeyng similarly for the update filters. The predict (and update) se-
Fig. 11 gives neighborhoods fdt ; P, has the same neighbor-q,ences are nonzero in a finite symmetric neighborhood around

hoods as in the quincunx case aRghas the same neighbor-ihe originA: that is,p;. # 0 for k € A C K. The transform
hoods ag” except time reversed in both dimensions. Table VIlgn now be described by the following pseudocode:

gives weights fo’; and interpolation orders 2,4, 6 (P is the
same as in the quincunx case diz) = z; P1(1/z)). We ob-
tained these values as the output of the de Boor-Ron algorithm.
4) Triangular Edge Lattice: The triangular edge lattice and
the downsampled lattice are shown in Fig. 12 (upper left). This
is the first example where the original lattice is @ rather it
IS K = liiang Z? with [iriang from (4). It is called triangular
edge, because new vertices live on edges. Structurally, this is
the separable lattice of Section IV-A2, which can be seen by
drawing the unit cell in an orthonormal coordinate system as in
Fig. 12. ThusD = 27 and7; = (1/2,0),72 = (0,1/2),73 =
(1/2,1/2). However, the fact that the original lattice is orga-
nized in equilateral triangles leads to a different choice of neigh-
borhoods which reflects the three symmetry axes of the lattice

VI. FAST LIFTED WAVELET TRANSFORM

Analysis
for1<i<M-—1:
for k e K:

- = Zle/\H—K Disk—1TD1
forl<i:<M-—1:

TD k+t;

for k € K:

Tprt = D jengi Wisk—l TD i+t
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Fig. 10. Separable lattice with its unit cell and the lattices in the sampled domain with neighborhoods. The figure shows neighborhoods ftie ré&yicbsi
and Ps.
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Fig. 11. Hexagonal lattice with its unit cell and the lattice in the sampled domain with neighborhoods. The figure gives only the neighbafhodd ferthe
same as in the quincunx case afghas the same neighborhood Bs except time reversed in both dimensions. The small black dot within the first ring is the
point(1/4,1/4) at which we want to interpolate.

Synthesis
forl<:< M-—1:

for ke K:

TDk = = D jenpic Wisk—l TD I+t
forl<:< M —1:

for k€ K:

TDk+t,F = D icnik Pih—1TDI

The pseudocode illustrates one of the nice aspects of liftir
once the algorithm for the analysis is coded, the synthesis i
mediately follows by reversing the operations and flipping th P
signs. An integer-to-integer version can immediately be built t i oo
rounding off to the nearest integer before doingthe- or — = O @08 -0
operations [3].

To see how much lifting will speed up the computation, Wéibg. 12. Triangular edge lattice with its unit cell and the lattice in the sampled

O

look at th voh tri in Secti IV. Let tart wi omain with neighborhoods. The small black dot within the first ring is the
OOK at the polyphase matrices in section 1V. Let us start wi int(1/2,0) at which we want to interpolate. Observe that this lattice in the

the analysis side. Equation (18) corresponds to the implemeartesian coordinate system corresponds to the separable lattice.

tation using lifting, while (19) would correspond to a standard

implementation. We try to get a cost estimate of each implemehe same and equal €. Then, the cost of the lifting implemen-
tation. Assume that the cost of each predict and update filtertégion is2 (M — 1) C. The cost of the standard implementation
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Fig. 13. Triangular face lattice with its unit cell and the lattice in the sampled domain with the neighborhofdsToe small black dot within the first ring is

the point(1/2,0) at which we want to interpolate.

TABLE VIl
HEXAGONAL NEVILLE FILTERS. THE TABLE GIVES PREDICT FILTERS P ; P: IS
THE SAME AS IN THE QUINCUNX CASE AND P;(z) = z1 Pi(1/z). (THE

NUMBERS IN PARENTHESESGIVE THE NUMBER OF POINTS IN EACH RING. FOR
SPACE REASONS WE GIVE THE TRANSPOSEDTABLE)

Taps 4 12 18 24
Order 2 4 5 6
Ring  Numer.

1(1) 9 342 14385
2(2) 3 114 2555

46620
16590

3(1) 1 38 1225 3500
4(2) —21  —1855 —5250
5(2) -7 —245 1260
6(2) —15  —245 —3570
7(2) -5  ~175 =525
8(1) 49 1036
9(2) 35 35
10(1) 25 100
11(2) 280 546
12(2) 175
13(2) -105
14(2) 504

Denom. 2% 2° 214 ate

TABLE IX

TRIANGULAR EDGE NEVILLE FILTERS. THE RINGS CORRESPOND TORINGS
GIVEN IN FIG. 12. THE NUMBERS IN PARENTHESESGIVE THE NUMBER OF
POINTS IN EACH RING

Numerator Denominator

Order \ Ring  1(2) 2(2) 3(4) 4(2) 5(4) 6(4) 7(4)

Taps

2 2 1 2t

8 4 8 2 -1 24
22 6 558 102 -60 —-46 -3 9 3 210
TABLE X

TRIANGULAR FACE NEVILLE FILTERS. THE RINGS CORRESPOND TORINGS
GIVEN IN FIG. 13. THE NUMBERS IN PARENTHESESGIVE THE NUMBER OF
POINTS IN EACH RING

Numerator Denominator

Order \ Ring 1(3) 2(3) 3(6) 4(3)

Taps

3 2 1 3t
6 3 4 -1 32
15 5 96 12 -16 5 3%

is the cost of lifting implementation plus the cost coming from
the top left element in the polyphase matrix
M-1

1-— Z U,P,.
=1

If we use the above formula to implement this filter, the cost
is 2(M — 1)C. The alternative is to expand the summation
and then apply the expanded filter. Assuming that the neigh-
borhoods of the predict and update filters are roughly balls in
d dimensions, the cost of the expanded filte2{sC. For low
dimensions and high number of subbands this may be cheaper
than2 (M — 1)C. In summary, on the analysis side the speed-up
provided by lifting is roughly equal to

2(1—1
1 i 1, —— ).
—|—m1n< ’M—l)

If 2¢=1 > M — 1, that is, either high dimensions or low
number of subbands, the speed-uR.iotherwise it is lower.
For low dimensions with high number of subbands the speed-up
becomes insignificant. Separable lattices, whiere= 2¢ form
an intermediate case where the speed-up is roughlywith a
similar analysis on the synthesis side using (20) and (21) we see
that the synthesis speed-up becomes
2(M —1)+2(M —1)?
2(M —-1)

Ford = 1andM = 2the speed-up on the analysis and synthesis
side corresponds to the factdfrom [15], [48]. Fordl > 2,
the synthesis speed-up due to lifting is much higher than the
analysis speed-up.

Remark:

One has to keep in mind that the speedup provided here is
only relevant in case the filters are nonseparable. A separable
filter can be implemented much faster as a succession of 1-D

=M.
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filters in different dimensions. One can then use lifting as in[26]
[15] to speed up the 1-D filters. In general the Neville filters we

computed are strictly nonseparable.

[27]
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