
480 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 3, MARCH 2000

Wavelet Families of Increasing Order
in Arbitrary Dimensions

Jelena Kovǎcević, Senior Member, IEEE,and Wim Sweldens, Member, IEEE

Abstract—We build discrete-time compactly supported
biorthogonal wavelets and perfect reconstruction filter banks
for any lattice in any dimension with any number of primal and
dual vanishing moments. The associated scaling functions are
interpolating. Our construction relies on the lifting scheme and
inherits all of its advantages: fast transform, in-place calculation,
and integer-to-integer transforms. We show that two lifting steps
suffice: predict and update. The predict step can be built using
multivariate polynomial interpolation, while update is a multiple
of the adjoint of predict. While we concentrate on the discrete-time
case, some discussion of convergence and stability issues together
with examples is given.

Index Terms—Interpolation, multivariate filter banks, wavelets.

I. INTRODUCTION

OVER the last decade, several constructions of compactly
supported wavelets have originated both from signal pro-

cessing and mathematical analysis. In signal processing, criti-
cally sampled wavelet transforms are known as filter banks or
subband transforms [34], [44], [55], [57]. In mathematical anal-
ysis, wavelets are defined as translates and dilates of one fixed
function and are used to analyze and represent general func-
tions [23], [33]. Multiresolution analysis provided the connec-
tion between filter banks and wavelets [30], [33]. This lead to the
construction of smooth, orthogonal and compactly supported
wavelets [13]. The generalization to biorthogonality allowed the
construction of symmetric wavelets and thus linear phase filters
[8], [58]. For background material and more references on filter
banks and wavelets, we refer the reader to [14], [47], and [59].

An obvious way to build wavelets in higher dimension is
through tensor products of one-dimensional (1-D) construc-
tions resulting in separable filters. However, this approach
gives preferential treatment to the coordinate axes and only
allows for rectangular divisions of the frequency spectrum.
Often, symmetry axes and certain nonrectangular divisions of
the frequency spectrum correspond better to the human visual
system.

In the early 1990’s, several solutions, both orthogonal and
biorthogonal, and using different lattices became available [7],
[10], [28], [36], [45]. These are typically concerned with two
and three dimensions as the algebraic conditions in higher di-
mensions become increasingly cumbersome.
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Other work in the signal processing literature uses two tech-
niques: either cascade structures or one-to-multidimensional
transformations. Although using cascade structures it is easy to
build orthogonal or biorthogonal multidimensional filter banks
[27], [28], one cannot guarantee vanishing moments which
are a necessary condition for both stability and smoothness.
One-to-multidimensional transformations include the method
of separable polyphase components which cannot achieve
perfect reconstruction for compactly supported filters [1], [4]
as well as the McClellan transformation [20], [32]. The latter
one preserves perfect reconstruction as well as zeros at aliasing
frequencies and works only for zero-phase filters [4], [28],
[26], [51].

In the approximation theory literature, one can also find
many constructions of multidimensional wavelets. These con-
structions often use box splines on product lattices as scaling
functions and again focus mostly on low dimensions [6],
[16], [39]. In [37], the Quillin-Suslin theorem is used to build
compactly supported box spline wavelets on separable lattices
in Recently, the lifting technique emerged providing a new
angle for studying wavelet constructions [48], [49]. The orig-
inal motivation behind lifting was to build time-varying perfect
reconstruction filter banks, or second-generation wavelets.
Even in the time-invariant setting, lifting offers several advan-
tages and connects to many earlier approaches. The basic idea
behind lifting is a simple relationship between all filter banks
that share the same lowpass or the same highpass filter, also
observed by Vetterli and Herley in [58]. Lifting also leads to
a filter bank implementation known as ladder structures [2].
Moreover, it is known that all 1-D FIR filter banks fit into
lifting [15], [31], [43], [53].

In this paper, we aim to provide a general recipe based on
lifting for building filter banks and wavelets inanydimension,
for any lattice andany number of primal and dual vanishing
moments. To our knowledge, no such systematic construction
exists. Our main result is a generalization of [48, Th. 12] which
describes a 1-D family of biorthogonal wavelets associated to
the interpolating Deslauriers-Dubuc scaling functions. This
construction involves only two lifting steps, predict and update,
where update is the adjoint of the predict divided byWe
show that the same result holds in higher dimensions and for

channels as long as the update is chosen as the adjoint of
the predict divided by The predict filter belongs to a class
of filters we call Neville filters, which can be constructed using
the de Boor-Ron algorithm for multidimensional polynomial
interpolation [17], [18].

Our construction inherits all the built-in advantages of lifting
such as custom design, in-place computation, integer-to-integer
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transforms, and speed, the last one being particularly important
in multiple dimensions. We show that the speed-up due to lifting
is a factor on the synthesis side, while it is at most two on the
analysis side. As our construction results in interpolating scaling
functions and halfband filters, it connects naturally to multidi-
mensional interpolating subdivision [21], [38]. Our techniques
allow the construction of a wavelet basis associated with any
interpolating scaling function. Also, all wavelets built from in-
terpolating scaling functions fit into our predict/update lifting
framework.

This paper is organized as follows. Section I contains back-
ground material including an overview of multiresolution anal-
ysis in the multivariate case. Section II introduces Neville filters
and shows how to build them. We then present our main result
in two stages. Sections III deals with the two-channel case and
contains several examples. The two-channel case sets the stage
for the construction in the -channel setting, presented in Sec-
tion IV again including several examples. Finally, Section V dis-
cusses the fast transform algorithm.

II. NOTATION AND BACKGROUND MATERIAL

A. Signals and Operators

A signal is a sequence of real-valued numbers indexed by
the index set

where can be either a finite or an infinite set. In this paper, we
focus on signals defined on a lattice in-dimensional Euclidean
space and thus always take We say that a sequence is
finite if only a finite number of are nonzero.

For two sequences and of , we use the stan-
dard inner product We often work with linear operators

and define the adjoint (or transpose) ofto be
the operator so that for all and in

Let be a multivariate polynomial (with Let
(or for short) be the sequence formed by evaluating this

polynomial on the lattice

We use to denote the space of all polynomial sequences of
total degree strictly less than

B. One-Dimensional Filters

When a linear operator is time invariant we call it a filter.
Its action is convolution with the impulse response sequence

In this work, we assume all impulse responses to be finite, that
is, is an FIR filter; therefore, the action of a filter on a poly-
nomial sequence is well defined.

The -transform of the impulse response sequence is a Lau-
rent polynomial

If we let then becomes the discrete-time Fourier
transform of the impulse response. Note that we use capital let-
ters to denote operators as well as Fourier transforms of se-
quences. The meaning will be clear from the context.

We often use differentiation with respect toω to make state-
ments about filters. It is convenient to define a scaled version of
the differentiation operator as

We also combine this symbol with thenotation. Keep in mind
that the differentiation is always with respect toand that is
nothing more than a place holder for For example, is
simply and there is no ambiguity even ifis a noninteger.
Thus for all real . We also define

so that

C. Multidimensional Filters

In the multidimensional setting we can use exactly
the same machinery for dealing with filters as in the 1-D case
as long as we use the multi-index notation. In other words, we
think of an index as a vector where
Similarly we think of as as and

as Now and have to be understood as

and (1)

The size of a multi-index is

so that the degree of the monomial is The
differentiation operator is given by

If we adhere to these rules, it is still true, as in one dimension,
that

and

(2)

Note that the above equations are vector equations. We will also
use to stand for

D. Lattices and Sublattices

If is a matrix with integer coefficients, we can find
a sublattice of as The determinant of is an
integer denoted by Then there are
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distinct cosets each of the form with and
We know that

where and the union is disjoint. The are unique if we
restrict to be in the unit hypercube Given a lattice

, we can sample a polynomial on this lattice as

Note that hence, it is a sequence indexed by
and not by We also introduce that is, the
downsampling operator connected with the dilation matrix
Its adjoint is the upsampling operator To define upsam-
pling in the -domain we need to define as

(3)

where is the th column vector of matrix and is as
defined in (1).

So far, we only considered data sampled on the canonical
lattice Sometimes, however, the data is sampled on
a more general lattice where is an invertible
matrix. An example we will use in Section IV-A4 is the two-
dimensional (2-D) triangular lattice where

(4)

We can now find sublattices by premultiplying by . Given
that our construction relies on polynomial interpolation and can-
celation, and that polynomial spaces of fixed degree are in-
variant under affine transformations, we can, without loss of
generality, assume that is the identity. The only place where

plays a role is in choosing neighborhoods for the interpolants.
We will come back to this in the examples.

E. Interpolating Filters

Definition 1: A multidimensional filter is an interpolating
filter if its impulse response satisfies For example,
in one dimension with dilation 2, a filter is interpolating in case

this means the filter is zero in all even location ex-
cept Such filters are also called half band filters. In general,
the filter has to be zero in all locations of the 0th coset
except the origin. When applying an interpolating filter after up-
sampling, the values at the original sample locations are left un-
changed and the values at the new sample locations are a linear
combinations of the values at the old sample locations. To ex-
press an interpolating filter in the-domain, sum the -trans-
form of along all the cosets; on the lattice (0th coset) only
one term is nonzero. Thus, a filter is interpolating if its-trans-
form can be written as

where are coset representatives. Such filters are calledth
band filters.

1) Multiresolution Analysis:In this section, we study the
continuous-time setting. Consider a lattice and the
sublattices induced by the dilation matrix where
Consider also a compactly supported scaling function
L that satisfies the following refinement relation:

where the form the impulse response of a filter The trans-
lates and dilates of are defined as

with

Using a vector function notation and the
filter operations, we can express the refinement relations further
as

where is defined as We say that a scaling function
is interpolating if it is one at the origin and zero on the other
points of the lattice: that is, It is well known that if
the scaling function is interpolating then the refinement filter
is interpolating as well. Note that the converse is not true.

We also consider a dual scaling function and its trans-
lates and dilates which are biorthogonal to the primal scaling
functions

We write the dual refinement relation as
where (Note the different normalization for the
dual function.) Biorthogonality then implies that

Introduce now wavelet functions L with
and their translates and dilates The

wavelet functions satisfy refinement relations given by

Our aim now is to find and so that the associated collec-
tion of wavelets

with

forms an unconditional basis for L Dual wavelets
exist as well and they also satisfy refinement relations with
The dual wavelets are biorthogonal to the primal wavelets so
that the expansion of a function L can be found as

Wavelet expansions are efficient in the sense that for a large
class of functions, the majority of the wavelet coefficients will
be small. In particular for smooth functions the error of the
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Fig. 1. Suppose we are given a polynomial� of ordern < N sampled on the lattice of integersZ: A Neville filter P of orderN applied to this sampled
sequence (points on the solid line) results in a sequence that can be obtained by sampling the same polynomial, just offset byτ (points on the dashed line).

wavelet expansions decays as where is the number of
vanishing moments of the dual wavelets, that is

for

This is equivalent to the primal scaling functions being able to
reproduce polynomials up to degree exactly. Similarly, the
primal wavelet has vanishing moments and the dual scaling
functions can reproduce polynomials up to degreeIn Section
III, we go into more detail on the interaction of filter banks with
polynomials.

The above properties of the scaling function and wavelets
can be easily translated to the filter sequences of the refine-
ment relations. The vanishing moments conditions imply that

for and

for (5)

These conditions are sometimes referred to as “sum rules” and
are closely related to the approximation order of the scaling
function [24].

The biorthogonality requirements imply that

(6)

2) Convergence and Smoothness of Scaling Functions:A
multiresolution analysis implies the existence of a perfect recon-
struction filter bank with filters and On the other
hand, given a perfect reconstruction filter bank, an associated
multiresolution analysis may not always exist, i.e., the wavelets
may not form a stable basis or even belong to LThe existence
of a basis depends on the spectrum of the transfer operator
and the dual transfer operator where

and (7)

The following result is known.
Theorem 2: If and are at least one and the transfer op-

erator and dual transfer operator have all eigenvalues
except for a simple eigenvalue then an associated mul-
tiresolution and a stable biorthogonal wavelet basis exist.

This combines results relating the stability of the wavelet
basis to the Sobolev regularity of the functions [12] and results
relating the Sobolev regularity to the spectrum of the transfer
operator [9], [25], [40]. If the filters are FIR, then this condition

can be checked by computing the eigenvalues of a finite matrix,
the size of which depends on the length of the filters.

To actually compute the Sobolev regularity, we need to find
the transfer operator and its invariant submatrix Then we
compute the eigenvalues of and use the fact that an estimate
of the lower bound on the Sobolev exponent is given by [9]

(8)

where are the maximum and minimum eigenvalues
of the dilation matrix, respectively, andis the maximum non-
special eigenvalue of Special eigenvalues are eigenvalues
that correspond to a polynomial left eigenvector (see [47] for a
discussion of the role of special eigenvalues).

III. N EVILLE FILTERS

We introduce a class of filters which is crucial in the con-
structions of filter banks and wavelets using lifting. Since these
filters are closely connected to polynomial interpolation, we
call them Neville filters in honor of Neville and his algorithm
for 1-D polynomial interpolation, see, e.g., [46]. We show how
Neville filters generalize well-known filters such as Coiflets and
Deslauriers-Dubuc filters.

A Neville filter applied to a polynomial sampled on a lattice
results in that same polynomial, but now sampled on the orig-
inal lattice offset byτ (see Fig. 1). More precisely, we have the
following.

Definition 3: A filter is a Neville filter of order with
shift if

for (9)

Note thatτ need not be an integer vector.
Consider a simple example of a linear polynomial

sampled on the integers We show
that the filter with is a Neville filter of order

with shift To that end, we convolve with as in
(9) (we perform the convolution in the-domain since it then
amounts to simple multiplication)
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This last expression is the-transform of which
means that is a Neville filter with shift Let us find the
equivalent of (9) in terms of the impulse response Substi-
tute a monomial into (9)

for

Given that polynomial spaces are shift invariant it is sufficient
to consider

for (10)

where according to (2), the left-hand side is equal to
We thus showed the following proposition.

Proposition 4: A filter is a Neville filter of order with
shift τ if and only if its impulse response satisfies

for

Continuing our simple example from above, let us check the
condition of Proposition 4. We need to show that

for

We have that

Note that the scalar multiple of a Neville filter is not a Neville
filter. The next proposition shows that the adjoint of a Neville
filter, that is, the filter obtained by time-reversing its impulse
response and thus replacingwith is a Neville filter as
well.

Proposition 5: If is a Neville filter of order with shift
τ, then is a Neville filter of order with shift −τ.

Proof: Let be the impulse response of Then
Given that it follows from Proposi-

tion 4 that

for

The following proposition shows how Neville filters interact:
Proposition 6: If is a Neville filter of order with shift

τ, and is a Neville filter of order with shift then
is a Neville filter of order with shift

Proof: The proof is left as an exercise to the reader.
Proposition 6 also shows that the Neville filters of a fixed order
form an Abelian group. We conclude by showing how Neville
filters interact with upsampling.

Proposition 7: If is a Neville filter of order with shift
then is a Neville filter of order with shift

A. Examples of Neville Filters

Here we consider some well-known filters that fit into the
definition of Neville filters.

TABLE I
DESLAURIERS–DUBUC FILTERS FOR

ORDERS1 TO 8: THESEFILTERS ARE THESHORTESTNEVILLE FILTERS WITH

SHIFT 1=2: THE EVEN ORDER ONES ARE THEMOST INTERESTING AS

THEY HAVE LINEAR PHASE

1) The identity filter, where the impulse response is a Kro-
necker delta pulse, is obviously a Neville filter of order
infinity with shift Similarly, a monomial filter with

is a Neville filter of order infinity with shift
This shows that we only need to worry about building
Neville filters with shifts in the unit hypercube. Any other
shift can be obtained by multiplying the original Neville
filter with the correct power of

2) Deslauriers-Dubuc interpolating subdivision uses filters
which can predict the values of a polynomial at the half
integers given the polynomial at the integers [19]. Hence
these filters are Neville filters with shift As an ex-
ample, let us construct a Neville filter of order by
solving the following set of equations:

for

leading to Table I
gives the Deslauriers–Dubuc filters up to order

3) We saw that interpolating filters can be written as
If is a Neville filter of shift

as are the Deslauriers-Dubuc filters, then we can use the
earlier propositions to see that is a Neville filter of the
same order and shift Given that

has the same number of zeros at Thus is a
Lagrangian halfband filters as defined in [56].

4) Every FIR filter is a Neville filter of order with the shift
equal to the first moment

5) The lowpass orthogonal Daubechies filters [13] of order
or more satisfy [22]. In fact, this

is true for any orthogonal lowpass filters of order at least
[50]. Consequently, these filters are Neville filters of

order with shift their first moment
6) Coiflets are filters with zero moments up to ex-

cluding the zeroth moment which is one,
for [14]. They are thus Neville filters of order
with shift zero. Consequently, polynomials of degree less
than are eigenfunctions of Coiflets. Using Propositions
5 and 6 we see that the autocorrelation of any Neville filter
is a Coiflet of the same order.

7) Neville filters are closely connected to the one-point
quadrature formula from [50]; If a Neville filter has
order then the one-point quadrature formula for the
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Fig. 2. Thed-dimensional two-channel analysis/synthesis filter bank.

corresponding scaling function has degree of accuracy

8) The ideal Neville filter with shift and order infinity is
the allpass filter However it is not an FIR filter unless

is an integer vector. One has to be extremely careful
by applying such a filter to a polynomial sequence as the
summation converges only conditionally. These filters are
thus of limited practical use but can be thought of as the
limiting case for FIR Neville filters with fixed as goes
to infinity.

B. Construction of Neville Filters

Building Neville filters in dimensions with a certain pre-
scribed order and shiftτ reduces to polynomial interpolation.
There are

(11)

equations like (10) to satisfy, so one would expect we need
filter taps. To avoid extrapolation one should choose the

filter taps in the neighborhood of The Neville filter can the be
found by solving a linear system. In one dimension, this
system has a Vandermonde matrix and is always invertible. This
leads to classic Lagrangian interpolation; Neville’s algorithm
[46] provides a fast way of computing the interpolant at a given
point.

In higher dimensions, the situation is more complex and the
linear system is not always solvable. It can either be overdeter-
mined or underdetermined; thus, to achieve orderone may
need either more thanor less than filter taps. For example,
consider three points in the plane

each with an associated function value and One
would expect there to be a unique plane, given by a linear poly-
nomial that interpolates these points. However,
in case the three points are collinear,
infinitely many such planes exist. In this case the interpolation
problem reduces to a 1-D problem along the common line the
three points are on. In this direction, a uniquequadratic and
single variableinterpolating polynomial exists. This then can
be extended to a unique solution in two dimensions by letting
the polynomial be constant in the direction orthogonal to the
common line.

This example shows that the degree of interpolation depends
not only on thenumberof interpolation points but also on their
geometric configuration. It is not clear a priori how many inter-
polation points and which geometric configurations are needed
to uniquely solve the interpolation problem for a space of poly-
nomials up to a certain degree. de Boor and Ron provide an
elegant solution by posing the question differently [17], [18].

As opposed to fixing the degree of the polynomial space and
then asking which configurations are possible, they fix a con-
figuration of points and then find a space of polynomials in
which to solve the interpolation problem. The particular space
depends on the configuration of the points, but for any values at
the points, there is a unique interpolating polynomial from the
space. An efficient algorithm to evaluate this polynomial exists.

To construct Neville filters, we follow the same strategy.
We first fix a neighborhood of points around and use the
de Boor–Ron algorithm to compute the space in which the
interpolation problem can be solved. The orderis then found
as the largest for which belongs to the space. If we want
to get a larger we enlarge the original neighborhood until
the desired is obtained.

IV. TWO-CHANNEL INTERPOLATING FILTER BANKS

To simplify the exposition, we first consider two-channel
filter banks. Once the construction in the two-channel case is
clear the -channel case can easily be understood.

The framework for a two-channel filter bank is depicted in
Fig. 2. It involves two analysis filters (lowpass) and (high-
pass) and two synthesis filters (lowpass) and (highpass).
As before, let

and similarly for the duals. Consequently,
We want to obtain a perfect reconstruction filter bank, that is,
analysis followed by synthesis gives the identity

(12)

and synthesis followed by analysis is the identity as well. In
other words,

This implies that is a projection operator and the filter
bank thus corresponds to a splitting in complementary sub-
spaces. Note that the perfect reconstruction condition for filter
banks is identical to the necessary condition for biorthogonality
(6).

A. Vanishing Moments

How does a filter bank interact with polynomial sequences?
Since all filters are FIR, we can let them act on polynomial se-
quences. This will lead to the definition of two important charac-
teristics of a filter bank: the number of primal and dual
vanishing moments. These correspond to the degree of polyno-
mials which are annihilated by the highpass filters, as in (5).
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Fig. 3. The lifting scheme.P andU stand for prediction and update operators, respectively.

Definition 8: We say that a filter bank has primal and
dual vanishing moments if

for and

for (13)

Using perfect reconstruction (12), one can see that the dual mo-
ment condition implies that Indeed, if the high-
pass filter kills polynomials, these polynomials have to be pre-
served in the lowpass branch of the system. Similarly the primal
moment condition implies that The number of
primal vanishing moments concerns the degree of the moments
of an input sequence that are preserved by the lowpass branch,
or, equivalently, the number of zero moments of elements in the
highpass branch. Indeed, it makes obvious sense for the mean
or DC component of the signal to appear only in the lowpass
branch. In summary, we want to build filter banks that have the
following three properties:

1) : Perfect reconstruction property as given in (12);
2) : Dual vanishing moments as given in (13);
3) : Primal vanishing moments as given in (13).
In the next section, we show how lifting allows us to obtain

these properties.

B. Lifting

Several methods have been introduced in the literature to
build filter banks that satisfy PR, DM, and PM. Typically,
they try to satisfy all three conditions at once which may
lead to cumbersome algebraic conditions, especially in high
dimensions.

The main feature of lifting is that it allows us to satisfy each
condition separately. First, every filter bank built with lifting
automatically satisfies PR. Most often, we build a filter bank
starting from a trivial filter bank and then we enhance its prop-
erties using lifting steps. In this paper, two lifting steps will suf-
fice: the first one, called predict, ensures that DM is satisfied,
while the second one, called update, ensures that PM is satis-
fied. We show how each step can be designed separately.

The trivial filter bank we use to start lifting is the polyphase
transform which splits the signal into even- and odd-indexed
components as in Fig. 3. The result is that the filter bank which
is not time invariant because of downsampling, becomes time
invariant in the polyphase domain. In the first lifting step, we
use a predict filter to predict the odd samples from the even
ones. The even samples remain unchanged, while the result of
the predict filter applied to the even samples is subtracted from
the odd samples yielding the highpass or wavelet coefficients.

Here, we design the filter so that if the input sequence is a
polynomial sequence, then the prediction of the odd samples
is exact, highpass coefficients are zero and DM is satisfied. In
the second step, we use an update filterto update the even
samples based on the previously computed highpass or wavelet
coefficients. Here we design to satisfy PM.

To start, use Fig. 3 to identify the polyphase matrix as

(14)

The inverse adjoint polyphase matrix is

(15)

From the polyphase decomposition we can find the filteras

Note that is interpolating since The DM condi-
tion now becomes

Substituting values from the polyphase matrix (14) yields

(16)

Given that this has to hold for all and that the space
is invariant under the above equation is equivalent to

for (17)

Thus, to satisfy DM, has to be a Neville filter of order and
shift This connects to the intuition behind the pre-
dict operator. If we input a polynomial sequence of degree less
than then all highpass coefficient (lower branch in Fig. 3)
have to be zero to obtain vanishing moments. This implies that
the prediction is always exact. Thus, the predict filter applied to
a polynomial sampled on the “even” lattice has to result
in the same polynomial on the “odd” lattice This is
precisely (16).

Similarly, to satisfy PM, use (15) to get
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for We already know that is a Neville filter of order
and shift Thus, if we use (17) to obtain

for

or

Therefore, has to be a Neville filter of order with shift
A natural choice is to let be the adjoint of

a predict filter with order divided by We now have the
following theorem.

Theorem 9: Let We can build a filter bank with
primal vanishing moments and dual vanishing moments by
letting the predict filter be a Neville filter of order with shift

and choosing the update filter as half the adjoint of
a Neville filter of order and shiftτ.

Remarks:

1) The theorem results in a Neville filter with shift
and the update which is a multiple of

a Neville filter with shift Note that
per se is not a Neville filter.

2) The condition is not very restrictive. In image
compression it is known that the number of dual moments
is more important than the number of primal moments.
The dual moments take care of polynomial cancelation
as well as of the smoothness of the primal functions. If,
for some reason, one would need one can
always exchange the role of the primal and dual filters. In
that case theanalysislowpass filter is interpolating and
the analysis functions are smooth.

3) While the connection between the predict and Neville fil-
ters is intuitively clear, there is much less intuition behind
the update filter. The purpose of the update operator is to
turn the “even” samples into lowpass samples which have
the same average as the original sequence. The average of
two numbers is always one number plusone halftimes the
difference. This explains why a factor is needed. To
get the same effect for higher order polynomials, we need
Neville filters. Given that the “odd” grid can be
obtained from the “even” grid by a relative shift of

it is natural that anadjoint Neville filter is needed.

C. Examples of Two-Channel Interpolating Filter Bank
Families

1) Haar: To build a filter bank in one dimension with
we need the simplest predict and update filters:

and This results in the filters
and that form the unnormalized Haar
filter bank.

2) One-Dimensional Filter Bank Families of Higher
Order: Let us now construct 1-D filter bank families with
primal and dual vanishing moments, where As an
example, we let predict be and update from Table I,
and thus according to Theorem 9

Fig. 4. Two-channel 1-D case: magnitude Fourier transforms of the
analysis/synthesis filter pairs, for the example withN = 4 dual andN = 2

primal vanishing moments. Note how the four dual vanishing moments make
the dual (analysis) highpass filter smoother at the origin than the primal
(synthesis) highpass filter.

We now have the complete system according to Fig. 3. To find
the actual filters as in Fig. 2, we use (14) for the dual/analysis
filters yielding

Similarly, for the primal/synthesis filters we use (15)

The factorizations of and given above demonstrate
that we indeed have primal and dual vanishing moments
since there are and zeros at in and re-
spectively, which is equivalent to havingand zeros at
in and respectively. Note also that the primal/syn-
thesis lowpass filter is interpolating. The magnitude Fourier
transforms of the analysis/synthesis pairs are given in Fig. 4.
Note how the analysis highpass filter is smoother at the origin
than the synthesis highpass.

Using Theorem 9, one can build the entire biorthogonal
wavelet family from [48]. These wavelets can be thought of as
biorthogonal Coiflets; they were also derived independently,
but without the use of lifting, by Reissell [35], Tian and Wells
[52], and Strang [47].

3) Shannon:The limiting case of the 1-D family uses the
ideal Neville filter Given that

we see that is the ideal Shannon filter
of height 2 on Similarly let
leading to and
Thus, this is the ideal Shannon filter of height 1/2 on

We thus recover the ideal filter bank
or Shannon wavelet up to a normalization constant. The 1-D
family from Section III-C2 thus forms a natural bridge between
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Fig. 5. Quincunx lattice with its units cell and the lattice in the sampled domain with neighborhoods. The small black dot within the first ring is the point
� = (1=2; 1=2) at which we want to interpolate.

that Haar and the Shannon wavelets. Note that both of these
are orthogonal while the other members of the family are
biorthogonal.

4) Causal Lifting: Using polynomial extrapolation instead
of interpolation, it is possible to build both causal and anticausal
Neville filters. By letting the predict be a causal Neville, and the
update be the adjoint of an anticausal Neville filter, it is possible
to build a filter bank with only causal lifting steps.

For example, a causal predict filter of order 2 is given by

while an anticausal predict of order 2 is given by

Thus, by taking as the predict and
as the update, we can build a causal transform

with two primal and two dual moments. Note that in this ex-
ample the predict filter uses extrapolation and there is no as-
sociated continuous scaling function. This is a very simple ex-
ample. To get practically useful causal filters, we would need
many more filter taps.

Upon finishing this paper, we learned of the work of Schuller
[41], [42] concerning low-delay filter banks and applications
in audio coding. This work, done independently from lifting,
fits into the lifting framework and illustrates another feature
of lifting, namely minimal-delay filter banks. It is known that
a filter bank with causal filters only typically achieves perfect
reconstruction only up to a delay. In several applications, par-
ticularly audio coding, delay is undesirable. Orthogonal filter
banks have delay proportional to the length of the filters. With
lifting, however, one can build polyphase matrices with deter-
minant one that contain only causal filters. Consequently, the
inverse polyphase matrix has causal filters as well and the filter
operations do not introduce any delay. The only delay in the
system comes from the polyphase representation and is propor-
tional only to the number of subbands. Moreover, lifting com-
pletely characterizes all filter banks with minimal delay.

5) Quincunx Interpolating Filter Bank Families:The quin-
cunx lattice is a 2-D nonseparable lattice with One of
the possible dilation matrices is given by

TABLE II
QUINCUNX NEVILLE FILTERS. THE RINGS CORRESPOND TORINGS GIVEN IN

FIG. 5. THE NUMBERS IN PARENTHESESGIVE THE NUMBER OF

POINTS IN EACH RING

also called the “symmetry” matrix. Fig. 5 depicts the quincunx
lattice together with its unit cell and the coset representative.
Since coset representatives come from the unit square it fol-
lows that According to Theorem 9, the shift for
the Neville filters is (see Fig. 5).
We choose different sizes of symmetric neighborhoods around
τ and use the de Boor-Ron algorithm to compute the interpola-
tion order and weights for the predict The results are given
in Table II.

As an example, let us again construct a filter bank with
and According to Theorem 9

where the update is and thus

Then, the actual dual/analysis filters from Fig. 2 are given by

Using (14) we finally obtain
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(a)

(b)

Fig. 6. Two-channel 2-D quincunx case: magnitude Fourier transforms
of the analysis/synthesis highpass filters withN = 4 dual andN = 2
primal vanishing moments. The four dual vanishing moments make the dual
(analysis) highpass filter a much smoother function at the origin than the primal
(synthesis) highpass filter.

In a similar manner, we could obtain the synthesis filters. One
can now easily check that

for and

for

Fig. 6 shows the magnitudes of the Fourier transforms of the
analysis and synthesis highpass filters while Fig. 7 shows the
fifth iteration of the dual and primal wavelets, respectively.

To examine the regularity of the filters we obtained, we com-
pute Sobolev regularity for the primal and dual lowpass filters
with and vanishing moments, respectively. We look at the
eigenvalues of the invariant transfer matrix as explained in
Section I-F. For our dilation matrix, both eigenvalues are
thus the special eigenvalues are powers ofand the Sobolev
regularity is with the largest nonspecial eigen-
value. According to Theorem 2, if and are at least one and
both transfer matrices have all eigenvalues inside the unit circle
except for one (which is equivalent to both scaling func-
tions having positive Sobolev regularity) then the biorthogonal

(a)

(b)

Fig. 7. Two-channel 2-D quincunx case: fifth iteration of the primal and dual
wavelets withN = 4 dual andN = 2 primal vanishing moments, respectively.
Note that this combination does not lead to a stable biorthogonal basis, as given
by Sobolev regularity in Table III.

TABLE III
SOBOLEV REGULARITY OF SCALING FUNCTIONS. THE FIRST ROW GIVES THE

REGULARITY OF THE PRIMAL SCALING FUNCTION OF A GIVEN ORDERN (2
THROUGH8) WHILE THE REMAINING ROWS GIVE REGULARITIES OFDUAL

SCALING FUNCTION WITH ORDERN � N : NEGATIVE VALUES MEAN THAT

THE BIORTHOGONAL BASIS IS NOT STABLE. FOR EXAMPLE, THE PAIR

(N;N) = (4;4) GIVES A STABLE BIORTHOGONAL BASIS. NOTE HOW

REGULARITY INCREASESBOTH WITH N AND N

basis is stable. The results are given in Table III. All the primal
scaling functions and all the duals with have positive
Sobolev smoothness. Note how the smoothness increases with
both and 1.

6) FCO Interpolating Filter Bank Families:The FCO or
face centered orthorhombic lattice is the counterpart of the
quincunx family in three dimensions. Thus and
as in Fig. 8. One of the possible dilation matrices is given by

1After finishing this work, we learned that the(2;2) filter pair from this
family was developed independently by Uytterhoeven. For more details we refer
to [54].
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Fig. 8. FCO lattice and the relevant neighborhood on the same lattice. The black point is the one to be interpolated, the white points constitute the first ring, while
the checkered points constitute the second ring.

TABLE IV
FCO NEVILLE FILTERS. THE RINGS CORRESPOND TORINGS GIVEN IN FIG. 8.
THE NUMBERS IN PARENTHESESGIVE THE NUMBER OFPOINTS IN EACH RING

The coset representative is According to
Theorem 9, the shift for the Neville filter is

Table IV gives Neville filters achieving linear
and cubic interpolation. We will not explicitly construct
filters here, as the process is the same as in the previous
two sections. The only difference is that in this setting is

Note also that since is not unitary,
it is misleading to look for the neighborhoods in the sampled
domain; instead, they are found on the original lattice.

7) General Checkerboard Lattices:The quincunx and FCO
lattices are special cases of the so-called or checkerboard
lattice [11]. In the general -dimensional case, a one-ring
neighborhood contains elements while the second ring
contains elements. The weights are given in Table V.

V. -CHANNEL INTERPOLATING FILTER BANKS

In this section we consider the -channel filter banks. Here
and we have cosets of the form

where We have polyphase components which we
number with subscripts to thus

TABLE V
CHECKERBOARDNEVILLE FILTERS IN d DIMENSIONS

Again we use two lifting steps for theth channel
one predict and one update as in Fig. 9.

Note that the th predictor predicts the elements from theth
coset based on the elements from theth coset (original sampled
lattice).

The polyphase matrix is now an matrix given by

...
...

...
. . .

...

...
...

...
. . .

...

(18)

...
...

...
. . .

...

(19)
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Fig. 9. TheM -channel lifting scheme.P andU stand for predict and update filters, respectively.

with adjoint inverse (see (20) and (21) shown at the bottom of
this page). The condition for dual vanishing moments DM can
now be found, similarly to the two-channel case, as

Substituting values from theth row of the polyphase matrix
we get

for

This implies that is a Neville filter of order with shift
Similarly, the primal moments condition PM becomes

for

for Given that is a Neville filter of order
with shift if the above expression reduces to

for

Consequently, is a Neville filter of order with shift
We have thus just shown the following theorem:

Theorem 10:Let We can build a filter bank with
primal vanishing moments and dual vanishing moments by
letting the predict filters be Neville filters of order with shifts

and choosing the update filters as times the
adjoints of Neville filters of order with shifts

Remarks:
1) The theorem results in Neville filters with shifts

and updates which are not Neville
filters per se, but are scaled versions of Neville filters
with shifts

2) As before, if we need we can always exchange
the role of the primal and dual filters.

3) Not all of the predict filters have to be of the same order;
each predict filter has to be at least of orderSimilarly,
each update filter has to have order at least

A. Examples of -Channel Interpolating Filter Bank Families

1) One-Dimensional M-Channel Families:Coset represen-
tatives are here and the corresponding
shifts are Thus is a Neville filter with shift
Given that we have that
Tables VI and VII give predict filters for the three- and four-
channel cases.

2) Two-Dimensional Separable Families:An obvious
extension to multiple dimensions is the tensor product of 1-D
two-channel solutions. Then the dilation matrix is diagonal

The coset representatives from the unit cell are

...
...

...
.. .

...
...

...
...

. . .
...

(20)

...
...

...
. . .

...

(21)
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TABLE VI
THREE-CHANNEL NEVILLE FILTERS. TABLE GIVES PREDICT FILTER P ;

WHILE P (z) = z P (1=z)

TABLE VII
FOUR-CHANNEL NEVILLE FILTERS. TABLE GIVES PREDICT FILTER P

WHILE P CORRESPONDS TO THEDESLAURIERS-DUBUC PREDICT FILTER

AND P (z) = z P (1=z)

with the corresponding shifts

Fig. 10 shows the original lattice as well as lattices in the sam-
pled domain with interpolation neighborhoods. It is interesting
to note that for the predict filters and neighborhoods turn
out to be 1-D and thus and can be taken from Table I.
Moreover, the neighborhoods for are the same as those in
the quincunx case, and thus, can be taken from Table II.

3) Two-Dimensional Hexagonal Families:One of the pos-
sible sampling matrices in the hexagonal case is given by

Fig. 11 depicts the hexagonal lattice together with its unit cell
and the coset representatives. The coset representatives are

for According to Theorem 10, shifts for
the Neville family we want to construct are

We now have to find a way of predicting
the points given the points on the hexagonal lattice.
Fig. 11 gives neighborhoods for has the same neighbor-
hoods as in the quincunx case andhas the same neighbor-
hoods as except time reversed in both dimensions. Table VIII
gives weights for and interpolation orders is the
same as in the quincunx case and We ob-
tained these values as the output of the de Boor-Ron algorithm.

4) Triangular Edge Lattice:The triangular edge lattice and
the downsampled lattice are shown in Fig. 12 (upper left). This
is the first example where the original lattice is not rather it
is with from (4). It is called triangular
edge, because new vertices live on edges. Structurally, this is
the separable lattice of Section IV-A2, which can be seen by
drawing the unit cell in an orthonormal coordinate system as in
Fig. 12. Thus and

However, the fact that the original lattice is orga-
nized in equilateral triangles leads to a different choice of neigh-
borhoods which reflects the three symmetry axes of the lattice

as in Fig. 12. The neighborhoods for the three cosets are ro-
tated copies of each other. Table IX gives the prediction filters
of order and Note that the order prediction will lead
to piecewise linear scaling functions (pyramid functions), while
the order is the well-known Butterfly subdivision scheme [21].
The values for order were obtained from the big Butterfly
scheme [29].

5) Triangular Face Lattice:As opposed to the tridiagonal
edge lattice, where the interpolation points are on the edges,
the interpolation points in the triangular face lattice are in the
middle of each triangle. A possible dilation matrix is given by

Fig. 13 depicts the triangular face lattice together with its unit
cell and the coset representatives which are with

According to Theorem 10, shifts for the Neville family
we want to construct are We
now have to find a way of predicting the points given the
points on the tridiagonal lattice. Fig. 13 gives neighborhoods for

The neighborhoods for can be found on the same figure
as well. Table X gives weights for and interpolation orders

and

VI. FAST LIFTED WAVELET TRANSFORM

In this section, we discuss the implementation of the
wavelet transform using lifting. Start with an input sequence

and create output sequences: one lowpass
sequence and highpass sequences

Note that we can link each
sample of the output sequences to a unique sample of the
input sequence: corresponds to and corresponds to

This correspondence combined with the lifting steps
allows for in-place computation; instead of allocating new
memory for the and sequences, we simply overwrite the
corresponding elements in thesequence. Lifting guarantees
that we will never overwrite a sample we need later.

Denote the impulse response of the predict filterto be
and similarly for the update filters. The predict (and update) se-
quences are nonzero in a finite symmetric neighborhood around
the origin that is, for The transform
can now be described by the following pseudocode:
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Fig. 10. Separable lattice with its unit cell and the lattices in the sampled domain with neighborhoods. The figure shows neighborhoods for predict filtersP ; P
andP :

Fig. 11. Hexagonal lattice with its unit cell and the lattice in the sampled domain with neighborhoods. The figure gives only the neighborhood forP ; P is the
same as in the quincunx case andP has the same neighborhood asP except time reversed in both dimensions. The small black dot within the first ring is the
point (1=4; 1=4) at which we want to interpolate.

The pseudocode illustrates one of the nice aspects of lifting:
once the algorithm for the analysis is coded, the synthesis im-
mediately follows by reversing the operations and flipping the
signs. An integer-to-integer version can immediately be built by
rounding off to the nearest integer before doing the or
operations [3].

To see how much lifting will speed up the computation, we
look at the polyphase matrices in Section IV. Let us start with
the analysis side. Equation (18) corresponds to the implemen-
tation using lifting, while (19) would correspond to a standard
implementation. We try to get a cost estimate of each implemen-
tation. Assume that the cost of each predict and update filter is

Fig. 12. Triangular edge lattice with its unit cell and the lattice in the sampled
domain with neighborhoods. The small black dot within the first ring is the
point (1=2; 0) at which we want to interpolate. Observe that this lattice in the
Cartesian coordinate system corresponds to the separable lattice.

the same and equal to Then, the cost of the lifting implemen-
tation is The cost of the standard implementation
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Fig. 13. Triangular face lattice with its unit cell and the lattice in the sampled domain with the neighborhoods forP : The small black dot within the first ring is
the point(1=2; 0) at which we want to interpolate.

TABLE VIII
HEXAGONAL NEVILLE FILTERS. THE TABLE GIVES PREDICT FILTERSP ; P IS

THE SAME AS IN THE QUINCUNX CASE AND P (z) = z P (1=z): (THE

NUMBERS IN PARENTHESESGIVE THE NUMBER OFPOINTS IN EACH RING. FOR

SPACE REASONS, WE GIVE THE TRANSPOSEDTABLE)

TABLE IX
TRIANGULAR EDGE NEVILLE FILTERS. THE RINGS CORRESPOND TORINGS

GIVEN IN FIG. 12. THE NUMBERS IN PARENTHESESGIVE THE NUMBER OF

POINTS IN EACH RING

TABLE X
TRIANGULAR FACE NEVILLE FILTERS. THE RINGS CORRESPOND TORINGS

GIVEN IN FIG. 13. THE NUMBERS IN PARENTHESESGIVE THE NUMBER OF

POINTS IN EACH RING

is the cost of lifting implementation plus the cost coming from
the top left element in the polyphase matrix

If we use the above formula to implement this filter, the cost
is The alternative is to expand the summation
and then apply the expanded filter. Assuming that the neigh-
borhoods of the predict and update filters are roughly balls in

dimensions, the cost of the expanded filter is For low
dimensions and high number of subbands this may be cheaper
than In summary, on the analysis side the speed-up
provided by lifting is roughly equal to

If that is, either high dimensions or low
number of subbands, the speed-up isotherwise it is lower.
For low dimensions with high number of subbands the speed-up
becomes insignificant. Separable lattices, where form
an intermediate case where the speed-up is roughlyWith a
similar analysis on the synthesis side using (20) and (21) we see
that the synthesis speed-up becomes

For and the speed-up on the analysis and synthesis
side corresponds to the factorfrom [15], [48]. For
the synthesis speed-up due to lifting is much higher than the
analysis speed-up.

Remark:
One has to keep in mind that the speedup provided here is

only relevant in case the filters are nonseparable. A separable
filter can be implemented much faster as a succession of 1-D
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filters in different dimensions. One can then use lifting as in
[15] to speed up the 1-D filters. In general the Neville filters we
computed are strictly nonseparable.
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