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I. INTRODUCTION 

AVELET transforms have received significant attention W recently due to their suitability for a number of impor- 
tant signal and image processing tslcs including image coding. 
The principle behind the wavelet trqsform, as elaborated 
in a number of recent papers [1]-[4] is to hierarchically 
decompose an input signal into a series of successively lower 
resolution reference signals and their associated detail signals. 
At each level, the reference signal and detail signal (or 
signals in the separable multidimensional case) contain the 
information needed to reconstruct the reference signal at the 
next higher resolution level. Efficient image coding is enabled 
by allocating bandwidth according to the relative importance 
of information in the reference and detail signals and then 
applying scalar or vector quantization to the transformed data 
values [5 ] ,  [6]. 

Many issues relating to the choice of filter bank for image 
compression re& unresolved. Regularity [7] has been sug- 
gested as a criterion for filter evaluation, but as a recent author 
noted in reference to wavelet transforms, "the importance of 
regularity for signal processing applications is still an open 
question" [8]. Furthermore, there is only a partial correlation 
between filter regularity and reconstructed image quality. 
Wavelet choice has been considered by other authors [9], [lo], 
but the methods of these papers rest on the assumption of 
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orthogonality, which can be incompatible with other desirable 
filter characteristics. The techniques we present make no 
assumptions regarding filter orthogonality; we are concemed 
instead with the relationship between data in the input signal, 
their representation in the reference signal, and the recon- 
struction to which it leads. Our work was primarily motivated 
by the desire to clearly characterize the relationship between 
the filters used in a wavelet transform and the quality of the 
output image in a compressioin scheme. We were especially 
interested in biorthogmal filters because they constitute an 
important subclass of regular, perfect reconstruction FIR filters 
that pennit the analysis and synthesis filters to be linear phase. 

Wavelet filter bgnks are characterized in terms of their 
associated continuous scaling functions and wavelets derived 
under iteration. This viewpoint is crucial and indeed constitutes 
a basis for the work psented  here. However, since a biorthog- 
onal filter bank has associated with it four such functions (the 
scaling functions and wavelets for the analysis and synthesis 
stages), it is difficult to intuitively relate the reconstructed 
image quality to the form of these functions. In the past, 
conclusions regarding the suitabiiity of various filter banks for 
image coding have been macle on a somewhat ad-hoc basis 
by compressing a set of images using several different filters. 
The remstructed images with the best subjective and NMSE 
quality are then identified, and the propt ies  of the scaling 
functions of the filter banks furnishing the best reconstruction 
are observed. By contrast, we adopt an end-toend approach to 
the wavelet decompositiodrecenstruction based on the lowest 
level reference signal. This allows a more intuitive input- 
output description in t m s  of a shift-variant linear system to be 
elaborated upon and clearly explains observations by previous 
authors regarding the greater importance of the synthesis 
(versus analysis) scaling function in compression performance. 
Our approach still requires €hat compression be performed 
experimentally on a series of impulse and step functions, but it 
furnishes a unified framework involving classical criteria such 
as impulse response, sidelobe strength, and shift-variance min- 
imization to the characterization, evaluation, and comparison 
of candidate filter banks. Although one previous author [ll] 
has proposed evaluating filter banks based on reconstruction 
from the reference signal, the derivation we present, allowing 
impulse response description in terms of the scaling functions, 
is new, as are the results that follow from this fundamental 
equation (see (14)). 

Section II very briefly reviews wavelet concepts that are 
important to our presentation and introduces relevant notation. 
Section 111 describes our approach in which only the reference 
signal at the lowest resolution level is retained, allowing the 
entire analysidsynthesis system to be viewed as a linear, 
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shift-variant system. as discussed above. We show that the 
impulse responses of such a system satisfy difference equations 
involving both the analysis and synthesis scaling functions. In 
Section IV, we present results and discussion and include a 
table giving some of the best biorthogonal filters for image 
compression applications. 

11. SCALING FUNCTIONS, WAVELETS, 
AND THEIR RELATION TO FILTER BANKS 

A. Discrete Wavelet Transforms 

One-dimensional discrete wavelet transforms (the separable 
2-D case is B straightforward extension) can be described 
in terms of a filter bank as shown in Fig. l(a). An input 
signal x ( n )  is input to the analysis low pass filter h,0(71,) 

and the analysis high-pass filter h 1 ( n ) .  The odd samples of 
the outputs of these filters are then discarded, corresponding 
to decimation by a factor of two. The decimated outputs of 
these filters constitute the reference signal rl(n) and detail 
signal dl  ( n )  for a one-level decomposition. For reconstruction, 
interpolation by a factor of two is performed, followed by 
filtering using the lowpass and highpass synthesis filters go(?),) 
and gl(n) as shown. Provided that the system satisfies the 
perfect reconstruction property, the sum of the outputs of 
synthesis filters will give y(n)  = Az(n - nci), where A is 
a gain factor and n d  is an odd delay. 

For a multilevel decomposition, the reference signal T I  (n) 
serves as the input to a filter bank whose analysis stage is 
identical to that of Fig. l(a). This process, which is repeated 
iteratively as shown in Fig. l(b), provides, after L levels, 
a reference signal T I ,  ( 7 ~ )  with resolution reduced by factor 
2" with respect to the original input x(7&), as well as the 
detail signals d ~ ( n )  d ~ - ~ ( n ) ,  . . ., cll(n). Each detail signal 
d, (n ) contains precisely the information that, together with 
the reference signal T ,  (n) ,  enables reconstruction of ri-1 (n ) ,  
which is the reference signal at the next higher resolution. 

One can associate with a multilevel analysis filter bank 
(similar to Fig. l(b) but with an arbitrary number of levels 
in the low-pass branch) a continuous scaling function and 
wavelet. A generally different scaling function and wavelet 
are associated with the synthesis stage. References [12] and 
[SJ contain a thorough treatment of the relationship between 
the filter coefficients and scaling. functions; here, we include 
enough discussion to make the notation clear. 

The equivalent filter corresponding to L levels of passage 
through the reference signal subtree can be expressed using 
the Noble identities as 

(1) 

where we follow the usual convention that h ( n / K )  = 0 
whenever n. is not a multiple of K .  H ( L ) ( n )  is called the 
Lth iteration of the filter h,(n,) and will have length ( a L  - 
1 ) ( N  - 1) + 1. In examining the convergence of the iterated 
filter to a continuous function, it is convenient to denote (after 
[SI) a piecewise constant function f h ( z )  associated with the 
ith iteration of h(n) through 

h y n )  = Ir(n) * h(n/2) * h,(n/.li * . . . * h(n/2L)  

ff)(:,;) = 2'%(i)(71) n/2i 5 2 < (n + 1)/2i. (2 )  

(b) 

Fig. 1. 
showing three-level transform. 

(a) Basic filter bank for wavelet transformation; (b) tree structure 

A filter h(n) is said to be regular if f,t"'(x) converges in 
the limit as i - M to a continuous function. In wavelet 
transforms, the scaling functions ~ A ( z )  and $s(x)  satisfy the 
respective two-scale difference equations: 

I1 

(3) 
n 

The continuous wavelets $ ~ ( x )  and q!~s(x) are defined in 
terms of the scaling functions and the coefficients of the 
highpass, complementary filter through 

n 
? 

(4) 
n 

As will be seen below. the functions ~ A ( Z )  and 4s(z) are 
central in determining the suitability of a particular choice of 
filters for image compression applications. 

B. Filter Design 
Constraints on filter design include perfect reconstruction, 

finite-length, and the regularity requirement that the iterated 
lowpass filters involved converge to continuous functions. The 
regularity constraint is the crucial distinction between wavelet 
transforms and perfect reconstruction filter banks and can 
be related to the number of zeros of the z-transform of the 
lowpass filters at z = -1. Another important characteristic 
that is often sought is linear phase in all of the filters in 
Fig. l(a>. This precludes the use of nontrivial orthogonal 
filters but permits a class of filters known as biorthogonal. 
Biorthogonal filters differ from orthogonal filters in that the 
subspace spanned by the lowpass synthesis filter response, and 
its even shifts g o ( n  - 2k) is not orthogonal to that spanned by 
gl(n - 2k). Completeness, however, is still maintained, and 
any signal in 12(Z) has a nonzero projection in at least one 
of these subspaces. 

Considering only the single-level system shown in Fig. l(a), 
one notes that the inputs to the synthesis filters go and g1 are 
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interpolated signals whose odd values are always zero. The 
output y (n )  is a linear combination of even shifts of these filter 
responses, and one requirement for wavelet transform filter 
banks is that the synthesis filter responses and their even shifts 
yo( n - 2 k )  and g1 ( n  - 2 k )  fomi a basis spanning the space 
12(2). The analysis filters can be viewed as furnishing, via 
convolution with the input s(n),  the coefficients to be applied 
to the synthesis basis functions such that perfect reconstruction 
of x(n) occurs at the filter bank output. From the theory 
of filter banks [8], one also notes that in order to eliminate 
aliasing, the relations 

must be satisfied and that in order to ensure perfect recon- 
struction, the condition 

must hold, where p (  n)  = ho(n) * 9,1(n), and M is the index 
of the center tap of p ( n ) .  These conditions imply a duality 
between the analysis and synthesis halves of the filter bank; the 
analysis filter banks and their even shifts will also span 12(2), 
and reversing the roles of the analysis and synthesis filters 
will preserve perfect reconstruction (although the reference 
and detail signals will be altered by the reversal). 

Design techniques for both orthogonal and biorthogonal 
wavelet filter banks draw heavily on the theory of perfect 
reconstruction filter banks. Even n hen all of the above con- 
straints are applied, there remain& significant flexibility in 
filter choice. It has been demonstrated in [8] and 1121 that 
maximizing the number of zeros at z = -1 tor both the 
analysis and synthesis filters, within reasonable constraints 
on the filter lengths, results in most cases in regular filters 
corresponding to smooth scaling functions and wavelets. It is 
shown in [12] that If the filter Ho( L) is taken to be the length 
2iV t 1 binomial filter B ( z )  = ( (  1 + 2-')/2)''',  then the 
minimum order Go(z) for a perfect reconstruction system is 
the length 2 N  - 1 remainder filter 

Since R(z)  is linear phase, it can he factored into linear phase 
polynomials with real coefficients hy appropriate grouping of 
the zeros of R(z ) ,  which appear in complex quads or real 
reciprocal pairs (unless they happen to fall on the unit circle). 
Thus, for a given IV,, many different linear phase filter designs 
are enabled by factoring R(z)  into linear phase factors and 
allocating the factors of B ( z )  and R ( z )  to either go(z) or 
Go(x). The number of possible linear phase tilter designs 
based on the minimal order remainder filter R ( z )  is 2".. 
where N,. = ( 2 N  - 2)/4 if 2N - 2 is a multiple of 4 and 
N, = (2N - 4)/4 t 1 otherwise. Here, we assume that H ( z )  
has no zeros on the unit circle, which is true for all reasonably 
short filters ( N  5 20). 

111. FILTER BANK SELECTION 

A.  The Wavelet AnalysidSynthesis Bank as CI Linear System 

Our goal is to establish an approximate linear system model 
that can be used to evaluate the suitability of candidate filter 
banks for compression. In general, common coding techniques 
such as scalar and vector quantization and run-length coding 
preclude linear system description. However, if the number of 
levels L is small (two or three), the performance of wavelet 
compression schemes is approximated by the linear system 
in which the information in the lowest resolution reference 
signal rL(n,) is perfectly preserved, and the information in the 
detail signals is discarded. This is similar to actual compression 
algorithms, where the reference signal is coded accurately in 
accordance with the well-known l/f property of most natural 
image spectra. Since the reference signal is finely quantized 
while the detail signals must be coarsely quantized, it is 
better to use a filter bank that packs the maximum amount of 
information about the original image into the reference signal. 
In addition, the filter bank should not result in a decomposition 
that leads to artifacts in the image reconstructed from the 
reference signal alone. This is because these artifacts, which 
would be canceled by the information in the detail signals if 
lossless coding were used, can only be partially canceled when 
the detail signals undergo the severe compression necessary to 
achieve reasonable overall coding rates. It is therefore prefer- 
able to use a filter bank that leads to a relatively artifact-free 
reconstruction from the reference signal, with the information 
retained from the detail signals then used to sharpen edges 
and other features. This also ensures that as the coding rate 
is decreased and the detail signals recei 'e fewer bits or are 
discarded altogether, the reconstructed image will degrade 
gracefully and will remain relatively artifact free. By seeking a 
filter bank that leads to the highest fidelity reconstruction based 
on the reference signal, we are distributing the information in 
the wavelet transform domain in a manner consistent with the 
priority it will given in the coding. 

We have found that selecting filters in this manner does in 
fact rewlt in superior image quality when a full coding scheme 
(i.e., one in which reference and detail signals are coded) is 
utilized. 

For a given filter bank, we can characterize the performance 
of a wavelet compression system in terms of a shift-variant 
impulse response relating an impulse S(77, - n,) at the input 
to its reconstruction hr'(n, n,) obtained using an L-level 
decomposition when only the reference signal is retained. The 
shift variance of the system is reflected by the parameter nz. 
For a general shift-variant system with a length-N input signal, 
there are N different impulse responses as n, varies between 
0 and N - 1. 

Since an input image and its reconstruction based on the 
reference signal are related by a linear shift-variant system, 
our approach is to identify filter banks whose associated 
impulse and step responses are well behaved according to 
classical criteria of minimum shift variance and sidelobe 
strength. The shift variance of wavelet transforms has been 
observed by Strang [4] and Mallat [3] and is viewed as one 

B 
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6 

7* 

Ho 9 ,994369, .419845, -.176777, -.066291, ,033145 0.830 11.080 0.01523 29.13 [5 ]  

Go 3 .707107, .353553 1 .Ooo Integer c o e ~ s . ~  

Ho 2 .707107,.707107 0.Ooo Inf 0.00000 27.48 Haarbasis. 

Go 2 .707107, ,707107 O.OO0 Integer coeffs.4 

8* 

1. Minimum peak to sidelobe ratio in dB among the eight possible impulse responses in a three-level decomposition. 
2. Average fractional overshoot of second sidelobe of step response. A strong overshoot will lead to significant ringing in the reconstructed image. 
3. Average PSNR in dB for 8 test images using a three level transform with adaptive scalar quantization of detail signals. 
4. A single normalizing factor can be chosen to make all coefficients integers. 

Ho 9 344089, .296844, .041409, ,0567 10, .040100 1.919 10.762 ,04008 22.66 Highreg,poor 

Go 23 1.2680, ,6337,-.2967, -.3712, .0072, .1098, .0116, -.0212, -.0027,etc. 3.437 performance. 

* Filters7 and 8 give poorer performance but are included to illustrate points made in text. Filter 7 is the Haar basis and has zero regularity and good impulse 
and step responses. Filter 8 is a filter with high regularity but poor compression performance, and illustrates that regularity alone is not a sufficient criterion 

# 
for filter choice. 

of the principal disadvantages of applying wavelet techniques 
to signal and image processing tasks. Simoncelli et al. I141 
have extended the wavelet transform shift invariance issue 
to include considerations of scale and, in two dimensions, 
orientation. They propose a more general term-shiftable 
multiscale transforms-to encompass these properties and 
derive transforms in which the information within a given 
detail signal remains invariant under translation or rotation. 
While this work addresses the important issue of conservation 
of information within a given subband, it does not directly 
treat the question of shift-variance of the combined analy- 
sishynthesis system. Given a coding scheme in which an input 
signal x(n) is decomposed and then reconstructed to furnish 
y(n), we wish to minimize the sensitivity of the reconstruction 
to shifts of the input. While strict shift invariance is not 
achievable, there is an enormous variety in the degree of 
shift variance associated with different biorthogonal filters. 
A simple example will suffice to illustrate this point. Fig. 
2(a) shows all of the possible (excluding symmetries) impulse 
responses associated with a three-level 1-D transform using 
filter 1 from Table I. Although the impulse response is a 
function of input location modulo 8, symmetries reduce the 
number of distinct curves to five for odd length filters and four 
for even length filters. We have plotted all these responses on 

(o -0,s- 
" "  

0 0 50 
Samples Samples 

(a) (b) 

Fig. 2. Comparison of shift variance for filters (a) 1 and (b) 3 from Table I. 
In each case, all of the impulse responses (excluding symmetries) occurring 
when a three-level transform is used are shown. In a shift-invariant system, 
all impulse responses would be identical. The filter used in Fig. 2@) clearly 
exhibits a lower degree of shift variance than the filter used in Fig. 2(a). 

the same graph to emphasize the variation that occurs as the 
input location is changed. Fig. 2(b) shows the corresponding 
curves associated with filter 3 from Table I. While both filter 
banks display shift variance, the extent of shift variance is 
clearly larger in Fig. 2(a). 

An additional goal is to minimize oscillatory behavior, 
or ringing, in the system response, as this leads to highly 
objectionable artifacts in the reconstructed image. To achieve 
this, we select filters resulting in impulse responses having a 
favorable peak to sidelobe ratio. In addition, we examine the 
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step responses and identify filters with low “undershoots” (the 
second oscillation, which occurs immediately after the initial 
overshoot). As with shift invariance, substantial variation 
exists in oscillatory behavior among valid biorthogonal filter 
banks. A further complication arises because impulse and step 
responses are, of course, shift variant themselves and must be 
somehow combined into a single measure. Simultaneous opti- 
mization of shift variance, impulse response peak to sidelobe 
ratio, step response oscillations, and regularity is possible, but 
finding the proper weighting of these characteristics that yields 
superior filters for image compression is still an open question. 
In addition, we have found that our assumption that 1-D 
metrics completely characterize the performance of filters for 
2-D image compression is not fully justified. There are other 
filter characteristics, depending on the interaction between 
the horizontal and vertical filter responses, that are important 
in determining a filter’s performance in image compression. 
For the work discussed here, we searched the space of valid 
biorthogonal filter solutions for filters achieving a reasonable 
compromise with respect to the metrics under study. 

B. Impulse Response derivation 
Consider the input sequence z (n )  = S(n - n;), where ni is 

located sufficiently far from the boundaries so that edge effects 
do not occur. After one level of decomposition, the reference 
signal q ( n )  will be the result of convolving z (n)  = S(n - ni) 
with the lowpass synthesis filter ho (n) followed by decimation 
by a factor of two. Depending on whether ni is even or 
odd, q ( n )  will contain either the even or odd coefficients 
of the filter ho(n). The reference signal ~ ( n )  is obtained 
by convolving r I (n)  with ho(n) and decimating the result, 
and the general case of L levels entails L filteddecimate 
operations. The analysis impulse response hj4L’(n,n,) at the 
output of the final decimator is obtained by retaining one 
out of every 2L samples and can be expressed as samples 
of the piecewise constant function fit) associated with the 
Lth iteration of ho(n): 

Note that the -analysis impulse response is finite duration 
because it consists of samples of a compactly supported 
function fli’(x). Let the lengths of the analysis and synthesis 
lowpass filters be NA and N s ,  respectively. Depending on the 
location n, of the delta function and on whether N A  is even 
or odd, hy) (n ,  n,) will contain up to NA - 1 nonzero values. 
Furthermore, since h r ) ( n ,  n,) is composed of unit-interval 
samples of fit)($) offset by n2/2‘, there are, in general, 2L 
different impulse responses that can occur. When symmetry 
is considered, the number of distinct impulse responses will 
reduce to 2 L - 1  when N A  is even and ZL-’  + 1 when N A  is 
odd. The particular impulse response that will be expressed 
for a given n, depends on nt mod 2 L .  

Now, consider a reference signal of the form rL(n) = 
S(n - n] ) ,  where 0 5 n 5 N / 2 L .  Provided that the detail 
signals d,(n) are equal to zero for 1 _< i 5 L, the reference 
signal at level L - 1, which is found by interpolating  TI,(^) 

and filtering it with gO(n), will be r ~ - l ( n )  = g o ( n  -- 2nj) .  
To generate the reference signal at level L - 2, interpolation 
followed by filtering with g o ( n )  is performed again. This 
procedure, which is repeated a total of L times, generates 
a shifted version of the Lth iteration of the filter gO(n). 
The synthesis impulse response relating the reference signal 
TI,  (n) = S( n - nj ) and the reconstructed sequence it generates 
is therefore 

(9) 

Note that in contrast with the analysis impulse response 
(see (8)), which has approximately constant length regardless 
of the number of levels L, the synthesis impulse response 
h g ) ( n , n j )  has a length that grows with L according to 
( 2 L  - 1)(Ns - 1) + 1. In addition, because the reconstruction 
involves interpolation rather than decimation, the numerical 
values contained in the response hg’(n, n3) are independent 
to within a shift of n3. 

Combining the synthesis impulse response hg) (n ,  nj) with 
the analysis impulse response hF)(n,  ni) gives the impulse re- 
sponse hyi(n,  n,) of the combined L-level analysidsynthesis 
system. Noting that reconstruction from a general reference 
signal is the linear combination 

and that when the input is z ( n )  = S(n - ni), the reference 
signal will be P 

Substituting (11) into (10) gives 

We can associate the impulse response with a piecewise 
continuous function in the manner of (8) 

where Ax = ni/2L,  and expresses the offset of the input 
delta function as a fraction of 2 L .  When the number of 
levels L becomes infinite, we have fjy’(x) = $~(z) and 
f$’(x) = $s(z), and the impulse response converges to a 
family of continuous functions given by 

2 
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(a) (b) 

Fig. 3. Case in which filter regularity fails as a predictor of compression pertormance. Both 256 x 256 images are the result of compression at 0.5 b/pixel 
with a 3 level DWT followed by adaptive quantization and entropy coding. For Fig. 3(a), filter #S from Table I was used and attained 30.23 dB PSNR 
despite having low analysidsynthesis regularity of 0.00/1.00. For Fig. 3(b), filter #8 from Table I was used. Filter #8 has relatively h g h  analysidsynthesis 
regularity of 1.92/3.44 yet attains only 23.19 dB PSNR. Part of the discrepancy in image quality can be explained by the fact that filter #5 has significantly 
better step and impulse response performance than filter #8 (see Table l). 

IV. RESULTS AND DISCUSSION 
Equation (1 2) shows that, in general, the impulse response 

of a wavelet filter bank is a linear combination of the iterated 
synthesis lowpass filter response using weights that are sam- 
ples of the iterated analysis lowpass filter response. In the limit 
of large L, the impulse response becomes a combination of the 
synthesis scaling function and its unit shifts, with weights that 
are samples of the analysis scaling function. Several important 
practical properties of wavelet transforms follow directly from 
the limiting case expressed in (14). 

First, the impulse response will he a linear combination 
of approximately N A  shifted versions of $s(T) .  As a result, 
the smoothness of f!4z)(z) is essentially the same as that of 
$s(z). This explains the greater importance of the synthesis 
scaling function (relative to the analysis scaling function) in 
determining the quality of a reconstructed image. If in a given 
filter bank one of the scaling functions has sharp edges while 
the other is smooth, it is better to choose the smooth function 
for the synthesis filter. If the analysis filter is short, $.4(i) 

will contain only a few nonzero values, and the undesirable 
properties of the analysis filter ,will not generally be passed on 
to the impulse response. 

Although longer analysis filters will cause a greater number 
of shifted versions of +s(z) to be summed to give the 
impulse response, the width of the main lobe of +A(z) will be 
approximately constant, regardless of NA in accordance with 
the halfband lowpass nature of ho(n). As a result, many of the 
samples of +A(z) will have very small magnitudes and will 
not contribute significantly to the impulse response. What does 
change as Nd4 increases is the potential for oscillatory behavior 
(“ringing”) of $ A ( T ) ,  which can increase the number of 
significant samples used in (12) and (14). 

Once the impulse and step response are obtained for a 
given filter bank, they can be evaluated using any number 
of criteria. We have found that the most common and ob- 
jectionable artifacts in reconstructed images are ringing near 
sharply defined feature boundaries. To select filters less likely 
to introduce ringing, we chose, as our measures, the peak 
to first sidelobe ratio of the impulse response (minimized 
over all shifts) and the average second sidelobe of the step 
response. 

We evaluated and ranked all of the minimum order biorthog- 
onal filter banks with combined analysishynthesis filter lengths 
of 5 36 according to the impulse and step response criteria 
given above and calculated the Holder regularity [7] of the 
analysis and synthesis filters. To empirically evaluate the 
performance of each filter and to allow comparison with 
the rankings obtained using the impulse and step responses, 
we also performed 16:l compression on actual images. The 
coding algorithm used was a three-level wavelet transform in 
which the transformed data were subject to adaptive scalar 
quantization of the detail signals followed by entropy coding 
using run length and Huffman coding. The reference image 
was quantized using 8 b/pixel. For the detail signals, the bit 
allocation procedure selects the quantization step size to be 
proportional to l/logo:, where 6, is the variance of the ith 
subband. This allocation procedure has been observed to give 
good results experimentally when the quantizer is followed 
by Huffman coding of run, level pairs. More complex quan- 
tization approaches have been observed to provide slightly 
better coding performance [15], [16], but since we were 
concerned primarily with evaluating the filters, we chose a 
quantization scheme that can be easily and consistently applied 
using different filters and input images without the need for 
codebook training or complicated data structures. A total of 

* 
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(a ) (b) (C) 
Fig. 4. Detail from the 256 x 256 peppers image shows a comparison (a) the original image with the image after compression at 0.5 b/pixel using 
(b) filter #1 from Table I and (c) filter #2 from Table I. Filter # I  attains 30.83 dB PSNR versus 30.46 dB PSNR for filter #3, yet filter #3 achieves 
superior impulse preservation in the compressed image. The shadow impulses adjacent to the bright impulses in Fig. 4(c) are due to the odd symmetry 
of the highpass filter associated with filter #3. 

eight 256 x 256 8-b gray-scale tesi images were used. with 
the average PSNR calculated for a compression ratio of 16:l. 
These test images were pepper, lena, moon, bridge, couple, 
tank, diane, and geo. The first six are from the USC database, 
dime is a custom-scanned image that is lowpass in nature, 
and geo is an aerial photograph of a city provided by the U.S. 
Geological Survey. 

We present in Table I. the results of our evaluation. For 
each filter bank, we give the the analysis ( H O )  and synthesis 
(Go) lowpass filter length, filter coefficients, and regularity. 
The impulse response peak to sidelobe ratio and step response 
second sidelobe strength are also given. We also give the 
average PSNR over eight test images using the compression 
algorithm mentioned above. The final column of the table 
gives the referenceb (where applicable) to other publications 
where the filter is discussed, as well as comments. In addition 
to listing the best filter banks, WE have also included two 
other filter banks that are of interest despite their poorer 
performance. Filter 8 is included to illustrate that regularity 
alone is not a sufficient criterion. For this filter, the synthesis 
filter regularity is quite high, but the compression performance 
is extremely poor. Fig. 3 shows that filter 8 introduces a 
significant amount of edge ringing into the compressed image, 
as well as periodic diamond shaped artifacts that may be due 
to aliasing in the 2-D highpasshighpass or “corner” detail 
signals. We also include (filter 7) the results for the Haar basis. 
The Haar basis shows that a filter with poor regularity can still 
achieve reasonably good compression if it has good impulse 
and step response properties., Note that gain may be arbitrarily 
dismbuted between HO and Go as long as product of their 
dc gains is 2. Filters 4 through 7 may be renormalized by a 
factor of fi to have shifted integer coefficients, thus greatly 
simplifying hardware implementation. 

We found that even length filters have significantly less shift 
variance than odd length filters, suggesting that they may be 
better for some applications. For example, it has been noted 
in [ I  11 that even length filters reduce flicker noise in coded 
video images. Another desirable feature of even filters is their 
superior impulse response performance. Table I shows that the 
filters achieving the highest impulse response peak to sidelobe 

ratio are even length filters 7,5 ,  and 3. For certain applications, 
it may be especially important to preserve impulse2 in the 
compressed image; for example, many geographic imaging 
systems introduce artificial reference dots and crosses into the 
image in order to indicate absolute location. Fig. 4 compares 
the impulse response preservation of images compressed with 
odd length filter number 1 (from Table I) and even length 
filter number 3. Both have a total of 16 taps, and the odd 
filter slightly outperforms the even in PSNR and in perceived 
image quality. However, Fig. 4 shows that the even filter does 
a much better job of preserving location, shape, and intensity 
of impulses. 

V. CONCLUSIONS 
A multilevel analysidsynthesis wavelet filter bank can be 

evaluated by considering the reconstruction obtained from only 
the lowest level reference signal. This allows a description 
in terms of a linear, shift-variant system that can then be 
evaluated using criteria such as impulse and step response 
that are important in governing image quality. Although filter 
evaluation is made based only on the information preserved 
in the reference signal, the results remain valid when a 
full compression system employing quantization of both the 
reference and detail signals is used. Analysis of all reasonable 
length minimum order biorthogonal perfect reconstruction 
filters using these metrics identified filter banks that are well 
suited to image compression, including several that have not 
previously been published. While our interest was primarily 
in biorthogonal filters because of the greater analytical dif- 
ficulty they present, the evaluation techniques we presented 
here could easily be applied to orthogonal filters or even to 
nonperfect reconstruction systems. 

? 
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