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Abstract—In recent years, wavelet-based algorithms have been
successful in different signal processing tasks. The wavelet trans-
form is a powerful tool because it manages to represent both tran-
sient and stationary behaviors of a signal with few transform coeffi-
cients. Discontinuities often carry relevant signal information, and
therefore, they represent a critical part to analyze. In this paper,
we study the dependency across scales of the wavelet coefficients
generated by discontinuities. We start by showing that any piece-
wise smooth signal can be expressed as a sum of a piecewise poly-
nomial signal and a uniformly smooth residual (see Theorem 1 in
Section II). We then introduce the notion of footprints, which are
scale space vectors that model discontinuities in piecewise polyno-
mial signals exactly. We show that footprints form an overcomplete
dictionary and develop efficient and robust algorithms to find the
exact representation of a piecewise polynomial function in terms
of footprints. This also leads to efficient approximation of piece-
wise smooth functions. Finally, we focus on applications and show
that algorithms based on footprints outperform standard wavelet
methods in different applications such as denoising, compression,
and (nonblind) deconvolution. In the case of compression, we also
prove that at high rates, footprint-based algorithms attain optimal
performance (see Theorem 3 in Section V).

Index Terms—Compression, denoising, matching pursuit, non-
linear approximation, wavelets.

I. INTRODUCTION

T HE design of a complete or overcomplete expansion that
allows for compact representation of certain relevant

classes of signals is a central problem in signal processing and
its applications. Parsimonious representation of data is impor-
tant for compression [14]. Furthermore, achieving a compact
representation of a signal also means intimate knowledge of
the signal features and this can be useful for many other tasks
including denoising, classification, and interpolation. From
a computational analysis point of view, one can say that the
problem is to build a dictionary of elementary
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functions that can well approximate any signal in a given
functional class with the superposition of few of its elements.

The design of a dictionary with good approximation proper-
ties, however, is not the only important element. Together with

, one also needs to develop fast algorithms that can efficiently
find the sparsest representation of any signal in terms
of the elements of . When is a basis, there is
a unique way to expressas a linear combination of thes,
and this representation can be easily found computing the inner
products between and the duals of ’s.1 Despite this nice
property, overcomplete dictionaries are often preferred to basis
expansions. Overcomplete dictionaries are more flexible; they
can better adapt to the characteristics of the signal under consid-
eration, and this allows for sparser signal representations. Exam-
ples of overcomplete dictionaries include best basis methods or
adaptive wavelet packets [6], [26]. In the case of overcomplete
bases, however, it is more difficult to develop fast algorithms
that find the right sparse representation of a signal in. Because
the elements of are linearly dependent, there are infinitely
many ways to expressas a linear combination of the’s. In a
few cases, it is possible to arrive at sparse signal representations
with linear complexity algorithms [12], [16], but in general, the
search for the sparsest signal representation is an NP-complete
problem [10]. Note that techniques based on singular value de-
composition (SVD) and pseudo-inverse do not yield compact
signal representations [17]. Other methods like basis pursuit [3]
are usually computationally intensive; matching pursuit [21],
which is a greedy iterative algorithm, is computationally effi-
cient but does not converge in a finite number of iterations in
general.

In this paper, we focus on the class of piecewise smooth sig-
nals. In particular, we will mostly consider piecewise polyno-
mial signals. We propose a new representation of these func-
tions in terms of objects we callfootprints and make up an
overcomplete dictionary of atoms. The footprints dictionary is
built from the wavelet transform. Given a signal of interest, we
first perform the wavelet transform of this signal, and then, the
wavelet coefficients are expressed in terms of footprints. To-
gether with the scaling coefficients, footprints can represent any
piecewise polynomial signal. The main property of footprints
is that they characterize efficiently the singular structures of
the signal, which usually carry important information. Wavelets
are also efficient at representing singularities [20]; however,
the wavelet coefficients generated by a singularity are depen-
dent across scales. By constructing the footprint expansion on
the wavelet transform, we remove this dependency completely.
Thus, by representing any discontinuity with the combination

1The dual elements coincide withf if the dictionary is orthonormal.
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of a few footprints, we can get a sparser representation of the
signal under consideration.

Even though the footprint expansion is overcomplete, it can
be made locally orthogonal, and this allows us to use fast al-
gorithms to find the right sparse decomposition of the signal
in terms of footprints. Alternatively, it is also possible to use
matching pursuit. We show that there are situations in which
matching pursuit with footprints can attain the sparsest signal
representation with a finite number of iterations. Finally, we will
see that the use of this dictionary leads to efficient algorithms for
compression, denoising, and nonblind deconvolution of piece-
wise smooth signals.

The paper is organized as follows. Section II is meant to build
up intuition about footprints. We analyze the dependency across
scales of the wavelet coefficients generated by discontinuities
and demonstrate a decomposition of a piecewise smooth signal
into a piecewise polynomial signal and a regular residual (The-
orem 1). This theorem will be invoked each time we will move
from piecewise polynomial to piecewise smooth signals. In Sec-
tion III, we present the footprint expansion, and in Section IV,
we develop algorithms to efficiently represent piecewise poly-
nomial signals in terms of footprints. In both sections, we study
the case of piecewise constant signals in detail and then ex-
tend the analysis to the case of piecewise polynomial signals.
Section V focuses on applications, namely, denoising, deconvo-
lution, and compression. Traditional wavelet-based algorithms
are reviewed, new algorithms based on footprints are presented,
and their performance is analyzed. In Section VI, numerical
simulations showing interesting improvements over traditional
methods are presented, and conclusions are given in Section VII.

II. DEPENDENCY OF THEWAVELET

COEFFICIENTSACROSSSCALES

In wavelet-based signal processing, it is usually important to
exploit the dependency across scales of the wavelet coefficients,
and several efforts have been made in this direction recently; see,
for instance, [2], [9], [22], and [28]. The singular structures of
a signal often carry critical information, and thus, their efficient
characterization is crucial in many signal processing tasks.

In this section, we review some of the properties of the
wavelet transform, namely, its ability to characterize the local
regularity of a function, and then, we focus on the analysis
of the dependency of the wavelet coefficients generated by
discontinuities.

Our interest is in piecewise smooth signals, that is, in signals
that are made of regular pieces. The regularity of a function is
usually measured with the Lipschitz exponent [23].2 We say that
the restriction of to is uniformly Lipschitz over

if there exists such that for all , there
exists a polynomial of degree such that

(1)

Therefore, we define a piecewise smooth function ,
with pieces, as follows:

(2)

2The so-defined Lipschitz exponent is sometimes called Hölder exponent.

where , , and is uniformly Lipschitz
over [ ]. Such signals are interesting because many

signals encountered in practice can be modeled as piecewise
smooth.

Consider now an orthonormal wavelet series with scale and
shift parameters and , respectively. We use the convention
that small scales correspond to large, negative, that is

where is the wavelet basis function. Moreover, assume that
the wavelet has vanishing moments, that is

Then, it follows that the wavelet coefficients of a function
that is uniformly Lipschitz on an interval [ ] decay
across scales as 2 [23]. The (local) decay property
of the wavelet coefficients is at the heart of the success of
the wavelet transform in several applications. Now, because
of this decay property, larger wavelet coefficients tend to be
around the singular parts of a signal, that is, around points
with small Lipschitz coefficients. These wavelet coefficients
gather most of the energy of the original signal, and for this
reason, we are interested in modeling their behavior across
scales. For instance, given a signal as in (2), we are interested
in studying the wavelet coefficients related to the break points

.
To begin our analysis, we start by considering a particular

subclass of piecewise smooth signals, namely, piecewise poly-
nomial signals. A function is piecewise poly-
nomial with pieces if

(3)

where , , and
are polynomials of maximum degree. Piecewise

polynomial signals have a finite number of degrees of freedom
and are easier to analyze. However, despite their simplicity,
they can be used to efficiently approximate piecewise smooth
functions. In fact, if the piecewise polynomial approximation
is chosen properly, the approximation error shows interesting
regularity properties.

Theorem 1: Given a piecewise smooth signal defined as
in (2), that is, with pieces of Lipschitz regularity. Then, there
exists a piecewise polynomial signal with pieces of max-
imum degree such that the difference signal

is uniformly Lipschitz over .
Proof: See Appendix A.

Theorem 1 indicates a practical way to deal with piecewise
smooth signals. It shows that any piecewise smooth signal
can be expressed as the sum of a piecewise polynomial signal
and a residual that is uniformly Lipschitz. That is,

. Now, since the residual is regular, it can be well rep-
resented with wavelets (the wavelet decomposition of re-
sults in small coefficients with fast decay across scales). There-
fore, the only elements we need to analyze are discontinuities
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in the piecewise polynomial function and, in particular, the de-
pendency across scales of the wavelet coefficients generated by
these piecewise polynomial discontinuities.3

We start by considering the simple case of piecewise con-
stant functions with only one discontinuity at location(i.e.,

) and a wavelet series with
one vanishing moment and compact support. The decomposi-
tion of this signal in the wavelet basis results in zero wavelet co-
efficients, except for the coefficients in the cone of influence of

. Recall that the cone of influence ofin the scale-space plane
is the set of points ( ) such that is included in the support
of . In this case, the wavelet coefficients in this cone of
influence are dependent: They have only one degree of freedom.
This can be easily shown recalling that a wavelet withvan-
ishing moments and fast decay can be written as theth-order
derivative of a function , which also has a fast decay [23]. Thus,
the following conditions are true:
and , where

. Since the th derivative of a function is
well defined in the sense of distributions, it follows that

where we used integration by parts to move the derivative from
to . That is, .

Thus, if the wavelet has compact support, is
equal to zero if does not overlap , and
depends only on the difference otherwise. This means
that the wavelet behavior across scales is deterministic. If one
knows the value of a single nonzero wavelet coefficient in the
cone of influence of , one can derive from it all the other
wavelet coefficients in that cone of influence.

This discussion generalizes to the case of piecewise poly-
nomial signals with polynomials of maximum degree. Con-
sider the case of a piecewise polynomial function with one dis-
continuity at and polynomials ,

. Compute the wavelet decomposition with a wavelet having
vanishing moments and compact support. Again, the

nonzero wavelet coefficients are only in the cone of influence
of , and we have

(4)

where is the th derivative of the Dirac -function, and

the coefficients depend on the differences ,
.4 Thus, in the more general case, the wavelet

3For simplicity, we callpiecewise polynomial discontinuitya singularity be-
tween two polynomials.

4To be more precise,c = t a � a .

coefficients in the cone of influence of have only de-
grees of freedom, and one can determine all these wavelet co-
efficients by knowing only nonzero coefficients in that
cone of influence.

In summary, the above analysis indicates that piecewise poly-
nomial signals are well represented by wavelets but that it is pos-
sible to model piecewise polynomial discontinuities in a more
efficient way. In the next section, we present a new way to ex-
press discontinuities in piecewise polynomial signals. Together,
with Theorem 1, this will lead to efficient algorithms to repre-
sent piecewise smooth signals. Although, we could perform this
analysis in continuous time, we concentrate on the discrete-time
case. This is because our final target is to develop efficient al-
gorithms that act on discrete-time signals.

Before concluding this section, we want to analyze the border
effects. Since our signals are defined on a finite interval [],
we need to extend them outside this interval in order to perform
a wavelet decomposition. Several extensions are possible [23].
In our formulation, we make a periodic extension, that is, we
assume that signals are-periodic and that, on the period [ ],
they are given by (2) and (3). Now, this extension creates an
artificial discontinuity at , , and Theorem 1
does not guarantee that the periodic extension of is regular
in . However, using higher order polynomials (i.e.,
polynomials of maximum degree ), one can easily
generalize the result of Theorem 1 and guarantee regularity of

over all [15].

III. FOOTPRINTDICTIONARIES

We move from continuous-time to discrete-time signals and
introduce the notion of footprints, which are scale-space vectors
containing all the wavelet coefficients generated by particular
polynomial discontinuities.5 We show that any piecewise poly-
nomial discontinuity is specified by the linear combination of a
few footprints and that footprints can be interpreted as an over-
complete expansion with good approximation properties.

A. Preliminaries

For our discussion, we need to introduce two discrete-time
wavelet operators. The first one is an orthonormal discrete-time
wavelet decomposition with levels.6 This decomposition
can be efficiently implemented with a critically subsampled
octave-band filterbank [30]. Let denote the wavelet
function at scale and shift and the scaling function
at shift . This wavelet operator is linear and periodically
shift-variant with period 2. The other operator is the wavelet
frame obtained by shifting out (with corresponding equivalent
filters) the subsamplers in the filterbank [30]. In this case, we
denote the wavelet functions at scaleand shift with
and the scaling function at shiftwith . This frame is
shift invariant.

The discrete-time signals we consider are-dimensional
vectors defined over the interval [ ]. Now, the wavelet

5In continuous time, one can define footprints equivalently, but they are of
infinite dimension and are of little computational value.

6For simplicity, we study only the orthogonal case. However, the notion of
footprints easily generalizes to the case of biorthogonal wavelets.
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operators defined above act in ; therefore, we need
to modify them to act on [ ]. As anticipated in the
previous section, we use a periodic extension [23]; therefore,
the wavelet basis becomes
and . Recall that for any

, this set of periodic wavelets forms an orthogonal
basis in [23]. The same extension applies to the
wavelet frame, and in this case, we get a frame in .

Finally, our interest is in the class of piecewise smooth
and piecewise polynomial signals, and the previous defini-
tions of piecewise smooth and piecewise polynomial signals
can be naturally extended to the discrete-time case. In par-
ticular, a discrete-time piecewise polynomial signal ,

is given by ,
where and is a
sampled polynomial of maximum degree.

Depending on the use of a wavelet basis or a wavelet frame,
we have two different footprint dictionaries as analyzed in the
next sections.

B. Footprints Built From a Wavelet Basis

In this section, we construct the footprint dictionary from a
wavelet basis. First, we study the simple case of piecewise con-
stant signals and Haar wavelets. In this particular setting, the
footprint dictionary is a biorthogonal basis. Then, we con-
sider the more general case of piecewise polynomial signals and
higher order wavelets. We show that in this caseis always
overcomplete.

1) Piecewise Constant Signals:Consider a piecewise con-
stant signal , with only one discontinuity
at position , and consider a -level wavelet decomposition of
this signal with a Haar wavelet:

(5)

where , and .7 Since the Haar
wavelet has one vanishing moment and finite support, the
nonzero wavelet coefficients of this decomposition are only in
the cone of influence of. Thus, (5) becomes

where . Moreover, as in the continuous-time case,
all these coefficients depend only on the amplitude of the dis-
continuity at . Thus, if one defines a vector that contains all of
them, one can specify any other step discontinuity atby mul-
tiplying this vector by the right factor. This consideration leads
to the following definition (see also Fig. 1).

Definition 1: Given a piecewise constant signal with
only one discontinuity at position , we call footprint
the scale-space vector obtained by gathering together all the
wavelet coefficients in the cone of influence ofand then
imposing . Expressed in the wavelet basis, this

7Note that we are assumingN to be a power of 2, and this way, a wavelet
decomposition with a Haar wavelet does not suffer from border effects.

Fig. 1. Time domain (top) and wavelet domain (bottom) representation of the
footprint f with N = 128, J = 5 andk = 41. Notice that, except for the
caseJ = log N (N being a power of 2), a footprint does not look like a pure
step edge function since the footprint definition does not include the scaling
coefficients.

footprint can be written as , where

.
Now, any piecewise constant signal with a step discon-

tinuity at can be represented in terms of the scaling functions
and of . For instance, the signal in (5) becomes

(6)

where . The above discussion
can be repeated for any other step discontinuity at different loca-
tions, and for each location, we have a different footprint .
Call the complete dictionary
of footprints. Some of the properties of this dictionary depend
on the number of wavelet decomposition levels. For instance,
just like the wavelet basis, footprints are shift variant unless the
shift is equal to , . That is

(7)

In addition, footprints are orthogonal to the scaling functions,
but the orthogonality condition between footprints depends on
the number of wavelet decomposition levels. Assume

, , and . We have

if

otherwise.
(8)

Therefore, footprints related to neighboring discontinuities are
biorthogonal. Finally, consider again (7). Since , it
follows that . Thus, contains only
elements. Moreover, we have the following proposition.

Proposition 1: The elements of together with the
scaling functions , form a
biorthogonal basis for .

Proof: See Appendix B
Therefore, any signal , can be expressed

in terms of footprints and scaling functions. In particular, if
is piecewise constant with discontinuities, together with the
scaling functions, footprints are sufficient to represent it. This
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can be shown by noticing that a piecewise constant signal with
only one discontinuity can be expressed in terms of one foot-
print [see (6)], and piecewise constant signals withdiscon-
tinuities are given by the superposition of piecewise con-
stant signals with only one discontinuity. Therefore, the foot-
print representation of a signalwith discontinuities at po-
sitions is given by

(9)

Note how this representation is sparser than the corresponding
representation in a wavelet basis that requirestimes more
wavelets than footprints if the cones of influence do not overlap.
The problem of finding the discontinuity locations and the cor-
rect values in (9) will be treated in detail in Section IV.

Finally, one may wonder if any object generated with the su-
perposition of footprints is piecewise constant with a number
of discontinuities equal to the number of footprints. That is, are

and the scaling functions an unconditional basis for the class
of piecewise constant signals? It turns out that this property is
satisfied only when (where is a power of 2).

Proposition 2: For , the scaling function and
the footprints , represent a
biorthogonal basis that is unconditional for the class of piece-
wise constant signals defined over .

Proof: The biorthogonality comes from Proposition 1. We
only need to show that this basis is unconditional. That is, as-
sume that is a piecewise constant signal with discontinuities
at , and consider its representation in terms of
footprints: . We need to show
that for any set of coefficients satisfying , the
signal is still piecewise con-
stant with discontinuity locations . This can be
seen by noticing that for , is a constant func-
tion, and is piecewise constant with one discontinuity
at ( ). Therefore, any linear combination
of gives a piecewise constant signal
with discontinuity locations .

1) Piecewise Polynomial Signals:We now generalize the
above discussion to the case of discrete-time piecewise polyno-
mial signals with polynomials of maximum degree. We show
that in this context, each discontinuity is represented by
footprints rather than one footprint.

Consider orthogonal wavelets with at least vanishing
moments and compact support, and consider a piecewise
polynomial signal with only one discontinuity at . Its

-level wavelet decomposition with periodic wavelets is

(10)

First, notice that the periodic extension of the wavelet basis
creates a second discontinuity at location zero and that this is
a polynomial discontinuity. Thus, the nonzero wavelet coeffi-
cients of this expansion are only in the cone of influence of

and in the cone of influence of zero. Assume, for now, that

and so that there are no wavelet coef-
ficients in common between these two cones of influence. We
can write

(11)
where is the set of indices ( ), which are in the cone of
influence of , and is the set of indices ( ), which are in
the cone of influence of zero. It is easy to verify that there are

wavelet coefficients in each cone of influence.
From (4), we know that the wavelet coefficients in each of these
cones of influence have only degrees of freedom. Thus,
we want to find a set of footprints that can characterize
these coefficients. To build this set of footprints, we resort to
time-domain analysis.

The class of piecewise polynomial signals with one discon-
tinuity at a fixed position forms a linear space
of dimension , and a possible basis for that space is
represented by the following vectors:

We can express these signals in a wavelet basis, and we have

(12)

where we have used the fact that the nonzero wavelet coeffi-
cients of are only in , whereas the nonzero wavelet
coefficients of are in the cones of influence ofand zero.
Now, any signal in this class can be written as

(13)

Therefore, combining (11)–(13) and considering only the ele-
ments in , we have

(14)

Call the scale-space vector gath-
ering the wavelet coefficients generated by the
discontinuity in . Equation (14) shows that the wavelet co-
efficients generated by any polynomial discontinuity atare
characterized by a linear combination of . This indicates that
the wavelet coefficients in the cone of influence of a polynomial
discontinuity have only degrees of freedom and proves
that these coefficients lie on a subspace of dimension . The
vectors , span that subspace and can repre-
sent the set of footprints for which we are looking. However, it is
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always better to have orthogonal bases; therefore, the footprints
we will consider are obtained by applying a Gram–Schmidt or-
thogonalization process to . Thus, from the above discus-
sion, we have the following proposition.

Proposition 3: Given a piecewise polynomial signal with
polynomials of maximum degree and with one discontinuity
at position , the nonzero wavelet coefficients in
the cone of influence of that discontinuity lie on a sub-space
of dimension .

Definition 2: We call footprints the el-
ements of an orthogonal vector basis that spans the subspace of
dimension generated by a polynomial discontinuity at

. Footprints are obtained by gathering together all the nonzero
wavelet coefficients generated by the discontinuity in

and then imposing the following two conditions:

With this set of footprints, we can characterize any polyno-
mial discontinuity at position. In particular, (10) can be written
as

where , .8 With a similar anal-
ysis, we can create a different set of footprints to char-
acterize a polynomial discontinuity at a different location. To
characterize any polynomial discontinuity (including the dis-
continuity in zero), we need a dictionary

of footprints. With
this dictionary of footprints and with the scaling functions, we
can represent any piecewise polynomial signal. In particular, a
signal with discontinuities at locations is
given by

(15)

where is the discontinuity due to the periodic exten-
sion. Note again how this representation is sparser than the cor-
responding representation in a wavelet basis.

As for the case of piecewise constant signals, footprints are
orthogonal to the scaling functions, but footprints related to
close discontinuities are biorthogonal. In particular, we have that

for . Moreover, footprints
are periodically shift-invariant of period 2, and hence

(16)

It is also of interest to note that due to the periodic extension, the
coefficients in (15) are not independent. For instance, for

, it follows that , where the weights

8In the case of biorthogonal wavelets, it would be� = hx; f̂ i with
f̂ = d  ̂ [n], where ̂ is the dual of .

depend on the normalization in Definition 2 (without nor-
malization, it would be ). In general, we have that

(17)

where the weights depend on the orthogonalization process
in Definition 2.9 For this reason, to extend Proposition 2 to the
piecewise polynomial case, we need to consider the constraint
in (17). Thus, we have the following proposition.

Proposition 4: For , any linear combination of
and of the footprints , which verifies (17),

gives a piecewise polynomial signal.
Proof: We want to show that given a piecewise polyno-

mial signal represented as in (15), for any set of coef-
ficients satisfying and (17), the signal

is still piecewise
polynomial with discontinuity locations . This
can be proved using arguments similar to that of Proposition
2. The scaling function is constant. Moreover, any pair
of footprints , with satisfying (17), rep-
resent a piecewise polynomial signal with one discontinuity at

. Therefore, any linear combination of
these pairs of footprints and of gives a piecewise poly-
nomial signal with discontinuities at .

Strictly speaking, Proposition 4 shows conditions under
which any linear combination of footprints leads to piecewise
polynomial signals, but it does not prove that footprints are an
unconditional expansion for the class of piecewise polynomial
signals. However, in the rest of the paper, for simplicity, we
will say that dictionaries of footprints satisfying the hypotheses
of Proposition 4 are unconditional for the class of piecewise
polynomial signals.

C. Footprints Built From a Wavelet Frame

We have constructed a dictionary of footprints that
can efficiently represent piecewise polynomial signals. How-
ever, this representation, like the wavelet transform, is not shift-
invariant. In some settings, it is useful to have a shift-invariant
dictionary. Such a dictionary can be constructed by simply re-
placing the wavelet basis with the wavelet frame. In particular,
let be a piecewise constant signal with only one disconti-
nuity at . We have

where we have again used the fact that the nonzero coefficients
are only in the cones of influence of and 0. In this case,
the cone of influence of contains coefficients,
where is the length of the equivalent filter at level. More-
over, is given by , where is the dual

9The easiest way to verify this property is by noticing that if we take the
(D + 1)th-order derivative of a periodic discrete-time piecewise polynomial
signal, the sum of the resulting nonzero coefficients is always zero.
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TABLE I
FOOTPRINTDICTIONARIES

frame of . Now, the shift-invariant footprint related to
location is given by , where

. The other footprints can be designed

in the same way, and it follows that . That
is, all footprints are shifted versions of one footprint. Ifis
chosen such that , can be expressed as

where , and . In
the same way, we can design the footprint dictionary related to
higher order polynomials. In this case, one has to consider the
signals and their transforms with a wavelet frame. The foot-
prints at location are obtained following the same proce-
dure as illustrated in Definition 2. Finally, given the dictionary

, we have
that As in the previous
case, any piecewise polynomial signal can be expressed in terms
of this dictionary, and we have

(18)

IV. REPRESENTATIONALGORITHMS

In the previous sections, we have constructed different dictio-
naries of footprints according to the kind of wavelets involved
(i.e., wavelet bases or wavelet frames) and to the class of sig-
nals considered (i.e., piecewise constant or piecewise polyno-
mial signals). The main characteristics of these dictionaries are
summarized in Table I. Before focusing on the representation
algorithms, we want to mention that the space required to store
these footprints dictionaries is not high since it grows only lin-
early with the size of the signal. In particular, in the case of
shift-variant footprints, the required storage space is of the order
of coefficients, where are the
wavelet coefficients contained in each footprint, and
are the number of footprints one has to store since the others are
shifted version of those [see (16)]. Therefore, when
(worst case), we have that the required memory space grows
like . Similar results apply to the case of shift invariant
footprints.

Now, we need to develop a fast and robust algorithm that can
find the right representation of piecewise polynomial signals in
terms of footprints. The algorithms that we present are valid for
any of the families of footprints in Table I. However, for sim-
plicity, we study only the case of footprints built from a wavelet
basis, the extension to the wavelet frame being straightforward.

Consider a piecewise polynomial signalwith polynomials
of degree and with discontinuities at . We
have seen that this signal can be written as in (15). Thus, our
target is to develop an algorithm that can find this representation
of . In our analysis, we do not consider the scaling functions
since coefficients in (15) are always given by .

We present two different approaches. The first one is a varia-
tion of the traditional matching pursuit algorithm. We show that
in particular situations, this method can arrive at the correct rep-
resentation of in a finite number of iterations. The second
approach is in spirit similar to matching pursuit, but it uses the
property that the orthogonality condition between footprints de-
pends on the number of decomposition levels. We show that
with a slight increase in complexity, this second algorithm al-
ways attains the correct signal representation with itera-
tions, where is the number of discontinuities in the signal.

A. Matching Pursuit With Footprints

Matching pursuit [21] is a greedy iterative algorithm that de-
rives sparse approximated representations of a signalin terms
of a given dictionary of unit norm vectors.

Assume that is the footprint dictionary and that is a
piecewise polynomial signal. Matching pursuit can be used to
approximate with . We know that the wavelet coefficients
generated by a single polynomial discontinuity atlie on a sub-
space of size and that this subspace is spanned by the
footprints , (Proposition 3). Hence, instead
of using the usual matching pursuit that projects the signal on
single vectors, we employ a subspace pursuit, where the signal
is projected on different subspaces.

In the first iteration, for each possible discontinuity location
, the algorithm computes the inner prod-

ucts , and chooses the location such
that is maximum. Then, can be written as

its projection onto , and a residual :

. Since footprints related to the
same discontinuity location are orthogonal (Definition 2), we
can write . Therefore, by
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choosing such that is maximum, we min-
imize the norm of the error . The algorithm is then iterated
on the residual.

Note that for (piecewise constant signals), the
subspace pursuit reduces to the traditional matching pursuit.
The subspace pursuit with the footprint dictionary has the
same drawback as a typical matching pursuit algorithm, that
is, it is not guaranteed to converge in a finite number of steps.
However, there exist situations in which it obtains the exact
representation of in a finite number of iterations. In fact, one
can easily verify the following theorem [15].

Theorem 2: Given a piecewise polynomial signal with
discontinuities at . If the distance between the
two closest discontinuities is larger than , subspace
pursuit with footprints obtains the exact footprint representation
of in iterations.

B. Adaptive Depth Footprint Pursuit

The basic intuition behind Theorem 2 is that the number of
decomposition levels should be chosen according to the dis-
tance between discontinuities. Ifis chosen properly, one can
get the correct representation ofin a few iterations with a very
simple method like matching pursuit. The problem is that we do
not knowa priori the discontinuity locations. Therefore, we pro-
pose a new algorithm, where we first find the discontinuity loca-
tions and then estimate the footprint coefficients related to those
discontinuities. For simplicity, we concentrate on the case of
piecewise constant signals and Haar wavelets. Assume, for in-
stance, that has discontinuities at positions :

(19)

and that the footprint dictionary is chosen with :
.10 The dis-

continuity locations are found in the following
way.

Algorithm IV.1: (Location Estimation)
1) Compute the dual basis of and Call

the elements of this
dual basis. 11

2) Compute the inner products ,
. The discontinuity loca-

tions correspond to the indexes of the
basis’ elements which have nonzero inner
products with .

Now that are known, we need to evaluate the
coefficients . The footprint coefficients are evaluated with an
iterative method that is, in spirit, similar to matching pursuit. At
each iteration, we choosesuch that the footprints related to the

10It is worth pointing out that in this case,D is a biorthogonal basis, and
therefore, the exact representation ofx can be found using the dual basis ofD.
However, this solution is not robust to noise and does not generalize to piecewise
polynomial signals. Therefore, it will not be considered here.

11It is of interest to note that this dual basis
turns out to be a first-order derivative.

TABLE II
DENOISING OFPIECEWISE LINEAR SIGNALS WITH NO MORE THAN

THREE DISCONTINUITIES

two closest discontinuities are orthogonal, we estimate the foot-
prints coefficients of these two discontinuities, and iterate the
process on the residual. At each iteration, we do not project the
signal directly on the two closest footprints; instead, we com-
pute the two dual footprints and project the signals on these two
dual elements. The complete algorithm operates as follows.

Algorithm IV.2: (coefficient Estimaton)
1) Call the set of esti-
mated discontinuity locations.
2) Assume that and are the two
closest discontinuities in . Choose

.
3) Call the sub-footprint obtained by
considering only the first elements of

. That is . Define,

in the same way, the sub-footprint .

4) The sub-footprint is orthog-

onal to , and veri-

fies . Likewise, the

sub-footprint is orthogonal to ,

and . Thus, the
contributions and are given by

(20)

5) Remove from and subtract the
two estimated contributions from the orig-
inal signal: .
6) If is not empty, iterate the process
on the residual; otherwise, stop.

Notice that since, at each iteration, we estimate two footprint
coefficients, the algorithm ends after iterations. There-
fore, we are guaranteed that the algorithm converges after a fi-
nite number of steps. The interesting point of this algorithm is
that, at each iteration, it is very easy to find the pair of dual foot-
prints related to the footprints under consideration. There are
two other advantages of this algorithm compared with matching
pursuit. First, at each iteration, we choose the largest possible
such that the footprints related to the two closest discontinuities
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Fig. 2. SNR results for denoising. (a) Original signal. (b) Noisy signal (22.5 dB). (c) Hard thresholding (25.3 dB). (d) Hard thresholding with footprints (28.5
dB). (e) Cycle spinning with wavelet transform (29.8 dB). (f) Cycle spinning with footprints (30.8 dB).

are orthogonal. Since multiscale operators like footprints are ro-
bust to noise, by choosing as large as possible, we increase
this robustness. Second, the signal is reconstructed in terms of
the footprint dictionary with , and this dictionary is
unconditional for the class of piecewise constant signals (Propo-
sition 2). Thus, we are sure that the reconstructed signal is still
piecewise constant. This is a useful property when the signal to
estimate has been corrupted by noise.

The algorithm generalizes to the piecewise polynomial case.
The discontinuities are estimated with a -order derivative,
whereas the coefficients are evaluated with a procedure
similar to the one presented above. That is, at each iteration,
we choose such that the footprints related to the two closest
discontinuities are orthogonal, we estimate the footprint coef-
ficients of these two discontinuities, and we iterate the process
on the residual. Finally, the coefficient is computed using
(17). As for the previous case, since , Proposition
4 guarantees that the reconstructed signal is always piecewise
polynomial.

V. APPLICATIONS

In this section, we focus on three main applications for which
wavelets are successful, namely denoising, deconvolution, and
compression. We present alternative algorithms based on the

footprint expansion and show that these methods can further
improve wavelet-based algorithms. The main characteristic of
the footprint methods is that they can deal more efficiently with
discontinuities.

A. Denoising

The term denoising usually refers to the removal of noise
from a corrupted signal. In the typical problem formulation,
the original signal has been corrupted by additive noise. One
observes , where are independent and
identically distributed (i.i.d.) zero mean Gaussian variables with
variance , and the original signal is deterministic and inde-
pendent of the noise. The goal of the denoising algorithm is to
obtain an estimate of the original signal which minimizes a
risk function, usually the mean square error .
The wavelet-based denoising algorithm introduced by Donoho
and Johnstone [11] simply shrinks the wavelet coefficients. That
is, it sets all wavelet coefficients smaller than a threshold to
zero and keeps the coefficients above the threshold (hard thresh-
olding) or shrinks them by a fixed amount (soft thresholding).
The threshold is usually set to , where is the
size of the signal [11]. A limit of this approach is that it does not
exploit the dependency across scales of the wavelet coefficients.
Thus, to overcome this limit, we apply a threshold in the foot-
print domain rather than in the wavelet domain. Doing so, we
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(a) (b)

(c) (d)

(e)

Fig. 3. Deconvolution of a piecewise linear signal. (a) Test signal (N = 256). (b) Signal convolved with a box filter. (c) Observed signal.(SNR= 6:5 dB) (d)
Deconvolution with WaRD (SNR= 8:8 dB). (e) Deconvolution with footprints (SNR= 13:4 dB).

better exploit the dependency of the wavelet coefficients across
scales. As a matter of fact, denoising in the footprint domain is

equivalent to applying a vector threshold in the wavelet domain
rather than a scalar threshold as in the usual methods.
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Assume that is piecewise polynomial. We can express
piecewise polynomial signals in terms of footprints; thus, our
denoising system attempts to estimate this footprint representa-
tion from the observed noisy version . The estimation pro-
cedure follows the same steps as Algorithms IV.1 and IV.2. That
is, one first estimates the discontinuity locations and then eval-
uates the footprint coefficients. Since we only observe a noisy
version of the signal, we need to slightly modify these two steps
to make them more robust to noise. Again, for simplicity, we
focus on piecewise constant signals. The discontinuity locations
are estimated in the following way

Algorithm V.1: (location Estimation, Noisy
Case)
1) Choose a dictionary

of
footprints with . This dictionary
represents a biorthogonal basis.
2) Compute the dual basis of and call

the elements of this
dual basis.
3) Compute the inner products

.
4) Consider as discontinuity locations the
ones related to the inner products larger
than the threshold . That is,

if , then assume that there is
a discontinuity at location . is the
universal threshold equal to [11].

We have a set of estimated discontinuity locations:
. The problem is that due to the noise, this

estimation can have errors. Thus, this possibility must be
considered in the next step, where the footprints coefficients
are evaluated.

Algorithm V.2: (coefficient Estimation,
Noisy Case)
1) Call the set of estimated disconti-
nuity locations.
2) Choose , where
are the two closest discontinuity loca-
tions in .
3) For each possible location ,
compute the inner product ,

where is the sub-footprint obtained
by considering only the first wavelet
coefficients of .
4) Choose the location such that

is maximum.
5) If

(21)

then compute the residual

6) Iterate step 4–5 on the residual until
condition (21) is no longer verified.
7) Once (21) is no longer verified, remove
the two discontinuity locations ,
from .
8) If is empty, stop. Otherwise, go to
step 2.

Finally, the estimated signal is

(22)
where is the total number of iterations, is the residual
after iterations, and .

First, notice that since the footprints in (22) are obtained
taking a wavelet transform with decomposition
levels, we are sure that the estimated signalis piecewise con-
stant like (Proposition 2). This is an important property be-
cause traditional denoising algorithms suffer from the presence
of artifacts around discontinuities (pseudo-Gibbs effects). The
advantage of denoising in the footprints basis is that these arti-
facts are automatically eliminated.

Notice that at each iteration, given the two closest disconti-
nuity locations , we run a complete matching pursuit
algorithm on the interval [ ] (steps 3–6 of the algo-
rithm). In this way, if there is a discontinuity that has not been
detected in the discontinuity estimation step, it can be found in
this step. This is the main difference between the noiseless and
noisy version of the algorithm.

The proposed denoising algorithm generalizes to piecewise
polynomial signals. In this case, given the interval [ ],
instead of running matching pursuit on this interval, we run the
subspace pursuit presented in Section IV-A. That is, for each

, we project the set of corresponding noisy
wavelet coefficients on the right subspace, we choose the largest
projection, and if this projection is larger than the threshold, we
keep it. All the other previous considerations apply also to the
piecewise polynomial case.

Denoising in the wavelet domain suffers from the lack of shift
invariance of the wavelet basis. One way to overcome this lim-
itation is to use a denoising method called cycle-spinning [5].
For a range of shifts, cycle spinning shifts the noisy signal, de-
noises each shifted version and finally, unshifts and averages
the denoised signals. Since footprints suffer from the same lack
of shift invariance as wavelets, one can use the idea of cycle
spinning to reduce this shift dependency. The only difference
between cycle spinning with wavelets and cycle spinning with
footprints is that in this second case, each shifted version of
the signal is denoised with footprints (Algorithms V.1 and V.2)
rather than wavelets. The only limit of this approach is that we
can no longer guarantee that the denoised signal is piecewise
polynomial. That is, Propositions 2 and 4 do not apply to this
case. In Section VI, we consider both methods (denoising with



DRAGOTTI AND VETTERLI: WAVELET FOOTPRINTS 1317

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Deconvolution of a piecewise smooth signal. (a) Test signal (N = 256). (b) Observed signal (SNR= 16:7 dB). (c) Piecewise polynomial estimation
(SNR= 21:1 dB). (d) Residual:~r = y � h p̂. (e) Deconvolution of the residual with a Wiener filter. (f) Complete deconvolved signal (SNR= 21:8 dB).
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footprints and cycle spinning with footprints) and compare them
with the equivalent wavelet-based algorithms.

B. Deconvolution

In its simplest form, the deconvolution problem can be stated
as follows. The original unknown signal is blurred by a con-
volution operator and corrupted by additive white Gaussian
noise. One searches for a good estimate of from the ob-
served signal

(23)

Either is known, or it has to be estimated (blind deconvo-
lution). In most cases, behaves as a lowpass filter and does
not have a bounded inverse, and for this reason, such a decon-
volution problem is usually called ill-posed.

There is a large number of methods that provide possible solu-
tions to the deconvolution problem [1], [2], [7], [14], [18], [19],
[24], [29]. Among them, wavelet-based methods have become
popular recently [1], [2], [14], [18], [24]. This is mostly because
these methods deal well with discontinuities and are computa-
tionally simple. In our approach, we use the footprint expansion
to further improve wavelet-based techniques. We assume that

is known.12

Consider the case where is piecewise polynomial. We
know that it can be written as a linear combination of footprints
[see (15)]. Thus, by replacing with its footprints represen-
tation, (23) becomes

where, in the last equality, we assumed

.13 That is, is given by a linear combi-

nation of blurred footprints plus the additive white
noise . In our deconvolution algorithm, we first attempt to
remove the white noise and then the blurring effect. The noise
is removed using the denoising Algorithms V.1 and V.2, but we
use the blurred dictionary to perform denoising rather than

. The deblurring process then simply consists in replacing
the ’s with the corresponding nonblurred footprints. The
complete algorithm can be summarized as follows.

Algorithm V.3: (Deconvolution of Piecewise
Polynomial Signals)
1) Consider the Dictionary of Blurred
Footprints

. Remove the noise in using
Algorithms V.1 and V.2 and assuming as
the reference footprints dictionary.

12It is worth pointing out that in some cases, footprints can be used for blind
deconvolution as well [15].

13In practice, the convolution filter has little effect on the low-frequency
scaling coefficients. Therefore, in our formulation, we do not consider this
effect and use the original scaling functions.

2) Call the denoised signal

.

The deconvolved signal is given by

,

where we have simply replaced with

.

If is piecewise smooth, we use atwo-stepdeconvolution
algorithm. The procedure of this algorithm is based on the result
of Theorem 1, which says that can be written as the sum of
a piecewise polynomial signal and a regular function .
That is, . Therefore, the observed signal
can be written as . The aim
of the algorithm is to estimate the two contributions and

in two different phases. The complete algorithm operates
in the following way (we assume that is known).

Algorithm V.4: (Two-Step Deconvolution)
1) Estimate the piecewise polynomial be-
havior underlying with the deconvo-
lution Algorithm V.3. Call the estimated
signal .
2) Compute the residual .
3) Deconvolve the residual with a Wiener
filter :
4) The estimated signal is .

C. Compression

Wavelets are widely used in compression. The reason is that
wavelets have very good approximation properties for repre-
senting certain classes of signals like piecewise smooth sig-
nals. While good approximation properties are necessary for
good compression, it might not be enough. In compression, one
has to consider the costs corresponding to indexing, and com-
pressing the retained elements in the approximation and inde-
pendent coding of these coefficients might be inefficient [31].

Consider a piecewise smooth signal defined as in (2), that is,
a function with pieces that are-Lipschitz regular and with a
finite number of discontinuities. It was shown in [4] that stan-
dard wavelet-based schemes such as zerotrees [28] can achieve
the following distortion-rate performance:

(24)

where and are the bits used to quantize
the wavelet coefficients generated by the discontinuities,
whereas are the bits used to code the wavelet coefficients
corresponding to the smooth parts of the signal. Now, suppose
that the signal is piecewise polynomial. Then, the wavelet
coefficients related to the smooth parts of the signal are exactly
zero; therefore, there is no need to use any bits to code them.
The distortion of a wavelet-based scheme becomes

(25)

However, a direct approach to compression of piecewise poly-
nomial signals, based on an oracle telling us where discontinu-
ities are, will lead to [25], and such behavior
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is achievable using dynamic programming [25]. This large gap
between ideal performance given by the scheme based on dy-
namic programming and wavelet performance is mainly due to
the independent coding of the wavelet coefficients across scales.
Statistical modeling [9] of such dependencies can improve the
constants in (25), but going from to in the exponent re-
quires taking the deterministic behavior of wavelet coefficients
across scales at singularities into account. This is well done
using footprints, which thus close the gap with the ideal per-
formance.

Theorem 3: Consider piecewise polynomial signals with
polynomials of maximum degree and no more than
discontinuities. A coder, which represents these signals in the
footprints basis and which scalar quantizes the discontinuity
locations and the footprint coefficients, achieves

(26)

Proof: See Appendix C.
Thus, this theorem shows that in case of piecewise polyno-

mial signals, footprints significantly improve performance of
wavelet coders. Footprints can be used for piecewise smooth
signals as well. Theorem 1 shows that a piecewise smooth signal
can be separated into two contributions: a piecewise polynomial
part (call it ) and a residual , which is regular ( -Lips-
chitz over ). Now, can be compressed with footprints, and
this coder achieves (26). The residual can be compressed
with any other coder that achieves [4]

(27)

It is worth noticing that because of the regularity of , the
performance in (27) can be achieved with a simple coder based
on linear approximation of in a wavelet or Fourier basis [4].
Combining (26) and (27) shows that a two-stage compression
algorithm based on footprints and on linear approximation of
the residual achieves

(28)

Comparing (24) and (28), we can see that this coder does
not change the asymptotics of the distortion-rate function of
wavelet coders ( ). However, by coding the disconti-
nuities efficiently, this coder reaches the asymptotic behavior
more rapidly. Finally, notice that for this last performance, the
underlying assumption is that the encoder knows in advance
the signal to code, and this way, it can separate the polynomial
and the smooth parts of the signal. In the experimental results,
we will show that a realistic encoder can obtain similar perfor-
mance without knowing the signal characteristics in advance.

VI. NUMERICAL EXPERIMENTS

In this section, we compare footprints with wavelet-based
methods on several examples. Our purpose is to show that foot-
prints are a versatile tool and that we can get good results in a
variety of applications.

Fig. 5. Theoretical and experimental D/R curves. Dashed-dotted: theoretical
wavelet performance. Dashed: empirical footprint performance. Line: ideal
performance.

A. Denoising

For denoising, we consider only piecewise polynomial sig-
nals. In Table II, we compare the performance of our denoising
systems with a classical hard thresholding algorithm [11] and
cycle-spinning [5]. In this experiment, we consider piecewise
linear signals with no more than three discontinuities. The per-
formance is analyzed in function of the sizeof the signal. The
table clearly shows that denoising with footprints outperforms
the hard thresholding system, whereas cycle-spinning with foot-
prints outperforms traditional cycle-spinning. In Fig. 2, we show
an example of the denoising algorithm on piecewise quadratic
signals. We can see that signals denoised with footprints present
better visual quality since they do not suffer from pseudo-Gibbs
effects.

B. Deconvolution

In this case, we consider two different signals. One is a
piecewise linear signal, and the other one is a line of the
image “Cameraman,” which represents a possible example
of piecewise smooth signals. We first consider the case of a
piecewise linear signal and compare the performance of our
system with WaRD [24]. In this simulation, the original signal
is first convolved with a box filter, and then, white noise is
added. The noise variance is set to . Fig. 3 shows
that our system outperforms WaRD in both visual quality and
SNR. It is of interest to note that the signal reconstructed with
footprints does not present artifacts around discontinuities and
that it manages to efficiently sharpen the discontinuities. Of
course, one of the reasons why footprints perform so well is
because the considered signal perfectly fits the model since it
is piecewise polynomial.

In Fig. 4, we consider the case where the signal is piecewise
smooth. Again, the original signal is convolved with a box
filter, and then, white noise is added. In this case, we use the
two-step deconvolutionalgorithm. The estimated piecewise
polynomial behavior underlying the signal is shown in
Fig. 4(c). The estimated residual and the deconvolved
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Fig. 6. Compression of a piecewise smooth function.

residual are shown in Fig. 4(d) and (e), respectively.
Finally, the reconstructed signal is shown in Fig. 4(f).

C. Compression

In Theorem 3, we have shown that in case of piecewise poly-
nomial signals, a footprint-based coder can achieve the ideal
rate-distortion performance. That is, it has the correct rate of
decay of the R-D function. Now, we are interested in a numer-
ical confirmation of this theorem. We consider piecewise con-
stant signals with no more than five discontinuities. The signal
has size , and the discontinuity locations are uniformly
distributed over the interval [ ]. The footprint coder op-
erates as in Theorem 3, that is, it scalar quantizes the footprint
coefficients and the discontinuity locations. Bits are allocated
with a reverse waterfilling strategy. In Fig. 5, we compare the
rate-distortion performance of this footprint coder against the
ideal bound and the ideal performance of a wavelet-based coder.
We can see that the behavior of the footprint coder is consistent
with the theory since it has the same rate of decay as the ideal
distortion function.

Finally, we consider a piecewise smooth signal. The compres-
sion operates in the following way. With a denoising-like algo-
rithm, we estimate the piecewise polynomial behavior under-
lying the signal and compress it with footprints. The residual is
assumed regular, and it is compressed in a wavelet basis. That is,
the first coefficients of the wavelet decomposition are quan-
tized, whereas the others are set to zero (linear approximation).

The allocation of the bits between the piecewise polynomial
signal and the residual and the numberof wavelet coefficients
that are quantized is chosen off-line, using somea priori knowl-
edge of the signal. In Fig. 6, we show an example of the perfor-
mance of the proposed compression scheme and compare it with
a 1-D version of SPIHT [27]. The signal to compress is given by
the union of smooth pieces. In this example, our system outper-
forms SPIHT by more than 4 dB. Since SPIHT is more suited to
compress 2-D signals, this comparison is only indicative. How-
ever, it shows that a compression system based on footprints
can outperform traditional wavelet methods also in the case of
piecewise smooth signals.

VII. CONCLUSIONS

In this paper, we have presented a new way of modeling the
dependency across scales of wavelet coefficients with elements
we called footprints. Footprints form an overcomplete dictio-
nary and are efficient at representing the singular structures of
a signal. With footprints, it is possible to get a sparser repre-
sentation of piecewise smooth signals than with wavelet bases,
and this is useful in several signal processing tasks. Numerical
simulations confirm that footprints outperform wavelet methods
in several applications. In short, wavelets have been very suc-
cessful on signals with discontinuities, be it for denoising, de-
convolution, or compression. Wavelet footprints pursue this pro-
gram further by explicitly using the structure of discontinuities
across scales. The results, both theoretical and experimental,
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confirm the potential of this approach. Together with the sim-
plicity of the algorithms involved, this indicates the power of
this new data structure.

APPENDIX A

A. Proof of Theorem 1

Consider first, a piecewise smooth signal with
only two pieces. That is and

are uniformly Lipschitz over and ,
respectively. Recall that if a function is uniformly Lipschitz

in the neighborhood of , then it is necessarily times
continuously differentiable in that neighborhood.14 Moreover,
the polynomial in (1) is the Taylor expansion of at .
Now, since , are uniformly Lipschitz over
and , they are necessarily times continuously
differentiable on these intervals. Call

, the piecewise polynomial signal whose
two pieces and are given by

and

. That is, and
are the Taylor expansions of about taken from the

left and from the right of . Now, the signal
is times continuously differentiable in , and in ,
it verifies

Therefore, is times continuously differentiable on the
entire interval [ ]. Therefore, it is uniformly Lipschitz
on that interval. The remaining step is to prove that . This
is clearly true for all points away from , and we only need
to prove that is -Lipschitz in . Using the definition of
Lipschitz regularity, we have that ,
for and , for . Now,
since , we can write ,
for and for . Thus, if we call

, then in the neighborhood of , we have
, which proves that is Lipschitz in

. This completes the proof.
The generalization of this result to the case of a

piecewise smooth signal with discontinu-
ities at locations is straightforward. Call

; the
piecewise polynomial signal with two polynomials and

14The converse is also true. That is, a function that isd times continuously
differentiable in the neighborhood of� is Lipschitz� > d at�.

and only one discontinuity at location. and
are the Taylor expansions of about taken from the

left and from the right of . Then, the piecewise polynomial
signal is such that is
times continuously differentiable in . Therefore,

is times continuously differentiable on [ ] and
uniformly Lipschitz on that interval. Finally, as in the
previous example, one can show that .

APPENDIX B

A. Proof of Proposition 1

We are considering signals in and the union of footprints
and scaling functions gives elements. We need to show that
this set of elements is complete. This is equivalent to showing
that there exists no with such that it has a zero
expansion, that is, such that

(29)

We prove this for the case , noting that with the
same method, one can prove it for any. Consider the repre-
sentation of in terms of the wavelet basis:

. Equation (29) already implies that
the scaling coefficient is zero. We will show that
if (29) is true, then also all the wavelet coefficients ofare zero,
and therefore, it must be . Recall that since ,
there is only one wavelet coefficient at level, two wavelet co-
efficients at level , and so on. First, consider the footprint

with and the corre-

sponding inner product . One can easily verify that the
only nonzero coefficient of is the one at scale.
That is, , where in the last
equality, we have used the fact that . Thus, we have that

, and this inner product is equal to zero only
if . Consider now the footprint with . In
this case, , that is,
has only two nonzero coefficients at scales and .
Therefore, we have that .
Since we have seen that , this second inner product is
zero only if . In the same way, but with the footprint
related to position , we can prove that .
Therefore, the wavelet coefficients at scalesand are zero.
The same analysis can be repeated at each scale, and in conclu-
sion, we have that (29) implies that all the wavelet coefficients
of are zero. Therefore, must be the zero vector.

APPENDIX C

A. Proof of Theorem 3

Consider a piecewise polynomial signal
of maximum degree and with no more than discontinu-
ities. Assume that the signal is bounded in magnitude between
[ ]. We want to prove that a compression scheme based on
footprints can achieve
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Consider the representation ofin terms of footprints for the
case :

(30)

The compression algorithm consists in uniform scalar quan-
tizing the discontinuity locations and the footprints coeffi-
cients . Since is bounded, the square error relative to
the quantization of a single discontinuity location can be upper
bounded by , where is the ap-
proximated signal. If bits are used to quantize each dis-
continuity then and the distortion
related to a single discontinuity is
Consider, now, the quantization of the coefficients of the foot-
prints expansion.15 Since , the square error due to
the quantization of a single coefficient is

Now, is bounded, and therefore, each coef-
ficient is bounded as well: . Thus,
if bits are allocated to quantize , then the distortion
due to this quantization can be upperbounded by

, where . The global distortion
bound is obtained by adding all the distortion contributions:

, where
. Finally, by allocating bits over

the different distortions with a reverse waterfilling scheme [8],
the global distortion becomes

ACKNOWLEDGMENT

The authors would like to thank M. Do, P. Prandoni, and
C. D’Elia for stimulating discussions and the three anonymous
reviewers for their comments.

REFERENCES

[1] M. R. Banham and A. K. Katsaggelos, “Spatially adaptive wavelet-based
multiscale image restoration,”IEEE Trans. Image Processing, vol. 5, pp.
619–634, Apr. 1996.

[2] K. Berkner, M. J. Gormish, and E. L. Schwartz, “Multiscale sharpening
and smoothing in Besov spaces with applications to image enhance-
ment,”Appl. Comput. Harmon. Anal., vol. 11, pp. 2–31, July 2001.

[3] S. Chen and L. Donoho, “Atomic decomposition by basis pursuit,” in
Proc. SPIE Int. Conf. Wavelets, San Diego, CA, July 1995.

[4] A. Cohen, I. Daubechies, O. Guleryuz, and M.T. Orchard, “On the
importance of combining wavelet-based nonlinear approximation with
coding strategies,”IEEE Trans. Inform. Theory, vol. 48, pp. 1895–1921,
July 2002.

[5] R. R. Coifman and L. Donoho, “Translation Invariant Denoising,” Dept.
Statist., Stanford Univ., Tech. Rep. 475, 1995.

[6] R. Coifman and M. Wickerhauser, “Entropy-based algorithms for best
basis selection,”IEEE Trans. Inform. Theory, vol. 38, pp. 713–718, Mar.
1992.

[7] P. L. Combettes, “Generalized convex set theoretic image recovery,”
in Proc. IEEE Int. Conf. Image Process., Lausanne, Switzerland, Sept.
1996.

[8] T. Cover and J. A. Thomas,Elements of Information Theory. New
York: Wiley, 1991.

[9] M. Crouse, R. D. Nowak, and R. G. Baraniuk, “Wavelet-based signal
processing using hidden Markov models,”IEEE Trans. Signal Pro-
cessing, vol. 46, pp. 886–902, Apr. 1998.

15The scaling coefficientc is included in this formulation.

[10] G. Davis, “Adaptive nonlinear approximations,” Ph.D. dissertation, New
York Univ., New York, NY, 1994.

[11] D. L. Donoho and I. M. Johnstone, “Ideal spatial adaptation via wavelet
shrinkage,”Biometrika, vol. 81, pp. 425–455, Dec. 1994.

[12] D. L. Donoho and P. B. Stark, “Uncertainty principles and signal re-
covery,”SIAM J. Appl. Math., vol. 49/3, pp. 906–931, June 1989.

[13] D. L. Donoho, M. Vetterli, R. A. DeVore, and I. Daubechies, “Data com-
pression and harmonic analysis,”IEEE Trans. Informat. Theory, vol. 44,
pp. 2435–2476, Oct. 1998.

[14] D. L. Donoho, “Nonlinear solution of linear inverse problems by
wavelet-vaguelette decomposition,”Applied Computat. Harmon. Anal.,
vol. 2, pp. 101–126, Apr. 1995.

[15] P. L. Dragotti, “Wavelet Footprints and Frames for Signal Processing
and Communications,” Ph.D. dissertation, Swiss Federal Inst. Technol.,
Lausanne, Switzerland, 2002.

[16] M. Elad and A. M. Bruckstein, “On sparse signal representations,” in
IEEE Int. Conf. Image Processing, Thessaloniki, Greece, Oct. 2001.

[17] M. M. Goodwin and M. Vetterli, “Matching pursuit and atomic signal
models based on recursive filter banks,”IEEE Trans. Signal Processing,
vol. 47, pp. 1890–1902, July 1999.

[18] J. Kalifa, S. Mallat, and B. Rouge, “Image deconvolution in mirror
wavelet bases,” in IEEE Int. Conf. Image Process., Chicago, IL, Oct.
1998.

[19] A. K. Katsaggelos, “Iterative image restoration algorithm,”Opt. Eng.,
vol. 28, pp. 735–748, 1989.

[20] S. Mallat and W. L. Hwang, “Singularity detection and processing with
waveletes,”IEEE Trans. Inform. Theory, vol. 38, pp. 617–643, Mar.
1992.

[21] S. Mallat and Z. Zhang, “Matching pursuit with time—frequency dic-
tionaries,”IEEE Trans. Signal Processing, vol. 41, pp. 3397–3415, Dec.
1993.

[22] S. Mallat and S. Zhong, “Characterization of signals from multiscale
edges,”IEEE Trans. Pattern Anal. Machine Intell., vol. 14, pp. 710–732,
July 1992.

[23] S. Mallat,A Wavelet Tour of Signal Processing. New York: Academic,
1998.

[24] R. Neelamani, H. Choi, and R. Baraniuk, “Wavelet-based deconvolution
for ill-conditioned systems,” inProc. IEEE Int. Conf. Acoust., Speech,
Signal Process., Phoenix, AZ, Mar. 1999.

[25] P. Prandoni and M. Vetterli, “Approximation and compression of piece-
wise smooth functions,”Phil. Trans. Royal Soc. London, Aug. 1999.

[26] K. Ramchandram and M. Vetterli, “Best wavelet packet bases in a rate-
distortion sense,”IEEE Trans. Image Processing, vol. 2, pp. 160–175,
Apr. 1993.

[27] A. Said and W. A. Pearlman, “A new, fast and efficient image codec
based on set partitioning in hierarchical trees,”IEEE Trans. Circuits
Syst. Video Technol., vol. 6, no. 3, pp. 243–249, June 1996.

[28] J. M. Shapiro, “Embedded image coding using zerotrees of wavelets
coefficients,”IEEE Trans. Signal Processing, vol. 41, pp. 3445–3462,
Dec. 1993.

[29] H. Stark,Image Recovery: Theory and Application. New York: Aca-
demic, 1995.

[30] M. Vetterli and J. Kovǎcević, Wavelets and Subband
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