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Wavelet frames for distributions;
local and pointwise regularity

by

Hans Triebel (Jena)

Abstract. This paper deals with wavelet frames for a large class of distributions on
euclidean n-space, including all compactly supported distributions. These representations
characterize the global, local, and pointwise regularity of the distribution considered.

1. INTRODUCTION

Let k be a non-negative C∞ function in Rn with compact support in

{y ∈ Rn : |y| < 1, yj > 0 for all j}
such that for some J ∈ N,

∑

m∈Zn
k(x− 2−Jm) = 1, x ∈ Rn.

Let kβ(x) = xβk(x) for x ∈ Rn, β ∈ Nn0 , and let

kβ(t, f)(x) =
�

Rn
kβ(y)f(x+ ty) dy, t > 0, x ∈ Rn,

be the corresponding local means with respect to the non-negative kernels
kβ(y) and f ∈ S′(Rn). Let ϕ0 ∈ S(Rn) with

ϕ0 = 1 if |x| ≤ 2−J and ϕ0(x) = 0 if |x| ≥ 3 · 2−J−1,

and

ϕ(x) = ϕ0(x)− ϕ0(2x), ϕj(x) = ϕ(2−jx), x ∈ Rn, j ∈ N.
Then

∑∞
j=0 ϕj(x) = 1 is a dyadic resolution of unity in Rn. Let

ω ∈ S(Rn), suppω ⊂ (−π, π)n, ω(x) = 1 if |x| ≤ 2,

ωβ(x) =
i|β|2J |β|

(2π)nβ!
xβω(x), β ∈ Nn0 ,
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and
Ωβ(x) =

∑

m∈Zn
(ωβ)∨(m)e−imx, x ∈ Rn, β ∈ Nn0 .

We introduce the father wavelets ΦβF and mother wavelets ΦβM via their
inverse Fourier transforms

(ΦβF)∨(x) = ϕ0(x)Ωβ(x) and (ΦβM)∨(x) = ϕ(x)Ωβ(x).

Obviously, ΦβF and ΦβM are elements of S(Rn); furthermore, they are entire
analytic functions with

�

Rn
ΦβM(x)xα dx = 0 for all α ∈ Nn0 .

Then, for example, any compactly supported distribution f ∈ S ′(Rn) can
be represented as

f = 2Jn
∑

β,j,m

kβ(2−j+J , f)(2−jm)Φβ(2jx−m),(1.1)

with unconditional convergence in S ′(Rn), where β ∈ Nn0 , j ∈ N0, m ∈ Zn,
and

Φβ(2jx−m) =

{
ΦβF(x−m) if j = 0,

ΦβM(2jx−m) if j ∈ N.
This wavelet representation is optimal in several respects. First, let s < 0,
1 < p ≤ ∞, and let Bs

p(Rn) = Bs
pp(Rn) be the corresponding special Besov

spaces. Then

(1.2) f ∈ Bs
p(Rn) if, and only if, {2j(s−n/p)kβ(2−j+J , f)(2−jm)}β,j,m ∈ `p

(equivalent norms). Secondly, (1.1) reflects both the global and local be-
haviour of f . Let B(y, r) be the ball centred at y ∈ Rn and of radius r > 0.
Let x0 ∈ Rn, K ∈ N, and let

∑K,x0

β,j,m be that part of the sum in (1.1) with

B(2−jm, 2−j+J) ∩B(x0, 2−K+1) 6= ∅.
Then for x ∈ B(x0, 2−K−1),

f = 2Jn
∑

β,j,m

K,x0

kβ(2−j+J , f)(2−jm)Φβ(2jx−m) mod C∞(1.3)

gives a satisfactory local description of f inB(x0, 2−K−1) modulo a C∞ func-
tion (this means that the remainder term is a C∞ function in B(x0, 2−K−1)).
In particular restricting the `p-sum in (1.2) to the respective terms in (1.3)
one may ask whether s can be improved to sK with s < sK < 0, so that
f ∈ BsK

p (B(x0, 2−K−1)). If K → ∞ and sK ↑ s∞ < 0 then one gets a
definitive information concerning the local regularity of f in B(x0, 2−K−1)
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and pointwise regularity at x0 in terms of Besov spaces (recall that the
Hölder–Zygmund spaces Cs = Bs

∞ are covered as special cases). This theory
can be extended to s ≥ 0, 1 < p ≤ ∞. For this purpose one has to replace
the non-negative kernels kβ(y) by oscillating kernels kβL(y) = (−∆)Lkβ(y)
as the simplest choice where ∆ is the Laplacian and L ∈ N0, hence

kβL(t, f)(x) =
�

Rn
kβL(y)f(x+ ty) dy, t > 0, x ∈ Rn.(1.4)

One gets representations of type (1.1) with modified (father and mother)
wavelets. We shall give an explicit calculation of all functions and constants.
The local and pointwise regularity theory can now be extended to s ∈ R.
For example one has again an explicit local description of type (1.3).

It is the main aim of this paper to present this roughly outlined theory
in detail, complemented by quarkonial decompositions of functions

f ∈ Bs
p(Rn), 1 ≤ p ≤ ∞, s > 0.(1.5)

These functions can be represented as

f =
∑

β,j,m

2jn(f, Φβ(2j · −m))kβ(2j−Jx− 2−Jm),(1.6)

with absolute convergence in Lp(Rn), where Φβ and kβ have the above mean-
ing and where the coefficients of kβ(2j−Jx− 2−Jm) satisfy the counterpart
of (1.2). First we deal in Subsection 2.2 with these quarkonial decomposi-
tions adapting the corresponding theory of [14, Sections 2 and 3], where we
considered the general spaces Bs

pq(Rn), F spq(Rn) for all admitted parameters.
Dualizing the outcome we get afterwards in Subsection 2.3 the outlined rep-
resentations (1.1), (1.3) for spaces Bs

p(Rn) with 1 < p ≤ ∞, s < 0. This part
might be considered as the continuation of our considerations in [16], where
we studied fractal characteristics of Radon measures in terms of function
spaces. In Subsection 2.4 we deal with the extension of these assertions to
functions f as in (1.5) (now p > 1). Finally we characterize in Subsection
2.5 the pointwise regularity of distributions in terms of local means. We be-
gin with Subsection 2.1 where we collect a few definitions and preliminaries.
Longer proofs are shifted to Section 3.

Wavelets, wavelet frames and, in particular, wavelet bases attracted a
lot of attention, mostly in L2(Rn). There are several extensions to Lp(Rn),
Sobolev spaces Hs

p(Rn), Hölder–Zygmund spaces Cs(Rn), and Besov spaces
Bs
pq(Rn), for 1 < p < ∞, 1 ≤ q ≤ ∞, s ∈ R. We refer to [7, Chapter 6];

[1, Chapter 9]; [18, Chapter 9]; [6, Chapter 9]. Further generalizations of
wavelet representations to the more general spaces Bs

pq(Rn) and F spq(Rn)
may be found in [2, Section 7] and [9, 2.3.3]. Usually one asks to what
extent the Fourier coefficients with respect to a wavelet basis of a given
function or distribution f characterize f as an element of one of the above
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spaces. This results in a global assertion which does not say very much about
the, possibly improved, local regularity of f or regularity at a given point
x0 ∈ Rn. The adaptation of wavelet techniques to study local regularity has
been considered in detail in [5], [8], and more recently in [3], [4]. Although
our paper must be seen as a contribution to this field, it has little in common
with the techniques in the cited books and papers. The main point of our
approach is the combination of the wavelet philosophy with the Taylor-
expansion philosophy, that is,

f(x)→ f(2jx−m) with f(x)→ xβf(x), respectively,

for j ∈ N0, m ∈ Zn, and β ∈ Nn0 . Then one gets comparatively simple explicit
wavelet frames which reflect simultaneously global and local behaviour. It
turns out that the additional summation over β ∈ Nn0 , complementing the
standard wavelet summations over j ∈ N0, m ∈ Zn, is rather harmless. For
example, the norms of the β-terms in (1.1) in some spaces Bs

p(Rn) are always
of exponential decay of type C%2−%|β| where % ≥ 0 can be prescribed at the
expense of some constants C% which are independent of β. In connection
with quarkonial decompositions of type (1.6), in Subsection 2.2 and in the
related proofs in Subsection 3.1 we give a detailed account of the influence of
the summation over β ∈ Nn0 and the role of % ≥ 0. But afterwards it is clear
what can be expected and we will not stress this point. Furthermore, as will
be described in 2.5, in order to characterize local and pointwise regularity
one needs only local means of type (1.4) with β = 0.

2. DEFINITIONS, RESULTS, COMMENTS

2.1. Basic notation and function spaces

2.1.1. Basic notation. We use standard notation. Let N be the collection
of all natural numbers and N0 = N∪{0}. Let Rn be euclidean n-space, where
n ∈ N. Put R = R1. As usual, Z is the collection of all integers. Furthermore,
Zn, where n ∈ N, denotes the lattice of all points m = (m1, . . . ,mn) ∈ Rn
with mj ∈ Z. The set Nn0 of all multi-indices consists of all points β =
(β1, . . . , βn) ∈ Rn with βj ∈ N0. We use with preference some letters for
elements of the indicated sets:

N,N0 : j, J ; Zn : l,m; Nn0 : α, β.

Let S(Rn) be the Schwartz space of all complex-valued, rapidly decreasing,
infinitely differentiable functions on Rn. By S′(Rn) we denote its topological
dual, the space of all tempered distributions on Rn. Furthermore, Lp(Rn)
with 0 < p ≤ ∞ is the standard quasi-Banach space of all complex-valued
functions with respect to the Lebesgue measure, quasi-normed by



Wavelet frames for distributions 63

‖f |Lp(Rn)‖ =
( �

Rn
|f(x)|p dx

)1/p

with the usual modification if p =∞. If ϕ ∈ S(Rn) then

ϕ̂(ξ) = (Fϕ)(ξ) = (2π)−n/2
�

Rn
e−ixξϕ(x) dx, ξ ∈ Rn,(2.1)

denotes the Fourier transform of ϕ. As usual, F−1ϕ or ϕ∨ stands for the
inverse Fourier transform, given by the right-hand side of (2.1) with i in
place of −i. Here xξ denotes the scalar product in Rn. Both F and F−1 are
extended to S′(Rn) in the standard way.

2.1.2. Function spaces. Let J ∈ N, ϕ0 ∈ S(Rn) with

ϕ0(x) = 1 if |x| ≤ 2−J and ϕ0(x) = 0 if |x| ≥ 3 · 2−J−1,(2.2)

and

ϕ(x) = ϕ0(x)− ϕ0(2x), ϕj(x) = ϕ(2−jx), x ∈ Rn, j ∈ N.(2.3)

Then
∑∞

j=0 ϕj(x) = 1 with x ∈ Rn is a dyadic resolution of unity. Recall

that (ϕj f̂)∨ is an entire analytic function on Rn for any f ∈ S′(Rn). In
particular, (ϕj f̂)∨(x) makes sense pointwise.

Definition 1. Let 0 < p ≤ ∞ and s ∈ R. Let {ϕj} be the above dyadic
resolution of unity in Rn. For f ∈ S′(Rn), let

‖f |Bs
p(Rn)‖ϕ =

( ∞∑

j=0

2jsp‖(ϕj f̂)∨ |Lp(Rn)‖p
)1/p

(2.4)

with the usual modification if p =∞. Then

Bs
p(Rn) = {f ∈ S′(Rn) : ‖f |Bs

p(Rn)‖ϕ <∞}.(2.5)

Remark 1. These are special cases of the well-known Besov spaces
Bs
pq(Rn) where now q = p. The theory of these spaces and of the spaces

F spq(Rn) has been developed in detail in [11], [12]. We remark that the
quasi-norms in (2.4) for admitted functions ϕj are equivalent to each other.
In particular, Bs

p(Rn) are quasi-Banach spaces (Banach spaces if p ≥ 1)
which are independent of {ϕj}. This justifies our omission of the subscript
ϕ of (2.4), (2.5) in what follows. In this paper we are interested in individ-
ual functions and distributions f ∈ S ′(Rn) rather than in the scales of the
function spaces Bs

pq(Rn) and F spq(Rn). But we wish to emphasize that a sub-
stantial part of the theory presented in this paper, and formulated in terms
of the spaces Bs

p(Rn), can be extended to the scales Bs
pq(Rn) and F spq(Rn).

We remark that
Cs(Rn) = Bs

∞(Rn), s ∈ R,
are the Hölder–Zygmund spaces.
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Proposition 1. There is a number J0 ∈ N0 with the following property.
Let J ∈ N0 with J ≥ J0 in (2.2), (2.3), let 1 ≤ p ≤ ∞ and let s ∈ R. Then

( ∞∑

j=0

∑

m∈Zn
2j(s−n/p)p|(ϕj f̂ )∨(2−jm)|p

)1/p
∼ ‖f |Bs

p(Rn)‖(2.6)

(with the usual modification if p =∞), where the equivalence constants are
independent of J, p, s, and f .

Remark 2. In particular, for given f ∈ S ′(Rn) the left-hand side of
(2.6) is finite if, and only if, f ∈ Bs

p(Rn). This follows from (2.4) and the
equivalence assertions in [13, (14.56), p. 102], where we referred in turn to
[11, pp. 19–22]. There one also finds a discussion of the optimal choice of J0
(again with references to the literature, especially to [10]). The fact that J0

is independent of s is obvious; that it is independent of p with 1 ≤ p ≤ ∞
is convenient for us, but not important. It simplifies some formulations.
In particular, the above proposition can be extended to 0 < p ≤ ∞ and
J ≥ J0(p). But this will not be needed in what follows.

2.2. Decompositions and wavelets

2.2.1. Some preparations, basic wavelets. In [14, Sections 2 and 3], we
developed the constructive theory of the quarkonial (or subatomic) decom-
positions of the spaces Bs

pq(Rn) and F spq(Rn) for the full range of the admit-
ted parameters. Now we restrict our attention to the spaces Bs

p(Rn) with
s > 0 and 1 ≤ p ≤ ∞. But somewhat in contrast to [14] we now need more
detailed information concerning generating functions (wavelets) and some
constants. First we fix some notation. Let

Rn++ = {y ∈ Rn : y = (y1, . . . , yn), yj > 0 for all j}(2.7)

and let k be a non-negative C∞ function in Rn with

supp k ⊂ {y ∈ Rn : |y| < 1} ∩ Rn++,(2.8)

and for some J ∈ N,
∑

m∈Zn
k(x− 2−Jm) = 1, x ∈ Rn.(2.9)

In addition we always assume J ≥ J0, where J0 is as in Proposition 1. Recall
xβ = xβ1

1 . . . xβnn where x = (x1, . . . , xn) ∈ Rn and β ∈ Nn0 . Then

kβ(x) = xβk(x) ≥ 0, x ∈ Rn, β ∈ Nn0 .(2.10)

Let
λ = {λβjm ∈ C : j ∈ N0, m ∈ Zn, β ∈ Nn0}.(2.11)
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For s ∈ R, 1 ≤ p ≤ ∞, and % ≥ 0, we put

‖λ | `p‖%,s =
( ∑

β∈Nn0

∞∑

j=0

∑

m∈Zn
2%|β|p+j(s−n/p)p|λβjm|p

)1/p
(2.12)

(with the usual modification if p =∞). We abbreviate

∑

β,j,m

=
∑

β∈Nn0

∞∑

j=0

∑

m∈Zn
.(2.13)

Let

ω ∈ S(Rn), suppω ⊂ (−π, π)n, ω(x) = 1 if |x| ≤ 2,(2.14)

and let

ωβ(x) =
i|β|2J |β|

(2π)nβ!
xβω(x) for x ∈ Rn and β ∈ Nn0 .(2.15)

Recall |β| = β1 + . . .+ βn and β! = β1! . . . βn!. Let

Ωβ(x) =
∑

m∈Zn
(ωβ)∨(m)e−imx, x ∈ Rn.(2.16)

Definition 2. Let ϕ0 and ϕ be given by (2.2), (2.3). Let β ∈ Nn0 . Then
the father wavelets ΦβF(x) and the mother wavelets ΦβM(x) are given by

(ΦβF)∨(ξ) = ϕ0(ξ)Ωβ(ξ), ξ ∈ Rn,(2.17)

(ΦβM)∨(ξ) = ϕ(ξ)Ωβ(ξ), ξ ∈ Rn.(2.18)

Remark 3. Since ωβ ∈ S(Rn) it follows that (ΦβF)∨, (ΦβM)∨, and hence
also ΦβF, ΦβM, are elements of S(Rn). Furthermore, ΦβF and ΦβM are entire
analytic functions with vanishing moments of all orders, and

�

Rn
ΦβM(ξ)ξα dξ = 0, α ∈ Nn0 .(2.19)

This follows from

suppϕ ⊂ {x ∈ Rn : 2−J−1 ≤ |x| ≤ 3 · 2−J−1}.(2.20)

We have

ΦβF(x) =
∑

m∈Zn
(ωβ)∨(m)ϕ̂0(x+m), x ∈ Rn,(2.21)

ΦβM(x) =
∑

m∈Zn
(ωβ)∨(m)ϕ̂(x+m), x ∈ Rn.(2.22)
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2.2.2. Quarkonial decompositions. Let ΦβF and ΦβM be given by Defini-
tion 2. We introduce the wavelets

Φβ(2jx−m) =

{
ΦβF(x−m) if j = 0,

ΦβM(2jx−m) if j ∈ N.
(2.23)

According to the dual pairing (S(Rn), S′(Rn)) we put, for given f ∈ S ′(Rn),

λβjm(f) = 2jn(f, Φβ(2j · −m)), j ∈ N0, m ∈ Zn, β ∈ Nn0 .(2.24)

Finally, let
B0+
p (Rn) =

⋃

s>0

Bs
p(Rn), 1 ≤ p ≤ ∞.

Theorem 1. Let 1 ≤ p ≤ ∞, s > 0, and % ≥ 0.

(i) f ∈ S′(Rn) is an element of Bs
p(Rn) if, and only if, it can be repre-

sented as

f =
∑

β,j,m

λβjm k
β(2j−Jx− 2−Jm), x ∈ Rn,(2.25)

with ‖λ | `p‖%,s <∞ and absolute convergence in Lp(Rn). Furthermore,

‖f |Bs
p(Rn)‖ ∼ inf ‖λ | `p‖%,s,(2.26)

where the infimum is taken over all admissible representations (2.25).
(ii) Let λβjm(f) be given by (2.24). Then f ∈ B0+

p (Rn) can be represented
as

f =
∑

β,j,m

λβjm(f)kβ(2j−Jx− 2−Jm),(2.27)

with absolute convergence in Lp(Rn). In addition, f ∈ Bs
p(Rn) if, and only

if, ‖λ(f) | `p‖%,s <∞.
(iii) Let f ∈ Bs

p(Rn). Then (2.27) is an optimal representation, in the
sense that

‖f |Bs
p(Rn)‖ ∼ ‖λ(f) | `p‖%,s,(2.28)

where the equivalence constants are independent of f .

Remark 4. Part (i) is a specification and modification of [14, Theorem
2.9, pp. 15–16]. We give a modified proof adapting the technique developed
in [14] to the above situation. In particular we are now interested in the
explicit representation (2.27) with (2.28). The optimal coefficients λβjm(f)
given by (2.24) depend linearly on f . Then (2.27), (2.28) is called a frame
representation. For given % ≥ 0 the equivalence constants in (2.28) depend
on %. In a more general context we discussed this point in detail in [14,
especially 2.10, 2.11, pp. 21–23]. It turns out that the left-hand side in
(2.26) can be estimated from above and from below by the right-hand side
with the help of the constants c12K% and c22−K%, respectively, where c1 > 0,
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c2 > 0, K > 0 are some constants which are independent of %. Later on in
the proofs we use simplified arguments which result in the inequality (3.12)
below for the frame coefficients λβjm(f). This will prove that for any % > 0
there is a constant c(%) such that for all β ∈ Nn0 ,

( ∞∑

j=0

∑

m∈Zn
2j(s−n/p)p |λβjm(f)|p

)1/p
≤ c(%) 2−%|β|‖f |Bs

p(Rn)‖(2.29)

(usual modification if p = ∞). Using (3.11) below one can estimate c(%)
explicitly. But this will not be done. In the following we are mainly interested
in the case % = 0.

2.3. Wavelet frames for distributions

2.3.1. Preliminaries. Let 0 < p ≤ ∞. Then

B−∞p (Rn) =
⋃

s<0

Bs
p(Rn).(2.30)

If 0 < p1 ≤ p2 ≤ ∞, then by well-known embedding theorems we have

B−∞p1
(Rn) ⊂ B−∞p2

(Rn) ⊂ B−∞∞ (Rn) = C−∞(Rn),

where the latter notation reminds of the Hölder–Zygmund scale. If f ∈
D′(Rn) has a compact support then f belongs to any space B−∞p (Rn). It is
the main aim of this subsection to construct for f ∈ C−∞(Rn) (and hence,
in particular, for any compactly supported distribution in Rn) universal
wavelet representations

f =
∑

β,j,m

λβjmΦ
β(2jx−m),(2.31)

where Φβ(2jx −m) are the wavelets as in (2.23). We have used the abbre-
viation (2.13). We begin with a discussion of representations of type (2.31).
Let 1 ≤ p ≤ ∞ and s < 0. By the properties mentioned in Remark 3 it
follows that for fixed β ∈ Nn0 ,

{2−j(s−n/p)Φβ(2jx−m) : j ∈ N0, m ∈ Zn}, β ∈ Nn0 ,(2.32)

are normalized molecules in Bs
p(Rn) according to [2, Section 5, especially

p. 48], combined with our usual normalization. In addition, the influence of
β in (2.31) is harmless and of the same type as in (2.29), where % ≥ 0 can
be prescribed and where λβjm are optimal coefficients. The arguments are
the same as there and as in the underlying proof in Step 1 of 3.1. But the
shortest way to say what is meant by (2.31) is to lift f and its representation
by

g = (id + (−∆)L)−1f =
∑

β,j,m

λβjm(id + (−∆)L)−1Φβ(2jx−m)(2.33)
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with σ = 2L + s > 0. We discuss this type of lifting in detail in 2.4. It
turns out that (2.33) is a (slightly perturbed) wavelet representation. One
can apply Theorem 1 and Remark 4 to Bσ

p (Rn). Hence (2.33) converges
absolutely in Lp(Rn), and consequently unconditionally with respect to any
rearrangement and any summation of subsums. Application of id+(−∆)L to
(2.33) shows that (2.31) converges unconditionally in S ′(Rn) for all admitted
coefficients. We will not stress this point later on.

2.3.2. Wavelet frames: the case s < 0. Let k and kβ be the non-negative
functions introduced in (2.8)–(2.10) and used in Theorem 1. Let

kβ(t, f)(x) =
�

Rn
kβ(y)f(x+ ty) dy, t > 0, x ∈ Rn,(2.34)

be the corresponding local means for f ∈ S ′(Rn) (interpreted in the distri-
butional sense). We use the abbreviation (2.12) now with % = 0 and put
‖λ | `p‖s = ‖λ | `p‖0,s. Let

‖k(f) | `p‖s =
( ∑

β∈Nn0

∞∑

j=0

∑

m∈Zn
2j(s−n/p)p|kβ(2−j+J , f)(2−jm)|p

)1/p
(2.35)

with the usual modification if p = ∞. The wavelets Φβ(2jx −m) have the
same meaning as in (2.23) and (2.32).

Theorem 2. Let 1 < p ≤ ∞, s < 0.

(i) f ∈ S′(Rn) is an element of Bs
p(Rn) if, and only if, it can be repre-

sented as

f =
∑

β,j,m

λβjmΦ
β(2jx−m)(2.36)

with ‖λ | `p‖s <∞ and unconditional convergence in S′(Rn). Furthermore,

‖f |Bs
p(Rn)‖ ∼ inf ‖λ | `p‖s,

where the infimum is taken over all admissible representations (2.36).
(ii) Any f ∈ C−∞(Rn) can be represented as

f = 2Jn
∑

β,j,m

kβ(2−j+J , f)(2−jm)Φβ(2jx−m)(2.37)

with unconditional convergence in S′(Rn). In addition, f ∈ Bs
p(Rn) if, and

only if, ‖k(f) | `p‖s <∞.
(iii) Let f ∈ Bs

p(Rn). Then (2.37) is an optimal representation, in the
sense that

‖f |Bs
p(Rn)‖ ∼ ‖k(f) | `p‖s, f ∈ Bs

p(Rn),(2.38)

where the equivalence constants are independent of f .
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Remark 5. Part (iii) is not a surprise. Let k(t, f) = kβ(t, f) if β = 0 in
(2.34). Then for some r0 > 0 and all r with 0 < r ≤ r0,

‖f |Bs
p(Rn)‖ ∼

( ∞∑

j=0

2jsp‖k(2−j, f) |Lp(Rn)‖p
)1/p

(2.39)

∼
( ∞∑

j=0

∑

m∈Zn
2j(s−n/p)p|k(2−j, f)(r2−jm)|p

)1/p
.

The first assertion follows from equivalent norms in terms of local means,
[12, 2.5.3, p. 138], and the additional observation that for s < 0, one non-
negative kernel function k(x) is sufficient. A discussion concerning this point
may be found in [14, p. 125], including references to the original papers. One
can replace k(2−j, f) in the middle term of (2.39) by its maximal function
k∗(2−j , f)a according to [12, p. 134]. As a consequence one obtains the sec-
ond equivalence in (2.39). An explicit formulation may also be found in [17,
Theorem 4, pp. 16–17]. As above the influence of β ∈ Nn0 in (2.35), (2.38),
is harmless. In analogy to (2.29) one can show that
( ∞∑

j=0

∑

m∈Zn
2j(s−n/p)p|kβ(2−j+J , f)(2−jm)|p

)1/p
≤ c(%) 2−%|β|‖f |Bs

p(Rn)‖,

where c(%) is independent of β. Hence (2.38) and (2.39) are equivalent as-
sertions. In contrast to part (iii) one needs in the representation (2.37) the
full sum over β ∈ Nn0 (at least in our approach).

2.3.3. Local regularity : the case s < 0. If f ∈ Bs
p(Rn) with 1 < p ≤ ∞

and s < 0, then this does not say very much about the local regularity of
f in a ball or at a point. As indicated in the introduction, problems of this
type attracted a lot of attention. We use the representation (2.37) for this
purpose. If f ∈ S′(Rn) and g ∈ S′(Rn) then we write

f = g mod C∞ in Ω(2.40)

if the restriction of f − g to the domain Ω is a C∞ function. Let B(y, r) be
the ball centred at y ∈ Rn and of radius r > 0. Let f be given by (2.37),
x0 ∈ Rn and K ∈ N. Then

fK,x
0

= 2Jn
∑

β,j,m

K,x0

kβ(2−j+J , f)(2−jm)Φβ(2jx−m),(2.41)

where the summation is restricted to j ∈ N0, m ∈ Zn with

B(x0, 2−K+1) ∩B(2−jm, 2−j+J) 6= ∅.(2.42)

By (2.34) only the restriction of f to B(x0, 2−K+2) contributes to the terms
with j > K+J in (2.41). This results in a faithful description of the possibly
improved local regularity of f in a neighbourhood of x0 and at the point x0.
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Let

‖k(f) | `p‖s,K,x0 =
(∑

β,j,m

K,x0

2j(s−n/p)p|kβ(2−j+J , f)(2−jm)|p
)1/p

(2.43)

be the local counterpart of (2.35).

Corollary 1. Let 1 < p ≤ ∞, s < 0 and f ∈ Bs
p(Rn). Let f and fK,x

0

be represented by (2.37) and (2.41), respectively, where x0 ∈ Rn and K ∈ N.
Then

f = fK,x
0

mod C∞ in B(x0, 2−K−1).(2.44)

Furthermore, let s ≤ σ < 0. Then

‖k(f) | `p‖σ,K,x0 <∞ implies fK,x
0 ∈ Bσ

p (Rn),(2.45)

and, conversely,

fK,x
0 ∈ Bσ

p (Rn) implies ‖k(f) | `p‖σ,K+3,x0 <∞.(2.46)

Remark 6 (Local regularity). Since (2.41) is a universal molecular rep-
resentation, for any σ ∈ R and any p with 0 < p ≤ ∞ we have

‖fK,x0 |Bσ
p (Rn)‖ ≤ c‖k(f) | `p‖σ,K,x0 ,(2.47)

where c > 0 is independent of f . In other words, if the right-hand side of
(2.47) is finite then fK,x

0 ∈ Bσ
p (Rn) and by (2.44),

f ∈ Bσ
p (B(x0, 2−K−1)).

Here Bσ
p (Ω) is the restriction of Bσ

p (Rn) to the domain Ω, in our case the
ball B(x0, 2−K−1). If, in addition, 1 < p ≤ ∞ and σ < 0, then one gets
not only a sufficient criterion but (almost) a characterization according to
(2.45), (2.46). But (2.46) is no longer ensured in other cases. Just on the
contrary. If, say, 1 < p ≤ ∞, and σ > 0, then the local means (2.34) with the
non-negative kernels kβ are no longer adequate. They must be replaced by
the oscillating kernels (−∆)Lkβ with 2L > σ. This will be done in Subsection
2.4 and has already been indicated in (1.4).

2.4. Wavelet frames for functions

2.4.1. L-wavelets. On the one hand, (2.37) is a universal representation
for any f ∈ C−∞(Rn). On the other hand, for given p with 1 < p ≤ ∞,
satisfactory global and local regularity assertions as described in Theorem 2
and Corollary 1 are restricted to s < 0. In principle it is clear how to
circumvent this difficulty: Let s ≥ 0 and L ∈ N be such that s − 2L < 0.
Then

DL = id + (−∆)L, where ∆ =
n∑

j=1

∂2

∂x2
j

,(2.48)
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maps any space Bσ
p (Rn) with σ ∈ R, 0 < p ≤ ∞, isomorphically onto

Bσ−2L
p (Rn). In particular, if f ∈ Bs

p(Rn) then one can apply the above
representation, global and local regularity theory to DLf ∈ Bs−2L

p (Rn) and
return afterwards via the inverse D−1

L of DL to Bs
p(Rn). By (2.37) we have

f = 2Jn
∑

β,j,m

kβ(2−j+J ,DLf)(2−jm)D−1
L [Φβ(2j · −m)](x).(2.49)

This is satisfactory as far as the coefficients are concerned: they remain local.
The situation is not so clear for the lifted wavelets Φβ(2jx−m). However it
turns out that the desired wavelet structure of D−1

L [Φβ(2j ·−m)](x) is essen-
tially preserved, at least as far as main terms are concerned. We introduce
the resulting (father and mother) wavelets.

Definition 3. Let ϕ0, ϕ, and Ωβ be given by (2.2), (2.3), and (2.16),
respectively. Let β ∈ Nn0 and L ∈ N0. Then the father L-wavelets Φβ,LF (x),
the mother L-wavelets Φβ,LM (x) and the remainder L-wavelets Φβ,Lj (x) are
given by

(Φβ,LF )∨(ξ) =
ϕ0(ξ)

1 + |ξ|2L Ω
β(ξ), ξ ∈ Rn,(2.50)

(Φβ,LM )∨(ξ) =
ϕ(ξ)
|ξ|2L Ω

β(ξ), ξ ∈ Rn,(2.51)

(Φβ,Lj )∨(ξ) = − ϕ(ξ)
|ξ|2L(|ξ|2L + 2−2Lj)

Ωβ(ξ), ξ ∈ Rn,(2.52)

if j ∈ N and Φβ,Lj (ξ) = 0 if j = 0.

Remark 7. All these wavelets are elements of S(Rn). If L = 0 then
we obtain essentially the father wavelets and mother wavelets introduced in
Definition 2,

ΦβF = 2Φβ,0F and ΦβM = Φβ,0M = −2Φβ,0j for j ∈ N, β ∈ Nn0 .(2.53)

In particular, by (2.20) we have the counterpart of (2.19) with Φβ,LM and
Φβ,Lj in place of ΦβM, and also corresponding counterparts of (2.21), (2.22).
We generalize (2.23) by setting

Φβ,L(2jx−m) =

{
Φβ,LF (x−m) if j = 0,

Φβ,LM (2jx−m) if j ∈ N.
(2.54)

The suitable counterparts of (2.31), (2.32) will be given by

f =
∑

β,j,m

λβjm(Φβ,L + 2−2jLΦβ,Lj )(2jx−m)(2.55)
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and

(2.56) {2−j(s−n/p)(Φβ,L+2−2jLΦβ,Lj )(2jx−m) : j ∈ N0, m ∈ Zn}, β ∈ Nn0 .
As with (2.31), (2.32), it follows by the above remarks and again by [2] that
for fixed β ∈ Nn0 the functions in (2.56) are normalized molecules in Bs

p(Rn).
The remainder L-wavelets even generate

{2−j(s−n/p)−2jLΦβ,Lv (2jx−m) : j ∈ N0, m ∈ Zn}, v ∈ N, β ∈ Nn0 ,
normalized molecules in Bs+2L

p (Rn), uniformly with respect to v ∈ N. Here
we need only v = j. As in the case of L = 0 the influence of β ∈ Nn0 is
harmless. As before one always has estimates of type (2.29), where in the
case of optimal coefficients in (2.55) the number % ≥ 0 can be prescribed.
In other words, compared with the case L = 0 considered in 2.3 there is
now only one new point: If L ∈ N, then we have in addition the remainder
L-wavelets Φβ,Lj . But the related terms have regularity s + 2L, compared
to the expected regularity s of the main terms. In addition, L ∈ N can be
chosen arbitrarily large.

2.4.2. Wavelet frames: the case s > 0. Let 1 < p ≤ ∞. The main
assertions in 2.3.2 and 2.3.3 are restricted to the case Bs

p(Rn) with s < 0.
Using 2.4.1 one can extend this theory to s ∈ R. But since the results for
s < 0 obtained so far are satisfactory it seems to be reasonable to restrict our
attention now to s > 0 from the very beginning and to assume f ∈ Lp(Rn)
to start from. First we generalize the local means in (2.34). Let k and kβ be
the non-negative functions introduced in (2.8)–(2.10), complemented now
by

kβL(x) = (−∆)Lkβ(x), L ∈ N0, x ∈ Rn,
where ∆ is the Laplacian as in (2.48). Let

kβL(t, f)(x) =
�

Rn
kβL(y)f(x+ ty) dy, t > 0, x ∈ Rn,(2.57)

be the corresponding local means for f ∈ S ′(Rn) (interpreted in the dis-
tributional sense). If L = 0, then we have kβ0 (t, f) = kβ(t, f) according to
(2.34). Again we use the abbreviation (2.12) now with % = 0 and put

‖λ | `p‖s = ‖λ | `p‖0,s.
Let ‖kL(f) | `p‖s be given by (2.35) with kβL in place of kβ. The wavelets
Φβ,L(2jx−m) and Φβ,Lj (2jx−m) have the same meaning as in (2.50)–(2.52)
and (2.54).

Theorem 3. Let 1 < p ≤ ∞, L ∈ N, and 0 < s < 2L.

(i) f ∈ Lp(Rn) is an element of Bs
p(Rn) if, and only if, it can be repre-

sented as
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f =
∑

β,j,m

λβjm(Φβ,L + 2−2jLΦβ,Lj )(2jx−m)(2.58)

with ‖λ | `p‖s < ∞ and absolute, and hence unconditional, convergence in
Lp(Rn). Furthermore,

‖f |Bs
p(Rn)‖ ∼ inf ‖λ | `p‖s,(2.59)

where the infimum is taken over all admissible representations (2.58).
(ii) Any f ∈ Bs

p(Rn) can be represented as

f = 2J(n−2L)
∑

β,j,m

λβjm(f)(Φβ,L + 2−2jLΦβ,Lj )(2jx−m)(2.60)

with

λβjm(f) = [kβL(2−j+J , f) + 2−2(j−J)Lkβ(2−j+J , f)](2−jm)(2.61)

and absolute convergence in Lp(Rn). This representation is optimal in the
sense that

‖f |Bs
p(Rn)‖ ∼ ‖λ(f) | `p‖s ∼ ‖kL(f) | `p‖s + ‖f |Lp(Rn)‖,(2.62)

where the equivalence constants are independent of f .

Remark 8. The assumptions f ∈ Lp(Rn) and s > 0 are convenient
for us. They are justified by Subsection 2.3. But they are not necessary.
For example one may assume f ∈ C−∞(Rn). Then one gets an extension of
Theorem 2(ii), where f is now represented by (2.60), (2.61) with L ∈ N0. In
particular, if L = 0, then by (2.53) this representation coincides with (2.37)
(as it should be). Furthermore we refer again to the equivalent norms in
Bs
p(Rn) in terms of local means, [12, 2.5.3, p. 138], which cover essentially

the equivalences in (2.62). A more detailed discussion of this point has been
given in Remark 5 which also applies to the above situation.

2.4.3. Global and local regularity : the case s > 0. Let Ω be a domain
in Rn. If f ∈ S′(Rn) and g ∈ S′(Rn) then we write, in analogy to (2.40),

f = g mod Bσ
p in Ω

if the restriction of f −g to Ω belongs to Bσ
p (Ω). First we look at the global

representations (2.60), (2.61). Since f ∈ Lp(Rn) we have f ∈ B−εp (Rn) for
any ε > 0. Let temporarily

λ′βjm(f) = 2−2jLkβ(2−j+J , f)(2−jm).

Then by Theorem 2(iii) we obtain, in obvious notation,

‖λ′(f) | `p‖2L−ε = ‖k(f) | `p‖−ε ∼ ‖f |B−εp (Rn)‖.(2.63)

Let f ′ be given by (2.60) with λ′ in place of λ. Since (2.60) is a univer-
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sal molecular representation we get, by modifying the proof in Step 2 of
Subsection 3.1 below (based as there on (2.15) with β! in the denominator),

f ′ ∈ B2L−ε
p (Rn), ‖f ′ |B2L−ε

p (Rn)‖ ≤ c‖λ′(f) | `p‖2L−ε.
Let

f ′′ =
∑

β,j,m

2−2jLkβL(2−j+J , f)(2−jm)Φβ,Lj (2jx−m).

Then by (2.62) and the same arguments as in (2.63) we obtain

f ′′ ∈ Bs+2L
p (Rn), ‖f ′′ |Bs+2L

p (Rn)‖ ≤ c‖f |Bs
p(Rn)‖.

In other words, by (2.60) we have, for any ε > 0,

f = 2J(n−2L)
∑

β,j,m

kβL(2−j+J , f)(2−jm)Φβ,L(2jx−m) mod B2L−ε
p(2.64)

in Rn. Hence the right-hand side of (2.64) is the main term of f as far as
global regularity is concerned. As for local regularity there is no problem to
repeat the considerations from 2.3.3. Let x0 ∈ Rn, K ∈ N and let as there

fK,x
0

L = 2J(n−2L)
∑

β,j,m

K,x0

λβjm(f)(Φβ,L + 2−2jLΦβ,Lj )(2jx−m)(2.65)

with (2.61) and

f̃ K,x
0

L = 2J(n−2L)
∑

β,j,m

K,x0

kβL(2−j+J , f)(2−jm)Φβ,L(2jx−m),(2.66)

where the summation is restricted to j ∈ N0, m ∈ Zn, with (2.42). Let
‖kL(f) | `p‖s,K,x0 be given by (2.43) with kβL in place of kβ.

Corollary 2. Let 1 < p ≤ ∞, L ∈ N, and 0 < s < 2L. Let f ∈ Bs
p(Rn),

fK,x
0

L , and f̃ K,x
0

L be represented by (2.60) with (2.61), (2.65), and (2.66),
respectively, where x0 ∈ Rn and K ∈ N. Then

f = fK,x
0

L mod C∞ in B(x0, 2−K−1)(2.67)

and for any ε > 0,

f = f̃ K,x
0

L mod B2L−ε
p in B(x0, 2−K−1).(2.68)

Furthermore, let s ≤ σ < 2L. Then

‖kL(f) | `p‖σ,K,x0 <∞ implies f̃ K,x
0

L ∈ Bσ
p (Rn)(2.69)

and, conversely,

f̃ K,x
0

L ∈ Bσ
p (Rn) implies ‖kL(f) | `p‖σ,K+3,x0 <∞.(2.70)

Remark 9. This is the counterpart of Corollary 1. Remark 6 can be
carried over.
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2.5. Pointwise regularity

2.5.1. Some preparations. So far we have, by Corollaries 1 and 2, satis-
factory assertions concerning the local regularity of distributions and func-
tions in balls B(x0, 2−K). It is of interest what happens if K → ∞. It is
just this question which attracted a lot of attention in some of the papers
mentioned in the Introduction. If f ∈ S ′(Rn) then sing supp f has the usual
meaning: the collection of all points y ∈ Rn such that there is no domain Ω
with y ∈ Ω in which f is C∞.

Definition 4. Let 1 < p ≤ ∞, f ∈ B−∞p (Rn) and x0 ∈ sing supp f . Let
t = 1/p. Then

sf (x0, t) = sup{σ ∈ R : there is a K ∈ N with f ∈ Bσ
p (B(x0, 2−K))}.

Remark 10. By the discussion at the beginning of 2.3.1 this definition
applies in particular to any compactly supported distribution f ∈ D′(Rn).
By (2.30), we have

−∞ < sf (x0, t) ≤ ∞,
where it might happen that sf (x0, t) =∞ at some points x0 ∈ sing supp f .
Of course, if f ∈ Bσ

p (B(x0, 2−K)) then f ∈ Bσ
p (B(x0, 2−K

′
)) for any K ′ ∈ N

with K ′ > K.

2.5.2. Pointwise regularity assertions. Let, as before Corollary 2,

‖kL(f) | `p‖σ,K,x0 =
(∑

β,j,m

K,x0

2j(σ−n/p)p|kβL(2−j+J , f)(2−jm)|p
)1/p

,(2.71)

with the usual modification if p =∞.

Theorem 4. Let 1 < p ≤ ∞, f ∈ B−∞p (Rn) and x0 ∈ sing supp f . Let
t = 1/p. Then sf (x0, t) <∞ if, and only if, there is an L ∈ N0 such that

‖kL(f) | `p‖2L−ε,K,x0 =∞(2.72)

for some ε > 0 and all K ∈ N. Let sf (x0, t) <∞ and let L0 = L(f, x0) ∈ N0
be the smallest L satisfying (2.72). Then

sf (x0, t) = sup{s ∈ R : ‖kL0(f) | `p‖s,K,x0 <∞ for some K ∈ N}.(2.73)

Remark 11. Of course, if K ′ > K, then

‖kL0(f) | `p‖s,K′,x0 <∞ if ‖kL0(f) | `p‖s,K,x0 <∞.(2.74)

Hence of interest is the behaviour of ‖kL0(f) | `p‖s,K,x0 as K → ∞. Since
the above criterion is necessary and sufficient it characterizes also those
points x0 ∈ sing supp f where sf (x0, t) =∞. To get a better understanding
of (2.73) we add a discussion. First let L0 = L(f, x0) = 0. Then both by
Corollary 1 and by (2.73),

sf (x0, t) ≤ −ε < 0.
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Let L0 ∈ N. Then the right-hand inequality of

2(L0 − 1) ≤ sf (x0, t) < 2L0

is a consequence of Corollary 2. The left-hand inequality follows from the
assumption that L0 ∈ N is the smallest number with (2.72) and again Corol-
lary 2.

Remark 12. The above theorem gives a satisfactory characterization of
pointwise regularity for distributions in terms of the local means kβL(t, f)
introduced in (2.57) and of the norms in (2.71). From the point of view of
wavelet theory one may ask whether the summation over β ∈ Nn0 is really
necessary. This might be the case (in our approach) as far as representations
of distributions and functions are concerned as described in Theorems 2
and 3. But for criteria of pointwise regularity of distributions the situation
is different. We describe a corresponding result which complements (2.45)
and (2.69) in Corollaries 1 and 2, respectively. This can be used afterwards
to modify some assertions of the above theorem. But this will not be done
here in detail. First we introduce some notation. We fix J ∈ N as in (2.9).
Let now k be a compactly supported C∞ function in Rn and again let
kL(x) = (−∆)Lk(x), where L ∈ N0. Let

kL(t, f)(x) =
�

Rn
kL(y)f(x+ ty) dy, t > 0, x ∈ Rn,(2.75)

be the local means introduced in (2.57) with β = 0. Modifying (2.71), let

‖kL(f) | `p‖0σ,K,x0 =
(∑

j,m

K,x0

2j(σ−n/p)p|kL(2−j+J , f)(2−jm)|p
)1/p

,(2.76)

and

‖kL(f) | `p‖sup
σ,K,x0 = sup ‖kL(f) | `p‖0σ,K,x0(2.77)

where the supremum is taken over all C∞ functions k with

supp k ⊂ {y : |y| < 1}, |Dαk(x)| ≤ 1 if |α| ≤ 2L and x ∈ Rn.(2.78)

Otherwise we use the notation as before, hence L ∈ N0, σ ∈ R, 1 ≤ p ≤ ∞
(with the usual modification if p = ∞ in (2.76)); and the summation over
j ∈ N0 and m ∈ Zn in (2.76) is restricted to those couples (j,m) with (2.42).
If L = 0 then we write k in place of k0 in (2.75)–(2.77).

Proposition 2. Let 1 < p ≤ ∞. Let x0 ∈ Rn and K ∈ N.

(i) Let s ≤ σ < 0 and f ∈ Bs
p(Rn). Let f and fK,x

0
be represented by

(2.37) and (2.41), respectively. Then

‖k(f) | `p‖sup
σ,K,x0 <∞ implies fK,x

0 ∈ Bσ
p (Rn).(2.79)
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(ii) Let L ∈ N, 0 < s ≤ σ < 2L and f ∈ Bs
p(Rn). Let f and f̃ K,x

0
be

represented by (2.60) and (2.66), respectively. Then

‖kL(f) | `p‖sup
σ,K,x0 <∞ implies f̃ K,x

0 ∈ Bσ
p (Rn).(2.80)

Remark 13. This proposition complements Corollaries 1 and 2. Instead
of the summation over β ∈ Nn0 we now have the supremum in (2.77). But
this is a rather typical situation in connection with local means. By (2.44)
and (2.68) one gets from (2.79) and (2.80) assertions about improved local
regularity of f . This can be extended to assertions of pointwise regularity
according to Theorem 4. Furthermore there is a converse to (2.79), (2.80).
Let s ∈ R, L ∈ N0 with 2L > s and 1 < p ≤ ∞. Let k be a C∞ function
with compact support. Then there is a positive number c such that

( ∞∑

j=0

∑

m∈Zn
2j(s−n/p)p|kL(2−j+J , f)(2−jm)|p

)1/p
≤ c‖f |Bs

p(Rn)‖

for all f ∈ Bs
p(Rn). This is covered by the references mentioned in Re-

mark 5. Based on this observation both parts of this proposition can be
complemented as follows: We use the norms in (2.76), again with k in place
of kL if L = 0. Let K ∈ N and let 1 < p ≤ ∞.

(i) Let s ≤ σ < 0. Then

fK,x
0 ∈ Bσ

p (Rn) implies ‖k(f) | `p‖0σ,K+3,x0 <∞.
(ii) Let L ∈ N and 0 < s ≤ σ < 2L. Then

f̃ K,x
0 ∈ Bσ

p (Rn) implies ‖kL(f) | `p‖0σ,K+3,x0 <∞.
These are the counterparts of (2.46) and (2.70) without the additional as-
sumption (2.9), and obviously restricted to the terms with β = 0.

3. PROOFS

3.1. Proof of Theorem 1

Step 1. First we assume that f is given by (2.25) with ‖λ | `p‖%,s < ∞
for some % ≥ 0. Let

f =
∑

β

fβ with fβ =
∑

j,m

λβjm k
β(2j−Jx− 2−Jm).(3.1)

We use atomic decompositions for the spaces Bs
p(Rn) with s > 0 and 1 ≤

p ≤ ∞ as described in [13, Theorem 13.8, p. 75]. By (2.8) the support of k
is also contained in an open ball centred at the origin and of radius 2−ε for
some ε > 0. Then it follows easily that

{2ε|β|2−j(s−n/p)kβ(2j−Jx− 2−Jm) : j ∈ N0, m ∈ Zn}, β ∈ Nn0 ,(3.2)
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are admitted systems of atoms, provided we ignore constants which are
independent of j, m, β. Hence fβ ∈ Bs

p(Rn) and

‖fβ |Bs
p(Rn)‖ ≤ c 2−ε|β|

( ∞∑

j=0

∑

m∈Zn
2j(s−n/p)p|λβjm|p

)1/p
,

where c is independent of β. Summation over β proves f ∈ Bs
p(Rn) and

‖f |Bs
p(Rn)‖ ≤ c ‖λ | `p‖%,s(3.3)

for any % ≥ 0. As for the absolute convergence of the series in (3.1) in Lp(Rn)
we refer to [14, 1.4, pp. 7–9, and 2.7, p. 14], where we studied this question
in detail.

Step 2. We construct optimal coefficients according to (2.24), (2.27),
(2.28). Then one gets as a by-product the converse to (3.3), which proves
part (i). For this purpose we adapt the relevant arguments in [14, pp. 17–24],
to our situation. Let f ∈ Bs

p(Rn) with 1 ≤ p ≤ ∞ and s > 0. Let Qj with
j ∈ N0 be cubes in Rn centred at the origin and with side-length 2π2j . In
particular, suppϕj ⊂ Qj , where ϕj are given by (2.2), (2.3) and we have

f̂(ξ) =
∞∑

j=0

ϕj(ξ)f̂(ξ), ξ ∈ Rn.

We expand ϕj f̂ in Qj in its trigonometric series and obtain

(ϕj f̂ )(ξ) =
∑

m∈Zn
bjm exp(−i2−jmξ), ξ ∈ Qj ,(3.4)

with

bjm = (2π)−n2−jn
�

Qj

(ϕj f̂ )(ξ) exp(i2−jmξ) dξ(3.5)

= (2π)−n/22−jn(ϕj f̂ )∨(2−jm).

By Proposition 1 we have

‖f |Bs
p(Rn)‖ ∼

( ∞∑

j=0

2jsp 2jn(1−1/p)p|bjm|p
)1/p

, 1 ≤ p ≤ ∞(3.6)

(with the usual modification if p = ∞). Let ω be given by (2.14) and let
ωj(x) = ω(2−jx). Then ωj has a compact support in Qj and it follows by
(3.4) that

(ϕj f̂)∨(x) =
∑

m∈Zn
bjmω

∨
j (x− 2−jm)(3.7)

= 2jn
∑

m∈Zn
bjmω

∨(2jx−m), x ∈ Rn.
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Let k be given by (2.8), (2.9). Expanding the analytic function ω∨(2jx−m)
at 2−jl with l ∈ Zn we get

(3.8) k(2j−Jx− 2−J l)ω∨(2jx−m)

=
∑

β∈Nn0

2j|β|

β!
(Dβω∨)(l −m)(x− 2−jl)βk(2j−Jx− 2−J l)

=
∑

β∈Nn0

2J |β|

β!
(Dβω∨)(l −m)kβ(2j−Jx− 2−J l),

where we used (2.10). By (2.9), (3.7), (3.8) we obtain

(ϕj f̂ )∨(x) =
∑

m∈Zn
2jnbjm

∑

l∈Zn
k(2j−Jx− 2−J l)ω∨(2jx−m)

=
∑

β∈Nn0

∑

l∈Zn
kβ(2j−Jx− 2−J l)

∑

m∈Zn
2jnbjm

2J |β|

β!
(Dβω∨)(l −m).

Hence,

f =
∞∑

j=0

∑

β∈Nn0

∑

l∈Zn
λβjl k

β(2j−Jx− 2−J l)

with

λβjl =
∑

m∈Zn
2jnbjm

2J |β|

β!
(Dβω∨)(l −m).(3.9)

First we check that λβjl are optimal coefficients. In other words, if % ≥ 0 is
given then we must find a constant c such that, according to (2.11), (2.12),

‖λ | `p‖%,s ≤ c‖f |Bs
p(Rn)‖ for all f ∈ Bs

p(Rn).(3.10)

In [15, 3.1.1], we proved that for any given a > 0 there are constants C > 0
and ca > 0 such that

|Dβω∨(x)| ≤ ca 2C|β| (1 + |x|2)−a, x ∈ Rn, β ∈ Nn0 ,(3.11)

where C is independent of x, a, β, and ca is independent of x, β. Interpreting
(3.9) as a convolution in `p it follows that for any % ≥ 0 there is a constant
c(%) such that

(∑

l∈Zn
|λβjl|p

)1/p
≤ c(%) 2−(%+1)|β|

(∑

l∈Zn
|2jnbjl|p

)1/p
.(3.12)

Now (3.10) follows from (3.6), (3.12). The proof of part (i) is complete.

Step 3. It remains to prove that the optimal coefficients λβjl in (3.9) can
be represented by (2.24). By (3.5) and well-known properties of the Fourier
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transform we have

2jn bjm = (2π)−n
�

Rn
(ϕj)∨(2−jm− y)f(y) dy, j ∈ N0,

and hence by (2.3),

2jn bjm = (2π)−n 2jn
�

Rn
ϕ∨(m− 2jy)f(y) dy, j ∈ N.

Recall (Dβω∨)(ξ) = i|β| (xβω(x))∨(ξ). Using (2.15) we obtain, for j ∈ N,

λβjl = 2jn
�

Rn
f(y)

∑

m∈Zn
(ωβ)∨(l −m)ϕ∨(m− 2jy) dy.

Replacing l −m by m and using ϕ∨(z) = ϕ̂(−z) one gets

λβjl = 2jn
�

Rn
f(y)

∑

m∈Zn
(ωβ)∨(m)ϕ̂(2jy − l +m) dy

= 2jn(f, Φβ(2j · −l)), j ∈ N,
where Φβ = ΦβM are the mother wavelets of (2.22), (2.23). If j = 0, then one
has to use the father wavelets of (2.21). This completes the proof of parts
(ii) and (iii).

3.2. Proof of Theorem 2

Step 1. Modifying (2.32) and in analogy to (3.2) we first remark that

{2ε|β|2−j(s−n/p)Φβ(2jx−m) : j ∈ N0, m ∈ Zn}, β ∈ Nn0 ,
are admitted systems of normalized molecules in Bs

p(Rn), provided we ignore
constants which are independent of j, m, β. We refer again to [2, Section
5, especially p. 48]. As far as atoms and normalizing factors are concerned
one may also consult [13, Theorem 13.8, p. 75]. The proof given there is
based on local means and can be extended to molecules (as an alternative
argument compared with [2]). In any case the required vanishing moments
are covered by (2.19). If f ∈ S ′(Rn) is given by (2.36) with ‖λ | `p‖s < ∞
then it now follows in the same way as in Step 1 in 3.1 that f ∈ Bs

p(Rn) and
that there is a constant c > 0 with

‖f |Bs
p(Rn)‖ ≤ c‖λ | `p‖s(3.13)

for all admitted sequences λ. To justify the unconditional convergence of
(2.36) with ‖λ | `p‖s <∞ in S′(Rn) we apply (id+(−∆)L)−1 with 2L+s > 0
and L ∈ N to (2.36). As will be discussed later on in detail in Subsection
3.4 in connection with the proof of Theorem 3, the resulting sum converges
absolutely in Lp(Rn) and hence unconditionally in S ′(Rn). But then the
original sum (2.36) with ‖λ | `p‖s < ∞ converges also unconditionally in
S′(Rn).
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Step 2. Let ‖k(f) | `p‖s with f ∈ Bs
p(Rn) be given by (2.35). We prove

that there is a number c > 0 such that

‖k(f) | `p‖s ≤ c‖f |Bs
p(Rn)‖ for all f ∈ Bs

p(Rn).(3.14)

By (2.34), we have

kβ(2−j+J , f)(2−jm) =
�

Rn
kβ(y)f(2−jm+ 2−j+Jy) dy(3.15)

= 2jn−Jn
�

Rn
kβ(2j−Jy − 2−Jm)f(y) dy.

Since `p = (`p′)′ with 1/p+ 1/p′ = 1 (hence 1 ≤ p′ <∞) and 2jn2j(s−n/p) =
2j(s+n/p

′) it follows by (2.35) and (3.15) that

‖k(f) | `p‖s = sup
∑

β,j,m

λβjm2−Jn
�

Rn
kβ(2j−Jy − 2−Jm)f(y) dy(3.16)

where the supremum is taken over all λβjm such that the terms in (3.16) are
non-negative and

‖λ | `p′‖−s ≤ 1.(3.17)

Then

‖k(f) | `p‖s ≤ sup |(f, g)| where g = 2−Jn
∑

β,j,m

λβjm k
β(2j−Jx− 2−Jm)

with (3.17). Hence by Theorem 1,

‖k(f) | `p‖s ≤ sup{|(f, g)| : g ∈ B−sp′ (Rn), ‖g |B−sp′ (Rn)‖ ≤ c}(3.18)

for some c > 0 which is independent of g. We use the duality

(B−σp′ (Rn))′ = Bσ
p (Rn), 1 ≤ p′ <∞, σ ∈ R,(3.19)

which can be found in [11, 2.11.2, p. 178]. Now, (3.14) is a consequence of
(3.18), (3.19).

Step 3. We prove parts (ii) and (iii) of the theorem. Then we get as a
by-product the converse of (3.13) and hence part (i). Let 1 < p ≤ ∞, s < 0,
and f ∈ Bs

p(Rn). We apply Theorem 1 to ψ ∈ S(Rn),

ψ =
∑

β,j,m

2jn(ψ,Φβ(2j · −m))kβ(2j−Jx− 2−Jm),(3.20)

to obtain

(f, ψ) =
( ∑

β,j,m

2jn(kβ(2j−J · −2−Jm), f)Φβ(2j · −m), ψ
)
.(3.21)

Since ψ ∈ S(Rn) it follows by Theorem 1 that (3.20) converges uncondition-
ally in any space Bσ

p′(R
n) with σ > 0. This justifies (3.21). Then (2.37) is

a consequence of (3.21) and (3.15). Since (3.20) converges unconditionally
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in any space Bσ
p′(R

n) it follows that (2.37) also converges unconditionally in
S′(Rn). This proves the first assertion in part (ii). Furthermore we have the
representation (2.37) in particular for f ∈ Bs

p(Rn). Then (3.13) and (3.14)
prove part (iii) and the second assertion in part (ii).

3.3. Proof of Corollary 1

Step 1. We begin with some preparations. Let, as usual,

〈x〉 = (1 + |x|2)1/2, x ∈ Rn.
Let α ∈ Nn0 , % > 0, and d > 0 be given. Then we wish to show that there is
a constant c = c(α, %, d) such that

|DαΦβ(x)| ≤ c 2−%|β|〈x〉−d, x ∈ Rn, β ∈ Nn0 ,(3.22)

where Φβ is either ΦβF or ΦβM defined by (2.21) or (2.22), respectively. By
(2.15), (3.11) it follows that

|(ωβ)∨(y)| ≤ c 2−κ|β||Dβω∨(y)| ≤ c 2−%|β| 〈y〉−a, y ∈ Rn,
where κ > 0, and hence % > 0, and a > 0, are at our disposal. Consequently,
we have

|DαΦβ(x)| ≤ c 2−%|β|
∑

m∈Zn

1
〈m〉a〈x+m〉a ≤ c 2−%|β|〈x〉−d, x ∈ Rn.

where % > 0 and a > 0, and hence d > 0, are at our disposal. This proves
(3.22) where c depends on %, d, α, but not on β and x.

Step 2. Let f ∈ Bs
p(Rn). We fix β ∈ Nn0 and j ∈ N0 in the sum in (2.37)

and denote the resulting sum over m ∈ Zn by fβ,j . It follows by (2.38),
(2.35) and (3.22) that

|Dαfβ,j(x)| = 2Jn
∣∣∣
∑

m∈Zn
kβ(2−j+J , f)(2−jm)(DαΦβ)(2jx−m) 2j|α|

∣∣∣(3.23)

≤ c 2−j(s−n/p)+j|α| 2−%|β|
∑

m∈Zn
〈2jx−m〉−d,

where d > 0 and % > 0 are at our disposal. Then we conclude that fβ,j and
also fj with j ∈ N0, where

fj(x) =
∑

β∈Nn0

fβ,j(x) are C∞ functions in Rn.(3.24)

Step 3. We prove (2.44). We may assume x0 = 0. By (2.37), (2.41) the
remainder function can be written as

f − fK,x0
=
∑

β,j

fKβ,j(3.25)
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with

fKβ,j(x) = 2Jn
∑

m∈Zn

K
kβ(2−j+J , f)(2−jm)Φβ(2jx−m),(3.26)

where by (2.42) the summation in (3.26) is restricted to m ∈ Zn with

|2−jm− 2−j+J | ≥ 2−K+1.

By Step 2 we may assume j > J +K. Then we have

|m| ≥ 2j−K .(3.27)

We restrict the summation in (3.23) to m ∈ Zn with (3.27). If |x| ≤ 2−K−1

then |m− 2jx| ≥ 2j−K−1. Then it follows as in (3.23) that

|DαfKβ,j(x)| ≤ c 2−j(s−n/p)+j|α| 2−%|β| 2−jd, |x| ≤ 2−K−1,(3.28)

where d > 0 is at our disposal. Now we are in the same position as in Step 2
and there is an obvious counterpart of (3.24). In the ball B(0, 2−K−1) we in
addition have (3.28). Then it follows by summation over β ∈ Nn0 and j ∈ N0

that f − fK,x0
in (3.25) is a C∞ function in B(0, 2−K−1).

Step 4. We proved (2.45) in Remark 6 after Corollary 1 where σ < 0 is
not necessary. We now prove (2.46). Let

fK,x
0 ∈ Bσ

p (Rn), 1 < p ≤ ∞, s ≤ σ < 0.

By Remark 5 and the notation (2.35) we have

‖k(fK,x
0
) | `p‖σ ≤ c ‖fK,x

0 |Bσ
p (Rn)‖ <∞.(3.29)

Let again x0 = 0. By (2.44), for |x| ≤ 2−K−2 we have

f(x) = fK,x
0
(x) + g(x) with g ∈ C∞0 (B(0, 2−K−1)).(3.30)

We can apply (3.29) to g as an element of Bκ
p (Rn) with σ ≤ κ < 0 and

obtain

‖k(g) | `p‖κ <∞.(3.31)

To calculate the right-hand side of (2.46) we assume, as in (2.42),

B(0, 2−K−2) ∩B(2−jm, 2−j+J) 6= ∅
for some j > K+J+2 and m ∈ Zn. This is sufficient since f ∈ Bs

p(Rn) and,
hence, there is nothing to prove for the terms with j ≤ K +J + 2. Then, by
(2.34), (3.30),

kβ(2−j+J , f)(2−jm) = kβ(2−j+J , fK,x
0
)(2−jm) + kβ(2−j+J , g)(2−jm).

Now (2.46) follows from (3.29), (3.31). The proof of Corollary 1 is complete.
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3.4. Proof of Theorem 3

Step 1. Let f be given by (2.58) with ‖λ | `p‖s <∞. By (2.56) this is a
molecular representation, and again it follows that f ∈ Bs

p(Rn) and

‖f |Bs
p(Rn)‖ ≤ c‖λ | `p‖s,(3.32)

where c is independent of λ. The absolute convergence of (2.58) in Lp(Rn)
is again a consequence of our considerations in [14, 1.4], appropriately mod-
ified.

Step 2. We prove part (ii). Then we get as a by-product also the converse
of (3.32) and hence part (i). Since s − 2L < 0 we have by Theorem 2 the
optimal representation (2.49). First we prove that

kβ(2−j+J ,DLf)(2−jm) = 22L(j−J) λβjm(f),(3.33)

where λβjm(f) is given by (2.61). This follows from

(3.34) kβ(2−j+J ,DLf)(x)

= kβ(2−j+J , f)(x) +
�

Rn
kβ(y)[(−∆)Lf ](x+ 2−j+Jy) dy

= kβ(2−j+J , f)(x) + 22L(j−J)kβL(2−j+J , f)(x), x ∈ Rn,
where we used the notation (2.57). Since the coefficients in (3.33) are optimal
for DLf ∈ Bs−2L

p (Rn) it follows by Theorem 2 that

‖λ(f) | `p‖s = 22LJ‖k(DLf) | `p‖s−2L(3.35)

∼ ‖DLf |Bs−2L
p (Rn)‖ ∼ ‖f |Bs

p(Rn)‖.
Hence, by (2.49) we have the decomposition

f = 2J(n−2L)
∑

β,j,m

λβjm(f)22jLD−1
L [Φβ(2j · −m)](x).(3.36)

The proof that this representation coincides with (2.60) is postponed to the
next step. We justify (2.62), where the first equivalence is covered by (3.35).
Furthermore, by (3.34), (3.35),

‖f |Bs
p(Rn)‖ ≤ c1‖kL(f) | `p‖s + c1‖k(f) | `p‖s−2L

≤ c2‖kL(f) | `p‖s + c2‖f |Bs−2L
p (Rn)‖

≤ c3‖kL(f) | `p‖s + c3‖f |Lp(Rn)‖,
where we used Theorem 2 and s − 2L < 0. Conversely, again by (3.34),
(3.35), we have

‖kL(f) | `p‖s + ‖f |Lp(Rn)‖ ≤ c‖f |Bs
p(Rn)‖+ c‖f |Lp(Rn)‖

≤ c′‖f |Bs
p(Rn)‖.

This proves (2.62).
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Step 3. By (3.36) and (2.60) it remains to prove that

22jLD−1
L [Φβ(2j · −m)](x) = (Φβ,L + 2−2jLΦβ,Lj )(2jx−m),(3.37)

where the wavelets Φβ,L and Φβ,Lj are given by (2.50)–(2.52) and (2.54). Let

j = 0. Then Φβ,L = Φβ,LF are the father wavelets. By (2.17) we have

F−1[(id + (−∆)L)−1ΦβF(· −m)](ξ) =
ϕ0(ξ)Ωβ(ξ)

1 + |ξ|2L eimξ.

Taking the Fourier transform we get the desired assertion

D−1
L [ΦβF(· −m)](x) = Φβ,LF (x−m), x ∈ Rn, m ∈ Zn.(3.38)

Let j ∈ N. Then Φβ,L = Φβ,LM are the mother wavelets. By (2.18) and (2.51)
we have

22jLF−1[(−∆)−LΦβM(2j · −m)](ξ) =
2−jn

|2−jξ|2L F
−1[ΦβM(· −m)](2−jξ)

= 2−jnei2
−jmξF−1[Φβ,LM ](2−jξ).

Taking the Fourier transform we get

22jL(−∆)−L[ΦβM(2j · −m)](x) = Φβ,LM (2jx−m).(3.39)

Similarly by (2.52) for the remainder term we have

22jLF−1[((id + (−∆)L)−1 − (−∆)−L)ΦβM(2j · −m)](ξ)

= 2−jn22jL
(

1
1 + |ξ|2L −

1
|ξ|2L

)
ei2
−jmξF−1[ΦβM](2−jξ)

= −2−jnei2
−jmξ 2−2jL

|2−jξ|2L(2−2jL + |2−jξ|2L)
F−1[ΦβM](2−jξ)

= 2−2jL2−jnei2
−jmξF−1[Φβ,Lj ](2−jξ).

Taking the Fourier transform we get

(3.40) 22jL[(id + (−∆)L)−1 − (−∆)−L][ΦβM(2j · −m)](x)

= 2−2jLΦβ,Lj (2jx−m).

Now, (3.37) is a consequence of (3.38)–(3.40).

3.5. Proof of Corollary 2. We discussed in Remark 7 the properties of
the wavelets in the representations (2.60), (2.65), (2.66). Then the arguments
from Steps 1–3 of the proof of Corollary 1 in 3.3 can be applied. This proves
(2.67). Furthermore, f̃ K,x

0

L and fK,x
0

L differ by local versions of the functions
f ′ and f ′′ in 2.4.3. Then (2.68) follows from (2.67). Finally, (2.69) is a
consequence of the molecular representation (2.66); and (2.70) follows from
(2.68) in the same way as in Step 4 of 3.3.
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3.6. Proof of Theorem 4

Step 1. First we assume that there is no L ∈ N0 such that (2.72) holds
for some ε > 0 and all K ∈ N. Hence for all L ∈ N0 and all ε > 0, there is a
K ∈ N with

‖kL(f) | `p‖2L−ε,K,x0 <∞.
Recall k(f) = k0(f). Then by (2.74) we have

‖k(f) | `p‖σ−2L,K,x0 + ‖kL(f) | `p‖σ,K,x0 <∞
for any σ < 2L and all K ≥ K0. Hence by (2.67) and the molecular repre-
sentation (2.65) with (2.61) it follows that

f ∈ Bσ
p (B(x0, 2−K−1)), 0 < σ < 2L,

for any L ∈ N and any σ. Hence sf (x0, t) = ∞ by Definition 4. Now we
assume sf (x0, t) =∞. Then we deduce by Definition 4 and Corollary 2 that
there is no L ∈ N0 with (2.72) for some ε > 0 and all K ∈ N. This proves
the first assertion of Theorem 4.

Step 2. Let now sf (x0, t) < ∞ and L0 = L(f, x0) ∈ N0 be the smallest
number with (2.72) for some ε > 0 and all K ∈ N. Let

(3.41) s̃f (x0, t)

= inf{2L0 − ε : ε > 0, ‖kL0(f) | `p‖2L0−ε,K,x0 =∞ for all K ∈ N}.
We check that

−∞ < s̃f (x0, t) <∞.(3.42)

The existence of L0, and hence the right-hand inequality of (3.42), follow
from Step 1. On the other hand, by assumption we have f ∈ Bs

p(Rn) for
some s < 0. If L0 = 0, then by Corollary 1,

−∞ < s ≤ s̃f (x0, t), L0 = 0.

Let L0 ∈ N. Again by Corollary 1, fK,x
0 ∈ Bσ

p (Rn) for any σ < 0. Further-
more by lifting arguments of type (3.34) (with respect to Bσ−2L0

p (Rn)) it
follows that

‖kL0(f) | `p‖σ,K,x0 <∞ for all K ∈ N.
In other words we obtain, by (3.41),

0 ≤ s̃f (x0, t), L0 ∈ N.(3.43)

Thus we have the left-hand inequality of (3.42) in all cases.

Step 3. Let again sf (x0, t) < ∞ and L0 = 0. If σ < s̃f (x0, t) < 0 then
fK,x

0 ∈ Bσ
p (Rn) by (2.45). Hence

s̃f (x0, t) ≤ sf (x0, t).



Wavelet frames for distributions 87

Conversely, if σ < sf (x0, t) then ‖k(f) | `p‖σ,K+3,x0 < ∞ by (2.46), and
hence

sf (x0, t) ≤ s̃f (x0, t) < 0.

This proves

sf (x0, t) = s̃f (x0, t)(3.44)

in case L0 = 0 in (3.41).

Step 4. Let again sf (x0, t) <∞ and L0 ∈ N. By Corollary 1 and (3.43)
we have

sf (x0, t) ≥ 0 and s̃f (x0, t) ≥ 0.

If sf (x0, t) > 0 then we can apply Corollary 2 to obtain (3.44) again. Con-
versely, let s̃f (x0, t) > 0. Here we must add a technical comment: The a
priori assumption f ∈ Bs

p(Rn) with s > 0 in Corollary 2 can be replaced
by f ∈ Bσ

p (Rn) for all σ < 0. This follows from the proof in 3.5 and the
references given there (we just used this type of assumption). Then we can
again apply Corollary 2 to obtain (3.44).

Step 5. Hence if one of the numbers in (3.44) is negative, or positive,
then so is the other, and they coincide. But then they must also coincide
if one of the numbers is zero. Finally, we remark that (3.41) coincides with
the right-hand side of (2.73).

3.7. Proof of Proposition 2. We prove part (i). Let k and kβ be given
by (2.7)–(2.10). Then (2.78) is satisfied uniformly for all functions 2ε|β|kβ(x)
in place of k, where ε > 0 is some number (since supp k is in B(0, 2−ε)).
Hence by the left-hand assumption of (2.79),

(∑

j,m

K,x0

2j(σ−n/p)p|kβ(2−j+J , f)(2−jm)|p
)1/p

≤ c2−ε|β|

for some c > 0 which is independent of β. Then fK,x
0 ∈ Bσ

p (Rn) follows
from (2.43) with σ in place of s and (2.45). The proof of part (ii) is the
same, now based on (2.71), (2.69).
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