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Abstract  This paper proposes a hybrid model developed 
through wiser integration of wavelet transforms, floating point 
GA and artificial neural networks for prediction of short-term 
load. The use of wavelet transforms has added the capability of 
capturing of both global trend and hidden templates in loads, 
which is otherwise very difficult to incorporate into the 
prediction model of ANN. Auto-configuring RBF networks are 
used for predicting the wavelet coefficients of the future loads. 
Floating point GA (FPGA) is used for optimizing the RBF 
networks. The use of GA optimized RBF network has added to 
the model the online prediction capability of short-term loads 
accurately. The performance of the proposed model is validated 
using Queensland electricity demand data from the Australian 
National Electricity Market. Results demonstrate that the 
proposed model is more accurate as compared to RBF only 
model. 
 
Index Terms— Wavelet transforms, Genetic Algorithm, ANN, 
RBF networks, Load forecast, Short-term load forecast. 
 
 
I. INTRODUCTION 
Deregulation of power utility industry being a reality today, 
which has resulted into the competition in every aspects in 
power systems; be it in power generation, or in transmission 
or in energy consumption, professional management of 
electric energy is of utmost importance. Many power 
systems not only are being pushed to their limits to meet 
their customers’ demands, but also spend a lot of resources 
in their operation scheduling. Furthermore, power systems 
need to operate at even higher efficiency in a deregulated 
electricity market whereby the generating companies 
(Gencos) and distribution companies (Discos) have to 
compete in order to maximize their profits. Accurate 
prediction of load consumption pattern is becoming very 
important function to a utility company, as it is needed to 
support for wiser management decisions. A forecast that 
exceeds the actual load may lead to extra power being 
generated and therefore may result in excessive investment 
in a power plant that is not fully utilized. On the other hand, 
a forecast that is too low may lead to some revenue loss due 
to loss of opportunity of selling power to neighboring 
utilities. Hence, accurate electricity load forecasting (LF), 
including very short-term, short-term, mid-term, and long-
term, plays a vital role in ensuring adequate electricity 
generation to meet the customer’s demands in the future. LF  
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also helps to build up cost effective risk management plans 
for the participating companies in the electricity market. 
Consequently, good operational, planning and intelligent 
management decision making, such as, economic scheduling 
of generation capacity, scheduling of fuel purchase, ability 
to avoid unnecessary start-ups of generating units, planning 
the scheduling of peaking power, buying or selling 
electricity at best price, and scheduling of ancillary services, 
all of them can be carried out based on accurate LF, which 
forecasts the load of a few minutes, hours, days, weeks, 
months ahead. The aim of LF is to predict future electricity 
demand based on historical load data, and currently available 
data. 

To facilitate accurate load-forecasting analysis, a 
robust noise filtering and trend analysis algorithm must be 
used to enable effective eventual automation of the analysis 
of large volumes of data generated by the monitoring and 
recording of load consumption readings in any particular 
system. Currently, several forecasting schemes utilize 
Artificial Intelligence (AI) methods like ANN and GA to 
perform load-forecasting tasks. The common problem with 
such a method is that an AI scheme is only as intelligent as 
the program that trains it. This in turns depends heavily on 
the reliability of the training data collected. If such training 
data were in the first place corrupted by noise, it would 
mean that pre-processing of such data would be necessary. 
All these add to the implementation cost and set-up time. A 
good trend analysis scheme should be able to de-noise the 
electrical noise inherent in the data, and disregard portions 
of data where monitoring devices might have failed, giving 
lower resolution readings as a result of, and be able to take a 
macro view of the trend while preserving temporal 
information. The analysis of non stationary signals like load 
consumption data often involves a compromise between how 
well important transients can be located and how finely 
evolutionary behaviors can be detected. Extremely noisy 
data poses a problem to the operator as how to ascertain the 
amount of noise in the retained high frequency transient data 
[19].  

The interest in applying neural networks to electric 
load forecasting began more than a decade ago. Artificial 
neural networks based methods for forecasting have shown 
ability to give better ability in dealing with the nonlinearity 
and other difficulties in modeling of the time series data. 
ANNs have been applied recently in the area of time-series 
forecasting due to their flexibilities in data modeling [1-2]. 
Most of the approaches reported since are based on the use 
of an MLP network as an approximator of an unknown 
nonlinear relation. There have been some pioneering works 
on applying wavelet techniques together with ANN to time 
series forecasting, [3-7]. Among ANN based forecasting 
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methods, Radial Basis Function (RBF) networks have been 
widely used primarily because of their simple construction 
and easier training is as compared to Multi-layer Perceptrons 
(MLPs) in addition to their capability in inferring the hidden 
relationship between input and desired target patterns. This 
capability is attributed to its property that it can approximate 
any continuous function to any degree of accuracy by 
constructing localized radial basis functions. From the 
standpoint of preserving characteristics of different classes, 
this local approximation approach has the advantage over 
the global approximation approach of multi-layer perception 
networks. 

As large amounts of historical load patterns are 
needed in a typical load-forecasting algorithm, even low 
sampling rates of 1 sample per minute generates a huge 
amount of data. Hence, the effective compression of large 
data and faithful reconstruction of original signal from 
compressed data is a major challenge for time series data. 
Also, when an ANN, especially RBF network, is trained 
with huge data (with noise), it may result into not only a big 
network model and very time consuming training but also 
that the network may fail to capture the true features in the 
data. With the development of wavelet transforms, the 
difficulty of effective data compression and faithful retrieval 
of original data   can be well tackled. This tempted 
researchers to try RBF networks model combined with 
wavelet transformed data for capturing useful information on 
various time scales. These strategies approximate a time-
series at different levels of resolution using multi-resolution 
decomposition. Recent works [10] stresses on the use of 
shift invariant wavelet transforms, which is an auto 
correlation shell representation technique, for making the 
analysis of time series data easier. This technique is 
employed to reconstruct singles after wavelet 
decomposition. With the help of this technique, a time series 
can be expressed as an additive combination of the wavelet 
coefficients at different resolution levels. These data are then 
applied to build Neural-Wavelet based forecasting models to 
predict electricity demand as from the data obtained from a 
real electricity market. 

In this work, autocorrelation shell representation 
base wavelet transform is used to approximate Short-term 
Load Forecast (STLF) at different levels of resolution using 
multi-resolution decomposition.  This decomposed data is 
used for training the RBF network for predicting the wavelet 
coefficients of future loads. RBF networks optimized with 
the help of FPGA.  This technique is then applied to build 
Neural-Wavelet based forecasting models to predict 
electricity demand as from the data obtained from a real 
electricity market. 
 
In view of the above, the main objectives of the present 
work are: 

 
(i) To develop a wavelet based RBF network model for 

accurate prediction of short-term load forecast. The 
use of neural network will enable to online prediction 
of STLF in an effective and efficient way.  

The rest of the paper is organized as follows: In Section II 
describes the concept of wavelet transforms and their use for 
STLF and section III presents the concept of RBF network 
and development of hybrid wavelet-RBF model. Section IV 
presents the experimental results together with discussions.  
Conclusions are drawn in Section V.   
 
 
II  WAVELET TRANSFORMS IN LOAD FORECAST 

Wavelet transforms [26, 27] though known 
previously has gained much attention only recently. It has 
been exploited in many fields like seismic studies, image 
compression, signal processing processes and mechanical 
vibrations. The flexible time-scale representations of wavelet 
transform has found its place in many applications that 
traditionally used modified forms of Fourier Transforms 
(FT) like Short Time FT (STFT) and the Gabor Transforms. 
Its impressive temporal content and frequency isolation 
features have tempted researchers to use them in the area of 
power systems analysis.  
Wavelet transforms provide a useful decomposition of a 
signal, or time series, so that faint temporal structures can be 
revealed and handled by nonparametric models. They have 
been used effectively for image compression, noise removal, 
object detection, and large-scale structure analysis, among 
other applications. 
 
 
2.1 TIME SERIES AND WAVELET DECOMPOSITION 

IN LOAD FORECASTING 
 
2.1.1 Á TROUS WAVELET DECOMPOSITION 

The continuous wavelet transform of a continuous 
function produces a continuum of scales as output. On the 
other hand, input data is usually discretely sampled, and 
furthermore a dyadic or two-fold relationship between 
resolution scales is both practical and adequate. The latter 
two issues lead to the discrete transform. Fig.1 shows the 
wavelet decomposition. 
Wavelet decomposition provides a way of analyzing a signal 
in both time and frequency domains. For a suitably chosen 
mother wavelet function ψ a function f can be expanded as: 
           

)1()()( 22 2/ kttf jj

j k
jkw −= ∑ ∑

∞

−∞=

∞

−∞=
ψ            

where the functions ψ(2j t – k) are all orthogonal to each 
other. The coefficients wjk gives information about the 
behavior of the function f concentrating on the effects of 
scale around 2-j near time t×2-j. This wavelet decomposition 
of a function is closely related to a similar decomposition 
(the discrete wavelet transform, DWT) of a signal observed 
in discrete time. 
It is well known that DWT has many advantages in 
compressing a wide range of signals observed in the real 
world. However, in time series analysis, DWT often suffers 
from a lack of translation invariance. This means that DWT 
based statistical estimators are sensitive to the choice of 
origin. 
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The output of a discrete wavelet transform can take various 
forms [21]. Traditionally, a triangle (or pyramid in the case 
of 2-dimensional images) is often used to represent all that is 
worth considering in the sequence of resolution scales. Such 
a triangle comes about as a result of decimation or the 
retaining of one sample out of every two. The major 
advantage of decimation is that just enough information is 

 
 
Fig. 1 Wavelet Decomposition Process 
 
 
retained to allow exact reconstruction of the input data. 
Therefore decimation is ideal for effective compression. 
However, it can be easily shown that the storage required for 
the wavelet-transformed data is exactly the same as is 
required by the input data. The computation time for many 
wavelet transform methods is also linear in the size of the 
input data, i.e. ( )nO  or n-length input time series. Also, 
with the decimated form of output it is less easy to visually 
or graphically relate information at a given time point at 
different scales. More problematic is their lack of shift 
invariance. This means that if the last few values of the input 
time series are deleted, then the wavelet transformed, 
decimated output data will be quite different from 
heretofore. One way to solve this problem at the expense of 
greater storage requirements is by means of a redundant or 
non-decimated wavelet transform. 

A non-decimated wavelet transform based on an n-
length input time series, then, has an n-length resolution 
scale for each of the resolution levels of interest. Therefore, 
information at each resolution scale is directly related at 
each time point. This results in shift invariance. Finally, the 
extra storage requirement is by no means excessive. 
An à trous algorithm is used to realize the shift-invariant 
wavelet transforms. Such transforms are based on the so-
called auto-correlation shell representation [10] by dilations 
and translations of the auto-correlation functions of 
compactly supported wavelets. 
By definition, the auto-correlation functions of a compactly 
supported scaling function φ(x) and the corresponding 
wavelet Ψ(x) are as follows:  
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A set of filters 11}{ −≤≤+−= LkLkpP  and 

11}{ −≤≤+−= LkLkqQ  can be defined as:  
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Using the filters P and Q, the pyramid algorithm for 
expanding into the auto-correlation shell can be obtained as: 
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These shell coefficients obtained from Eqs. (5) and (6) can 
then be used to directly reconstruct the signals. Given 
smoothed signal at two consecutive resolution levels, the 
detailed signal can be derived as: 

)()(2)( 1 kckckw jjj −= − …………………………(7) 
The process of generating wavelet coefficient series is 
further illustrated with the block diagram as shown in Fig.2. 
Then the original signal )(0 kc  can be reconstructed from 
the coefficients { }

10,1 0
)(

−≤≤≤≤ Nknjj kw  and 

residual{ }
10

)(
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for k=0,…, N−1, where )(

0
kcn  is the final smoothed signal. 

To make more precise predictions the most recent data shall 
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Fig.2. À Trous Wavelet Transform of a Time-Series Signal  
 

 
 

Fig. 3: Wavelet Recombination Process 
 
be used. In case of adaptive learning, the previous data is 
penalized with forgetting factors. The time-based à trous 
filters similar to that of are used to deal with the boundary 
condition. Fig.3 shows the wavelet recombination process. 
 
 
III. RADIAL BASIS NETWORKS 

An RBF is a function which has in-built distance 
criterion with respect to a center [29]. A typical RBF neural 
network consists of three layers (input, hidden, output). The 
activation of a hidden neuron is determined in two steps: 
The first is to compute the distance (usually the Euclidean 
norm) between the input vector and a center ic  that 
represents the ith hidden neuron; second, a function, that is 
usually bell shaped, is applied, using the obtained distance to 
get the final activation of the hidden neuron. In the present 
case the well known Gaussian function G(x) is used. 

                              

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
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σ
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The parameter σ is called unit width (spread factor) and is 
determined using the GA. All the widths in the network are 
fixed to the same value and this results in a simpler training 
strategy. The activation of a neuron in the output layer is 
determined by a linear combination of the fixed nonlinear 
basis functions, i.e. 

                                ∑
=

+=
M

i
ii xwwxF

1
0 )()( φ ,           (10) 

where ( )ii cxGx −=)(φ  and iw  are the adjustable 
weights that link the output nodes with the appropriate 
hidden neurons and 0w is the bias weight. These weights in 
the output layer can then be learnt using the least-squares 
method. 
The present work adopts a systematic approach to the 
problem of centre selection. Because a fixed center 
corresponds to a given regressor in a linear regression 
model, the selection of RBF centres can be regarded as a 
problem of subset selection. The orthogonal least squares 
(OLS) method [8] can be employed as a forward selection 
procedure that constructs RBF networks in a rational way. 
The algorithm chooses appropriate RBF centres one by one 
from training data points until a satisfactory network is 
obtained. Each selected centre minimizes the increment to 
the explained variance of the desired output, and so ill-
conditioned problems occurring frequently in random 
selection of centres can automatically be avoided. In contrast 
to most learning algorithms, which can only work if a fixed 
network structure has first been specified, the OLS algorithm 
is a structural identification technique, where the centres and 
estimates of the corresponding weights can be 
simultaneously determined in a very efficient manner during 
learning. OLS learning procedure generally produces an 
RBF network smaller than a randomly selected RBF 
network. Due to its linear computational procedure at the 
output layer, the RBF is shorter in training time compared to 
its back propagation counter part. 
A major drawback of this method is associated with the 
input space dimensionality. For large numbers of inputs 
units, the number of radial basis functions required, can 
become excessive. If too many centres are used, the large 
number of parameters available in the regression procedure 
will cause the network to be over sensitive to the details of 
the particular training set and result in poor generalization 
performance (overfit). 
The present work uses a floating point GA based algorithm 
for optimizing the centers and spread factors. 
 
3.1 A HYBRID NEURAL-WAVELET MODEL FOR 

SHORT-TERM LOAD PREDICTION 
 
The proposed hybrid neural-wavelet model for short-term 
load prediction is shown in Fig. 4. Given the time series f(n), 
n=1,…, N, the aim is to predict the l-th sample ahead, f(N+l), 
of the series. As a special case, l=1 stands for single step 
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prediction. For each value of l a separate prediction 
architecture is trained accordingly. The hybrid scheme 
basically involves three stages [3]. At the first stage, the time 
series is decomposed into different scales by autocorrelation 
shell decomposition; at the second stage, each scale is 
predicted by a separate RBF network; and at the third stage, 
the next sample of the original time series is predicted by 
another RBF network using the different scale’s prediction. 
For time series prediction, correctly handling the temporal 
aspect of data is one of the primary concerns. The time-
based à trous transform as described above provides a 
simple but robust approach. Here we introduce an à trous 
wavelet transform based on the autocorrelation shell 
representation for the prediction model usage. This approach 
is realized by applying Eqs. (7) and (8) to successive values 
of t. As an example, given an electricity demand series of 
1008 values, we hope to extrapolate into the future with 1 or 
more than 1 subsequent values. By the time-based à trous 
transform, we simply carry out a wavelet transform on 
values x1–x1008. The last values of the wavelet coefficients at 
time-point t=1008 are kept because they are the most critical 
values for  
 
 

 
 
 
Fig. 4: Overview of the neural-wavelet multiresolution 
forecasting system. w1, …,wk are wavelet coefficients, c is 
the residual coefficient series. 
 
prediction. Repeat the same procedure at time point t=1009, 
1010… repeatedly. We empirically determine the number of 
resolution levels J, mainly depending on the inspection of 
smoothness of the residual series for a given J. Much of the 
high-resolution coefficients are noisy. Prior to forecasting, 
we get an over complete, transformed dataset. 
 
In Fig.5, we show the behavior of the four-wavelet 
coefficients over 1008 points for a load series. Note that the 
data have been normalized for wavelet analysis. 
Normalization of data is an important stage, for training the 
neural network. The normalization of data not only 
facilitates the training process but also helps in shaping the 

activation function. It should be done such that the higher 
values should not suppress the influence of lower values and 
the symmetry of the activation function is retained. The 
input load data is normalized between the minimum value,   
-1 and the maximum value, +1 by using the formula. 

                 
(11) 

 
The load data should be normalized to the same range of 
values. The original time series and residual are plotted at 
the top and bottom in the same figure, respectively. As the 
wavelet level increases, the corresponding coefficients 
become smoother. As we will discuss in the next section, the 
ability of the network to capture dynamical behavior varies 
with the resolution level. 

 
 
Fig. 5: Illustrations of the à trous wavelet decomposition of 
a series of electricity demand. 
 
At the second stage, a predictor is allocated for each 
resolution level and the following wavelet’s coefficients 

j
iw (t); j=0,…, J; i=1,…, N are used to train the predictor. 

All networks used to predict the wavelets’ coefficients of 
each scale are of similar feed forward RBF perceptrons with 
D input units, one hidden layer with radial basis function as 
an activation function, and one linear output neuron. Each 
unit in the networks has an adjustable bias. The D inputs to 
the j-th network are the previous samples of the wavelets’ 
coefficients of the j-th scale. In the proposed model 
implementation, each network is trained by the orthogonal 
least squares (OLS) method, which can be employed as a 

( ) MinimumMinimumMaximum
MinimumMaximum
MinimumeActualvalu +−×
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forward selection procedure that constructs RBF networks in 
a rational way. The procedure for designing neural network 
structure essentially involves selecting the input, hidden and 
output layers. At the third stage, the predicted results of all 
the different scales )(ˆ tw j

iN + , j=0,...,J are appropriately 
combined. Here we discussed and compared three methods 
of combination. In the first method, we simply applied the 
linear additive reconstruction property of the à trous, see Eq. 
(8). The fact that the reconstruction is additive allows the 
predictions to be combined in an additive manner. For 
comparison purpose, a plain RBF was also trained and tested 
for original time series, denoted as RBF, without any 
wavelet preprocessing involved. 
The target selection is an important issue in applying neural 
networks to time series forecasting. A neural network, 
whose output neurons are reduced from two to one, will 
have half the number of network weights required. It also 
carries with important consequences for the generalization 
capability of the network. A single output neuron is the ideal 
case, because the network is focused on one task and there is 
no danger of conflicting outputs causing credit assignment 
problems in the output layer. Accordingly, it is preferred to 
have a forecasting strategy, which proceeds separately for 
each horizon in the second stage. 
The target selection is an important issue in applying neural 
networks to time series forecasting. A neural network, 
whose output neurons are reduced from two to one, will 
have half the number of network weights required. It also 
carries with important consequences for the generalization 
capability of the network. A single output neuron is the ideal 
case, because the network is focused on one task and there is 
no danger of conflicting outputs causing credit assignment 
problems in the output layer. Accordingly, it is preferred to 
have a forecasting strategy, which proceeds separately for 
each horizon in the second stage. 
 

IV RESULTS AND DISCUSSION            
 

The proposed model is tested with two sets of 
historical data containing the electricity load for the month 
of July 2005 and month of July 2006, on a half-hourly basis; 
both sets of electricity load data of Queensland. The sets of 
electricity load data are downloaded from the NEMMCO 
website [30]. 

 
The simulation results are obtained through the use of four 
different programs. These programs were written in 
MATLAB command line in association with MATLAB 
toolboxes on wavelet, and neural network. Programs are run 
in a PC of Pentium IV, 256 MB RAM, 3.2 GHz.   
Before the wavelet decomposition technique (à trous) is 
applied, the sets of historical load data are first normalized. 
 
The model is evaluated based on it prediction errors. A 
successful model would yield an accurate time-series 
forecast. The performance of the model is hence measured 

using the absolute percentage error (APE), which is defined 
as  

100×






 −
=

i

ii

x
yx

APE  

where ix  is the actual values and iy  is the predicted values 
at time instance i. This error measure is more meaningfully 
represented as an average and standard deviation (S.D.) over 
the forecasting range of interests. Additional measure of the 
error is defined from the cumulative distribution function as 
the 90th percentile of the absolute percentage error, which 
provides an indication of the behavior of the tail of the 
distribution of errors and indicates that only 10% of the 
errors exceed this value. 
 

 
(a) 

 
(b) 

 
The forecasting results from the different forecasting 
schemes are presented in Table-1. The RBF network is 
optimized using floating point GA in terms of number of  
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(c) 

 
(d) 

 
Fig. 6: (a)-(d) Forecast results of the electricity demand, on a 
testing data set, by two schemes (i) RBF only and (ii) 
wavelet-RBF model for one step and seven steps ahead. 
 
 
inputs, centers, and spread factor. The number of neurons in 
the hidden layer is auto-configured by the OLS algorithm. 
The Table-1 shows that the à trous wavelet transform system 
with adaptive combination coefficients for summing up the 
wavelet coefficients forecasting, is the best in seven step 
ahead forecasting for the testing data, with regards to the 
mean, variance and percentile over the absolute percentage 
error (APE). 
 
 
Parameters for FPGA algorithm: 
Population Size = 40 
Maximum Iterations = 30 
Operators for FPGA: 

(i) Heuristic crossover  

(ii) Uniform mutation 
(iii) Normalized geometric select function 

 
 
Table-1 Load forecast performance on testing data on APE 
measure for FGPA optimized spread factor and input. 

 

 1 2 3 4 5 6 7 
µR 5.00 5.11 5.66 6.14 6.73 7.20 7.85 
σ2

R 0.7 1.1 1.6 2.3 2.9 3.6 3.4 
ηR 0.086 0.093 0.107 0.123 0.138 0.150 0.156 
µw 1.43 1.13 1.19 1.53 2.22 1.55 1.14 
σ2

w 0.057 .0662 0.052 0.065 0.083 0.183 0.175 
ηw 0.024 0.0216 0.022 0.025 0.033 0.036 0.034 

 
σ2

R× 10 –3, σ2
w× 10 –3 

Here, subscript R refers to the results with only RBF 
networks and subscript w refers to the results with hybrid 
wavelet-RBF model 
.  
V. CONCLUSION   
A wavelet-GA-ANN based hybrid model is developed for 
accurate prediction of short-term load forecast in power 
systems. The structure of the auto-configuring RBF network 
is optimized using floating point GA. The short-term load 
data are transformed into wavelet coefficients using à trous 
wavelet transform before using them for training the RBF 
network. Use of wavelet transform ensures extraction of 
more hidden features (both in time and frequency) in a 
compressed form. The compression of data enables the RBF 
network to be more efficient. The results with different 
practical load data demonstrate that the proposed model is 
capable of accurately predicting the STLF for seven steps 
ahead. 
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