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Wavelet geographically weighted 
regression for spectroscopic 
modelling of soil properties
Yongze Song1, Zefang Shen2, Peng Wu1 & R. A. Viscarra Rossel2*

Soil properties, such as organic carbon, pH and clay content, are critical indicators of ecosystem 
function. Visible–near infrared (vis–NIR) reflectance spectroscopy has been widely used to cost-
efficiently estimate such soil properties. Multivariate modelling, such as partial least squares 
regression (PLSR), and machine learning are the most common methods for modelling soil properties 
with spectra. Often, such models do not account for the multiresolution information presented in 
the vis–NIR signal, or the spatial variation in the data. To address these potential shortcomings, we 
used wavelets to decompose the vis–NIR spectra of 226 soils from agricultural and forested regions 
in south-western Western Australia and developed a wavelet geographically weighted regression 
(WGWR) for estimating soil organic carbon content, clay content and pH. To evaluate the WGWR 
models, we compared them to linear models derived with multiresolution data from a wavelet 
decomposition (WLR) and PLSR without multiresolution information. Overall, validation of the 
WGWR models produced more accurate estimates of the soil properties than WLR and PLSR. Around 
3.5–49.1% of the improvement in the estimates was due to the multiresolution analysis and 1.0–5.2% 
due to the integration of spatial information in the modelling. The WGWR improves the modelling of 
soil properties with spectra.

Soil properties are critical indicators of ecosystem  function1,2. �ey can directly indicate the quality of ecosystem 
services, including food and energy production, plant growth, carbon storage, regulation of greenhouse gas 
emissions and climate  change3–7. Soil organic carbon, clay content and pH are essential soil properties a�ecting 
soil nutrient supply and plant  development8. However, the measurement of these soil properties remains chal-
lenging because conventional analytical methods are time-consuming and  expensive9,10. Di�use re�ectance soil 
spectroscopy, for example, using visible and near infrared (vis–NIR) spectra, has been proposed as a means to 
overcome those issues. �e physcial basis of vis–NIR spectroscopy relies on overtones and combination bands 
from fundamental molecular vibrations of bonds in molecules of soil consituents, which occur in the mid infra-
red  region11,12. Increasingly, the method has been used to estimate soil properties and to estimate their values 
more rapidly and cost-e�ciently than conventional laboratory analytical  methods13,14. Another advantage of 
the method is that a vis–NIR spectrum can be used to simultaneously characterise multiple soil  properties4.

Methods for modelling continuous soil properties with highly collinear spectra include multivariate statistics 
and machine learning. �e most common statistical methods are principal component regression (PCR)15,16 and 
partial least squares regression (PLSR)17,18. Di�erent machine learning algorithms also have been used, including 
support vector machines, arti�cial neural networks, random forests and other regression  trees19. More recently, 
convolutional neural network (CNN) and other deep learning architectures are also being  developed20–22.

Wavelets have been successfully used with spectra in soil science and other �elds of  research4,23,24. Studies 
have demonstrated that the discrete wavelet transform (DWT) can improve the analysis of soil di�use re�ectance 
spectra for the prediction of soil  properties14. �ey showed that multiresolution analysis (MRA) of soil di�use 
re�ectance spectra could identify di�erent spectral features that occurred over di�erent resolutions (or scales). 
�ey also showed that the highly collinear spectra could be transformed into a smaller number of orthogonal 
wavelet coe�cients that produced more parsimonious and accurate multivariate calibrations.

Soil properties, like other natural phenomena, vary spatially and at di�erent  scales25–27. �is variability is due 
to complex interactions between the environmental factors that a�ect the formation and distribution of  soil28. 
�e incorporation of spatial information in aspatial models can improve the accuracy of their  predictions29. 
Spectroscopic modelling of soil properties o�en ignores geography and the spatial dependence of soil properties. 
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Only a few studies have tried to account for geography in spectroscopic modelling. For example, the states or 
territories of Australia were used as categorical variables to account for any variance in the modelling of Austral-
ian soil spectra resulting from  geography30. Sila et al.31 used regression–kriging to predict soil properties with 
mid-infrared spectra of soil samples, where residuals from a regression �t were informed using variograms.

Geographically weighted regression (GWR) might be a useful tool for modelling spectra and accounting for 
the geographic relationships and spatial non-stationarity in the  data32. GWR, developed  by33, supports locally 
varied regression parameter estimates for each explanatory variables across  space34,35. �e recent advances in 
the methodology and applications of GWR have helped to acquire new understanding of spatial processes. For 
example, basic GWR has been adapted for improved local inference of soil property  data36, it has been adapted 
to a multiscale  form37,38, to address issues of local  multicollinearity39, and to down-weight the in�uence of outli-
ers for robustly estimating the variability of local coe�cients in social  data40,41. �ese studies demonstrate the 
power and versatility of GWR for measuring spatial non-stationarity37,38,42,43. As such, GWR has been used in 
various �elds of research, including ecology and  environment44,  climate45, social  science46 and public  health47.

Here, we propose to combine wavelets with geographically weighted regression (WGWR). Our hypothesis 
is that the spectral modelling of soil properties can be improved by accounting for the multiresolution informa-
tion in the spectra and the spatial variations of the data. �us, our aim is to demonstrate the implementation of 
WGWR for modelling soil properties with vis–NIR spectra and to evaluate the performance of the WGWR by 
comparing its predictions to those from PLSR and WLR. Experiments were conducted using a spectral library 
from the south-western West of Australia (WA).

Results
�e spatial distributions of the organic carbon, clay content and pH data at the sampling locations are shown in 
Fig. 1a–c. �e statistical summary of soil properties is shown in Table 1. In the study area, the mean soil organic 
carbon is 1.61%, mean clay content is 16.64% and mean pH is 5.77. Maps of spatial distributions, density �gures, 
and statistical summaries of soil properties indicate their spatial variation across the study area.

Figure 1d, e shows the measured and transformed spectra. �e broad absorptions between 350–1100 nm 
are associated with the iron oxides hematite or goethite, but also with organic  carbon48. �e wavelengths near 

Figure 1.  Spatial and density distributions of soil organic carbon (a), clay (b) and pH values (c) in the study 
area, and statistics of vis–NIR spectra: (d) Re�ectance; (e) log(1/Re�ectance).



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:17503  | https://doi.org/10.1038/s41598-021-96772-z

www.nature.com/scientificreports/

1412 nm are generally associated with the �rst overtone of hydroxyl stretching modes of water and  minerals49. 
�e wavelengths near 1917 nm are linked with hydroxyl and H-bonding hydroxyl stretching vibrations of water 
molecules and mineral constituents of  water50. �e neighbouring wavelengths near 2207 nm are related to clay 
 minerals51,52.

Wavelet Geographically Weighted Regression (WGWR) of soil properties. Multiresolution analy-
sis. �e MRA of a vis–NIR spectrum shows six scales with detailed coe�cients and a smooth component at 
the coarsest scale (Fig. 2a). �e details at the di�erent wavelet scales reveal the multiresolution features of soil 
spectra. At the �nest scales � = 2 and 4, the high frequency elements of the spectra occur at the interface between 
the three detectors in the spectroscopic sensor, where the signal is ‘noisier’. At the medium scales � = 8 and 
16, the wavelet coe�cients depict the edges of the absorptions of the soil constituents near 595 nm, 1007 nm, 
1415 nm, 1831 nm, 1903 nm, and 2207 nm. At the coarse scales � = 32 and 64, the wavelet coe�cients represent 
the broader absorptions of soil consituents primarily near 1400 nm and 1900 nm. �e MRA results indicate that 
wavelet transformation can e�ectively identify the multiresolution local features of soil spectra.

Optimal identi�cation of wavelets. Figure 2b shows the absolute correlations (|R|) between soil organic carbon, 
clay and pH, and the wavelet coe�cients at the di�erent wavelet scales. �e larger |R| values occur at di�erent 
wavelengths and wavelet scales, showing the multiresolution features in the spectra. For organic carbon, the larg-
est |R| values at the smooth and detail components occur near 632 nm, 1894 nm, 1984 nm, 1953 nm, 985 nm, 
1004 nm and 1003 nm. For clay content the largest |R| values occur near 2246 nm, 2399 nm, 2455 nm, 1927 nm, 
1893 nm, 1892 nm and 1890 nm, and for pH near 1940 nm, 1949 nm, 1862 nm, 1906 nm, 1905 nm, 1892 nm 
and 1890 nm. �e wavelets around these wavelengths show greater correlations with the soil properties as they 
represent absorptions due to the mineral and organic composition of  soil53.

Figure 3 illustrates the procedure for selecting the optimal combinations of wavelet coe�cients for soil organic 
carbon. �e selection of optimal coe�cients for soil clay and pH followed a similar processes. According to the 
distributions of |R| values, wavelets are ranked from the highest to the lowest |R| values (Fig. 3a). Figure3b shows 
the frequency of the ranked wavelets grouped by wavelet scales. �e statistical summaries indicate that the wave-
lets at coarse scales tend to be more correlated with soil organic carbon compared with the wavelets at �ne scales.

Figure 3 c shows the wavelets selected by the multicollinearity analysis with the threshold that the maximum 
variance in�ation factor (VIF) value is lower than 10 (see "Methods" section). In this step, 17 wavelet coe�cients 
were selected. �is shows that vis–NIR spectra are highly collinear and redundant. �e number of explanatory 

Table 1.  Descriptive statistical summary of the soil properties. SD is the standard deviation, CV the coe�cient 
of variation and Skew. is the skewness coe�cient.

Soil property No. Mean SD Min. Median Max. CV (%) Skew.

Organic carbon (%) 222 1.61 2.33 0.04 0.77 13.30 1.45 2.83

Clay (%) 220 16.64 16.93 0.50 10.10 78.80 1.02 1.34

pH 223 5.77 1.27 3.60 5.40 9.10 0.22 0.86

Figure 2.  Multiresolution analysis of vis–NIR spectra: Smooth component (S) and details (Di, i = 1, 2, 3, 4, 5, 
6) at di�erent wavelet scales (a), and absolute values of correlation coe�cients between soil properties (organic 
carbon, clay and pH) and wavelets of vis–NIR spectra (b).
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wavelets are much reduced and the multicollinearity is eliminated. Figure 3 d shows the result of the �tness of the 
wavelet coe�cient selection, which we performed by a ten-fold cross validation. With increases in the number 
of wavelet coe�cients, the �tness of training data gradually increased, but that of testing data increased initially 
and decreased a�er four coe�cients. �is shows that the combination of the four coe�cients was optimal for 
modelling soil organic carbon (Fig. 3e). �e selected optimal combinations of wavelet coe�cients for clay and 
pH are shown in Fig. 4.

Geographically weighted regression. Due to the spatial non-stationarity of soil properties, GWR is used to 
model the relationships between soil properties and the selected optimal combinations of wavelets. Figure 5 
shows spatial distributions of local coe�cients of wavelets in WGWR models, where signi�cance of local coe�-
cients were tested but not shown on the maps. �e coe�cients of both training and testing data are combined on 
maps of Fig. 5. �e maps of local coe�cients indicate spatially variable coe�cients of wavelets across the study 
area for predicting soil organic carbon, clay and pH values. �e spatially variable local coe�cients also reveal the 
spatial non-stationarity of the relationships between soil properties and spectra data.

Comparing WGWR to other methods. Figure 6 shows maps of the PLSR, WLR, and WGWR residu-
als calculated on the test dataset for soil organic carbon, clay and pH, respectively. �e maps indicate that the 
absolute values of the residuals are smaller for WLR and WGWR, respectively, compared with PLSR, due to the 

Figure 3.  Process of selecting optimal combinations of wavelets for soil organic carbon prediction: (a) Ranked 
wavelets by the absolute values of correlation coe�cients; (b) Statistical summary of wavelet scales by the rank of 
wavelets; (c) Wavelets selected by a multicollinearity analysis where the maximum VIF is lower than 10; (d) Ten-
fold cross validation for selecting wavelets with the maximum testing R 2 ; and (e) Selected optimal combinations 
of wavelets for explaining soil organic carbon.
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wavelet-based multi-resolution analysis. In addition, compared to the WLR, the residuals from the WGWR are 
smaller.

�e validation results of the PLSR, WLR and WGWR are given in Table 2. In the PLSR, the (R2 ) of the models 
derived using the training data of soil organic carbon, clay and pH are 0.547, 0.674 and 0.445, and the R 2 of the 
models when generalised on the test data are 0.477, 0.389 and 0.347, respectively. Due to the incorporation of 
multi-solution information, the WLR models performed better than PLSR. Compared to PLSR, the R 2 of the 
WLR of organic carbon, clay and pH increased by 22.4%, 49.1% and 3.5%, and the RMSE reduced by 10.8%, 
17.1% and 0.9%, respectively. �e incorporation of geographical information helped to improve the accuracy of 
the spectroscopic soil property estimates. In the WGWR, the training R 2 of soil organic carbon, clay and pH are 
0.702, 0.678 and 0.414, and the test set R 2 values are 0.590, 0.587 and 0.378, respectively. Compared to WLR, the 
R 2 of the WGWR estimates of organic carbon, clay and pH increased by 1.0%, 1.2% and 5.2%, and the RMSE 
decreased by 0.7%, 0.8% and 1.5%, respectively. �us, compared to PLSR, the R 2 of the WGWR estimates of 
organic carbon, clay and pH increased by 23.6%, 50.9% and 8.8%, and their RMSE decreased by 11.4%, 17.8% 
and 2.4%, respectively.

Figure 4.  Optimal combinations of wavelets for explaining soil clay (a) and pH values (b).

Figure 5.  Distributions of local coe�cients of wavelets in WGWR of soil organic carbon (a), clay (b), and pH 
values (c). Sizes of points indicate absolute values of coe�cients.
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Figure 6.  Maps of residuals in PLSR, WLR, and WGWR for the test data of soil organic carbon (a–c), clay 
(d–f), and pH values (g–i). Regions marked with a red rectangular outline demonstrate the di�erence of the 
models and the accuracy of the estimates.

Table 2.  Assessment statistics for the validation of PLSR, WLR and WGWR.

Soil property Statistic

PLSR WLR WGWR 

Training Testing Training Testing Training Testing

Organic carbon

R2 0.547 0.477 0.646 0.584 0.702 0.590

AICc 378.4 348.7 332.2

MAE 0.630 0.744 0.527 0.613 0.473 0.626

RMSE 0.793 0.947 0.701 0.845 0.643 0.839

Clay

R2 0.674 0.389 0.655 0.581 0.678 0.587

AICc 351.1 343.2 341.7

MAE 0.506 0.746 0.523 0.641 0.505 0.633

RMSE 0.674 1.059 0.693 0.878 0.670 0.871

pH

R2 0.445 0.347 0.408 0.359 0.414 0.378

AICc − 83.3 − 90.6 − 114.1

MAE 0.731 0.621 0.761 0.618 0.757 0.614

RMSE 1.004 0.862 1.038 0.854 1.032 0.841
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In addition, the Akaike information criterion (AICc) also demonstrate the improved accuracy and parsimony 
of WGWR.

Discussion
�is study proposes a WGWR to more accurately estimate soil properties using re�ectance spectra. We dem-
onstrate that the integration of an MRA of re�ectance spectra and spatial non-stationarity in the relationships 
between soil properties and spectra can improve the spectroscopic modelling of soil properties. �e advantages 
of WGWR are the improved prediction accuracy, fewer spectral variables with reduced multicollinearity, and 
more robust estimates compared to PLSR and WLR.

�e assessments of the soil organic carbon, clay and pH estimates indicate that the multiresolution features 
of spectra modelled by wavelet-based MRA can improve the skill of the modelling by 3.5–49.1%. Viscarra Rossel 
&  Lark14 developed the modelling of soil properties with wavelets using an MRA. Compared to the approach by 
Viscarra Rossel & Lark, this study provides an alternative framework for the selection of coe�cients. Here, we 
use correlation rather than variance for the ranking of coe�cients and the VIF for eliminating multicollinearity, 
followed by ten-fold cross validation to minimise over�tting. As a result, the number of predictors were much 
reduced for modelling with WLR and WGWR. Two-thousand-one-hundred-and-��y-one vis–NIR wavelengths 
were used in the PLSR, but only 4, 7 and 6 wavelets were selected for modelling soil organic carbon, clay and 
pH with WLR and WGWR.

�e consideration of spatial non-stationarity in the WGWR, reduced errors and improved the accuracy of 
the models. �us we show that WGWR can improve the modelling of soil properties with spectra by accounting 
for both multi-resolution information and spatial non-stationarity.

Our results suggest that, if spatial information is available, geographical characteristics of soil properties 
should be considered and used in spectroscopic modelling of soil properties.

Re�ectance spectroscopy is an e�cient and cost-e�cient approach for rapidly estimating soil properties. We 
developed the WGWR that e�ectively integrates the multiresolution characteristics of soil vis–NIR spectra, the 
process of optimal wavelets identi�cation and the spatial variations of soil properties and the spectra. Compared 
to PLSR and WLR, WGWR produced more accurate estimates of soil organic carbon, clay content and pH. �e 
models were more parsimonious and thus the danger of multicollinearity of spectral variables and over�tting 
was eliminated. Improved modelling of soil properties with spectra, like we have done here, can also provide 
insights of geographical characteristics in soil-related ecosystems services, climate responses and sustainable 
development. Future studies might investigate the use of other geospatial methods for use with soil spectra, such 
as as kriging with external  dri�54.

Methods
Study area and soil observations. �e study region in the south west of WA covers about 252,100 km2 . 
It represents diverse land uses, including cropping, native forests and nature conservation. It is one of the pri-
mary agricultural production regions in  Australia55. In 2018–2019, the gross value of agricultural production 
(GVAP) in WA, primarily in the South West Agricultural Area, was about 18% of the national  GVAP56. �e 
primary grains produced in this area include wheat, barley, canola, lupins, oats, and �eld peas, where wheat 
account for 65% of annual grains in  WA57. Understanding the soil properties is essential for agricultural and 
environmental management.

We used a set of 226 soil samples collected within the study area. �e shortest distances between soil samples 
and their nearest neighbours vary from 0.24 to 84.16 km. Among the samples, 20.4% of the sample points have 
neighbour samples within 1 km, and 33.2% of the sample points are the only samples within a radius of 10 km. 
At each sampling location, samples were taken at multiple depths from the surface down to 135 cm. �e soil 
properties measured included soil organic carbon, clay content and pH measured in water. �e analytical meth-
ods used to measure these soil properties are described in  Rayment58–60. To derive a more consistent dataset for 
the modelling (described below), at the each sampling location, we took a weighted average of the soil properties 
from di�erent depths, using the depths as weights.

�e statistical distributions of soil organic carbon and clay content were negatively skewed so they were 
transformed to approximate normality using logs. Outliers were identi�ed by setting thresholds of 2.5 standard 
deviations from the mean  values61. Values that exceeded the threshold were removed. As a result, 4, 6 and 3 
outliers were removed from the organic carbon, clay and pH data, respectively.

vis–NIR spectroscopy. �e vis–NIR re�ectance spectra of 226 soil samples were measured with a Lab-
spec vis–NIR spectrometer (PANalytical Company, Boulder, CO., USA). �e spectral range of the spectrometer 
spans from 350 to 2500 nm, and it has a spectral resolution of 3 nm at 700 nm and 10 nm at 1400 and 2100 nm. 
Measurements were made with a high-intensity contact probe (also from PaNalytic) that uses a halogen bulb 
( 2901 ± 10 K) for illumination. �e contact probe measures a spot of diameter 10 mm, and it is designed to 
minimize errors associated with stray light. �e sensor was calibrated with a Spectralon® white reference panel 
once every ten measurements. For each soil sample, 30 spectra were averaged to minimize noise and so to 
maximize the signal-to-noise ratio. �e measurements were made following the protocols described in  Rossel4. 
Spectra were recorded with a sampling resolution of 1 nm so that each spectrum comprised re�ectances at 2151 
wavelengths. �e measured re�ectances, R, were �rst converted to apparent absorbance as log10(1/R).

Wavelet geographically weighted regression. To improve the modelling of soil properties with spec-
tra, we developed a WGWR model. It integrates the multiresolution information in the spectra and the spatial 
variations of soil properties. �e WGWR model consists of three steps: (1) decomposition of the vis–NIR spectra 
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with a DWT and MRA, (2) selection of an optimal set of wavelet coe�cients for the regression, and (3) GWR. 
�e work�ow is shown in Fig. 7.

First, we decomposed each vis–NIR spectrum using the DWT and MRA to reveal the multiresolution nature 
of the spectra. For the decomposition, we used the Daubechies wavelet with 4 vanishing moments. �e MRA is 
implemented via a pyramid  algorithm62, in which a spectrum is decomposed into the detail components ( Di ) at 
di�erent wavelet scales ( �i ) up to a coarsest scale, when a smooth or approximation component (S) is obtained. 
In this study, the spectrum beyond its boundaries, including the start and end of the data, is assumed to be a 
symmetric re�ection of the  spectrum63. �e sum of the detail and smooth components is the original spectrum. 
Viscarra Rossel and  Lark14 provide a description of the approach for the analysis of soil spectra. �e decomposi-
tion was performed, as above, for the vis–NIR spectra of all samples.

Second, to identify the optimal wavelet coe�cients for modelling, we correlated the soil properties to the 
wavelet coe�cients and recorded the Pearson correlation coe�cient. We then ranked the wavelet coe�cients 
according to the absolute values of correlation coe�cients (|R|). A multicollinearity analysis was then performed 
using a VIF, a measure of multicollinearity of variables in a regression model, to discard wavelet coe�cients 
that were highly correlated. Highly correlated explanatory variables can lead to unstable coe�cients and a less 
accurate  regression64,65. From the ranked set of coe�cients, the wavelet with the largest |R| was selected as the 
�rst explanatory variable to use in the regression to estimate the multicollinearity among wavelets. �en, wavelet 
coe�cients from the ranked list were sequentially added to the �rst, and a linear regression performed. If the 
VIF was smaller than 10, that wavelet coe�cient is selected, but if it was larger than 10, then that coe�cient 
was removed. �e procedure continued sequentially and the �nal selected coe�cients are uncorrelated and 
with a VIF smaller than 10. �e remaining selected wavelet coe�cients, were sequentially added one at a time 
to perform regressions using a ten-fold cross validation. We did this to eliminate over�tting in the assessments 
and modelling. �e average cross validation R 2 , and the number of wavelet coe�cients were compared to derive 
the optimal number of coe�cients with the highest average cross validation R 2 . �us, the �nal selected wavelet 
coe�cients were the optimal combination for each of the modelled soil properties.

�ird, a GWR is applied to characterise geographically local relationships between soil property and the 
optimal combination of wavelets derived from re�ectance spectra. Soil properties are spatially  correlated66,67. �e 
GWR models enable locally varied estimates of coe�cients for all explanatory variables in the regression. �e 
spatial non-stationarity of soil properties is examined using the Monta Carlo technique with the randomisation 
variability test of local coe�cients and the coe�cient of variations of local  coe�cients68–70. In the GWR model, 

Figure 7.  Flowchart of the wavelet geographically weighted regression (WGWR) model for soil prediction.
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the location-wise coe�cients of the selected wavelets are estimated with distance-decay spatial weights. �e 
GWR model for estimating the geographically local relationships is computed as:

where s is the observation of a soil property (e.g. organic carbon) at the location u , wi(i = 1, . . . ,m) is the ith 
selected optimal wavelet at the location u , βi(u) is the location-wise regression coe�cient, and ǫ is the normally 
distributed random error. �e spatially adaptive Gaussian kernel function is applied in the weighting scheme, 
where the optimal bandwidth is determined through the adaptive process, and the number of neighbour obser-
vations is optimised by minimising the AICc of the  model32.

Model comparison and validation. We compared the WGWR to PLSR and WLR. Our implementation 
of PLSR used the iterative singular value decomposition algorithm. �e explanatory variables in the PLSR are 
the selected optimal combination of the PLS components of wavelet transformed spectra. To select the optimal 
number of PLS factors to use in the regression we used a cross validation and selected as many factors as neces-
sary to produced the the smallest  error71. For the WLR, the selection of the optimal wavelet coe�cients to use 
was the same as that for the WGWR (see above).

�e methods were evaluated with an external validation process. It involved selecting, at random, 70% of 
the observations to train the models and the remained 30% of the observations to test the estimates. To evaluate 
the performance of the methods we used the coe�cient of determination (R2 ), the mean absolute error (MAE) 
to assess bias and root mean squared error (RMSE) to assess inaccuracy. In the cross validation, values of soil 
properties have been back-transformed, since they have been transformed before modelling. To further compare 
AICc values of di�erent models, relative likelihood of the models was computed as:

where ηj and AICcj are the relative likelihood and AICc value of jth model, respectively; and AICcmin is the 
minimum AICc value among optional models. �e ηj is used to explain the probability that the minimised 
information loss in the jth  model72.

All computations were performed in the R so�ware version 4.0.373. �e wavelet analysis was performed using 
the package “waveslim”63, the PLSR was performed using the package “pls”74, and the GWR was performed using 
the package “spgwr”75.
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