Wavelet Methods for Time Series Analysis

Donald B. Percival UNIVERSITY OF WASHINGTON, AND MATHSOFT, SEATTLE

> Andrew T. Walden Imperial college of science, technology and medicine, london

Contents

Same and the second second

No. of Manufacture Contractor

Preface	xiii	
	tions and Notation xvii	
1. Intr	1. Introduction to Wavelets 1	
1.0	Introduction	
1.1	The Essence of a Wavelet	
	Comments and Extensions to Section 1.1 4	
1.2	The Essence of Wavelet Analysis	
	Comments and Extensions to Section 1.2 12	
1.3	Beyond the CWT: the Discrete Wavelet Transform 12	
	Comments and Extensions to Section 1.3 19	
2. Rev	iew of Fourier Theory and Filters 20	
2.0	Introduction	
2.1	Complex Variables and Complex Exponentials	
2.2	Fourier Transform of Infinite Sequences	
2.3	Convolution/Filtering of Infinite Sequences	
2.4	Fourier Transform of Finite Sequences	
٠2.5	Circular Convolution/Filtering of Finite Sequences	
2.6	Periodized Filters	
	Comments and Extensions to Section 2.6	
2.7	Summary of Fourier Theory 35	
2.8	Exercises	

Contents

3.	Orth	onormal Transforms of Time Series	41
	3.0	Introduction	41
	3.1	Basic Theory for Orthonormal Transforms	41
	3.2	The Projection Theorem	44
	3.3	Complex-Valued Transforms	
	3.4	The Orthonormal Discrete Fourier Transform	
		Comments and Extensions to Section 3.4	52
	3.5	Summary	
	3.6	Exercises	54
4.	The	Discrete Wavelet Transform	56
	4.0	Introduction	56
	4.1	Qualitative Description of the DWT	57
		Key Facts and Definitions in Section 4.1	67
		Comments and Extensions to Section 4.1	68
	4.2	The Wavelet Filter	68
		Key Facts and Definitions in Section 4.2	74
		Comments and Extensions to Section 4.2	75
	4.3	The Scaling Filter	
		Key Facts and Definitions in Section 4.3	
		Comments and Extensions to Section 4.3	
	4.4	First Stage of the Pyramid Algorithm	
		Key Facts and Definitions in Section 4.4	
		Comments and Extensions to Section 4.4	
	4.5	Second Stage of the Pyramid Algorithm	
		Key Facts and Definitions in Section 4.5	
	4.6	General Stage of the Pyramid Algorithm	
		Key Facts and Definitions in Section 4.6	
		Comments and Extensions to Section 4.6	
	4.7	The Partial Discrete Wavelet Transform	
	4.8	Daubechies Wavelet and Scaling Filters: Form and Phase	
		Key Facts and Definitions in Section 4.8	
	1.0	Comments and Extensions to Section 4.8	
	4.9	Coiflet Wavelet and Scaling Filters: Form and Phase	
	4.10	Example: Electrocardiogram Data	
	4 1 1	Comments and Extensions to Section 4.10	
	4.11	Practical Considerations	
	4 1 0	Comments and Extensions to Section 4.11	
		Summary	
	4.13	Exercises	126

Conten	ts
00100010	00

5. The	Maximal Overlap Discrete Wavelet Transform	159
5.0	Introduction	159
5.1	Effect of Circular Shifts on the DWT	
5.2	MODWT Wavelet and Scaling Filters	
5.3	Basic Concepts for MODWT	
	Key Facts and Definitions in Section 5.3	
5.4	Definition of <i>j</i> th Level MODWT Coefficients	
	Key Facts and Definitions in Section 5.4	
	Comments and Extensions to Section 5.4	174
5.5	Pyramid Algorithm for the MODWT	174
	Key Facts and Definitions in Section 5.5	177
	Comments and Extensions to Section 5.5	177
5.6	MODWT Analysis of 'Bump' Time Series	179
5.7	Example: Electrocardiogram Data	182
5.8	Example: Subtidal Sea Level Fluctuations	185
5.9	Example: Nile River Minima	190
5.10) Example: Ocean Shear Measurements	193
5.11	Practical Considerations	195
5.12	2 Summary	200
5.13	B Exercises	204
6. The	Discrete Wavelet Packet Transform	206
6.0	Introduction	206
6.1	Basic Concepts	
	Comments and Extensions to Section 6.1	
6.2	Example: DWPT of Solar Physics Data	
6.3	The Best Basis Algorithm	
	Comments and Extensions to Section 6.3	
6.4	Example: Best Basis for Solar Physics Data	226
6.5	Time Shifts for Wavelet Packet Filters	
	Comments and Extensions to Section 6.5	231
6.6	Maximal Overlap Discrete Wavelet Packet Transform	231
6.7	Example: MODWPT of Solar Physics Data	234
6.8	Matching Pursuit	239
6.9	Example: Subtidal Sea Levels	243
	Comments and Extensions to Section 6.9	247
6.10) Summary	247
6.11	l Exercises	253
7. Ran	dom Variables and Stochastic Processes	255
7.0	Introduction	255
7.1	Univariate Random Variables and PDFs	
7.2	Random Vectors and PDFs	
7.3	A Bayesian Perspective	
7.4	Stationary Stochastic Processes	
7.5	Spectral Density Estimation	

A DECEMBER OF THE OWNER OWNE

Control and also which and

 $\mathbf{i}\mathbf{x}$

Contents

		Comments and Extensions to Section 7.5	278
	7.6	Definition and Models for Long Memory Processes	
		Comments and Extensions to Section 7.6	
	7.7	Nonstationary $1/f$ -Type Processes	287
		Comments and Extensions to Section 7.7	289
	7.8	Simulation of Stationary Processes	290
		Comments and Extensions to Section 7.8	292
	7.9	Simulation of Stationary Autoregressive Processes	292
	7.10	Exercises	293
8.	The	Wavelet Variance	295
	8.0	Introduction	295
	8.1	Definition and Rationale for the Wavelet Variance	
		Comments and Extensions to Section 8.1	
	8.2	Basic Properties of the Wavelet Variance	
		Comments and Extensions to Section 8.2	
	8.3	Estimation of the Wavelet Variance	
		Comments and Extensions to Section 8.3	
	8.4	Confidence Intervals for the Wavelet Variance	
		Comments and Extensions to Section 8.4	
	8.5	Spectral Estimation via the Wavelet Variance	
		Comments and Extensions to Section 8.5	
	8.6	Example: Atomic Clock Deviates	
	8.7	Example: Subtidal Sea Level Fluctuations	
	8.8	Example: Nile River Minima	
	8.9	Example: Ocean Shear Measurements	
		Summary	
	8.11	Exercises	337
9.	Anal	ysis and Synthesis of Long Memory Processes	340
	9.0	Introduction	340
	9.1	Discrete Wavelet Transform of a Long Memory Process	
		Comments and Extensions to Section 9.1	
	9.2	Simulation of a Long Memory Process	
		Comments and Extensions to Section 9.2	
	9.3	MLEs for Stationary FD Processes	
		Comments and Extensions to Section 9.3	
	9.4	MLEs for Stationary or Nonstationary FD Processes	
		Comments and Extensions to Section 9.4	
	9.5	Least Squares Estimation for FD Processes	
		Comments and Extensions to Section 9.5	
	9.6	Testing for Homogeneity of Variance	
		Comments and Extensions to Section 9.6	
	9.7	Example: Atomic Clock Deviates	
	9.8	Example: Nile River Minima	386
	9.9	Summary	388

	Contents	xi
	9.10 Exercises	391
10.	Wavelet-Based Signal Estimation	393
	10.0 Introduction	393
	10.1 Signal Representation via Wavelets	
	10.2 Signal Estimation via Thresholding	
	10.3 Stochastic Signal Estimation via Scaling	
	10.4 Stochastic Signal Estimation via Shrinkage	
	Comments and Extensions to Section 10.4	
	10.5 IID Gaussian Wavelet Coefficients	417
	Comments and Extensions to Section 10.5	
	10.6 Uncorrelated Non-Gaussian Wavelet Coefficients	
	Comments and Extensions to Section 10.6	
	10.7 Correlated Gaussian Wavelet Coefficients	
	Comments and Extensions to Section 10.7	
	10.8 Clustering and Persistence of Wavelet Coefficients	
	10.9 Summary	
	10.10 Exercises	
11.	Wavelet Analysis of Finite Energy Signals	457
	11.0 Introduction	457
	11.1 Translation and Dilation	457
	11.2 Scaling Functions and Approximation Spaces	459
	Comments and Extensions to Section 11.2	462
	11.3 Approximation of Finite Energy Signals	462
	Comments and Extensions to Section 11.3	464
	11.4 Two-Scale Relationships for Scaling Functions	464
	11.5 Scaling Functions and Scaling Filters	
	Comments and Extensions to Section 11.5	472
	11.6 Wavelet Functions and Detail Spaces	472
	11.7 Wavelet Functions and Wavelet Filters	476
	11.8 Multiresolution Analysis of Finite Energy Signals	478
	11.9 Vanishing Moments	483
	Comments and Extensions to Section 11.9	486
	11.10 Spectral Factorization and Filter Coefficients	487
	Comments and Extensions to Section 11.10	
	11.11 Summary	494
	11.12 Exercises	500
Ap	pendix. Answers to Embedded Exercises	501
Ref	erences	552
Aut	thor Index	565
Sub	ject Index	569