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Abstract

This article reviews state-of-the-art adaptive, multiresolution wavelet

methodologies for modeling and simulation of turbulent flows with various

examples. Different numerical methods for solving the Navier-Stokes equa-

tions in adaptive wavelet bases are described. We summarize coherent vortex

extraction methodologies, which utilize the efficient wavelet decomposition

of turbulent flows into space-scale contributions, and present a hierarchy of

wavelet-based turbulence models. Perspectives for modeling and computing

industrially relevant flows are also given.
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1. INTRODUCTION

Wavelets, introduced by Grossmann & Morlet (1984), have significantly impacted many areas

of science and engineering (e.g., signal and image processing, speech recognition, and computer

graphics). In fluid mechanics, wavelets were first used in the early 1990s to analyze turbulent flows

(Farge 1992, Farge & Rabreau 1988, Meneveau 1991). Many attractive mathematical properties

of wavelets [namely, efficient multiscale decompositions, localization properties in physical and

wave-number spaces, and the existence of recursive O(N ) fast wavelet transform], together with

techniques for preconditioning and compression of operators and matrices, motivated their use

for the numerical solution of partial differential equations (PDEs) on adaptive grids. Wavelet

methods have been developed for most kinds of linear PDEs, such as Laplace/Poisson equations,

and heat and transport equations (e.g., see Dahmen 1997). For nonlinear PDEs, there also exists

a large spectrum of adaptive schemes, for example, to solve Burgers’ equation (e.g., Liandrat

& Tchamitchian 1990), reaction-diffusion equations (e.g., Fröhlich & Schneider 1994, 1997),

Stokes’ equation (e.g., Dahmen et al. 1996, 2002), poro-viscoelastic and viscoelastic equations

(e.g., Vasilyev et al. 1998, 2001), the Kuramoto-Sivashinsky equation (e.g., Myers et al. 1995), and

the nonlinear Schrödinger equation (e.g., Gagnon & Lina 1994).

Wavelet methods in computational fluid dynamics (CFD) compose a relatively new research

field and appeared in the literature only a little more than a decade ago. The ability of wavelets

to identify and isolate localized structures such as shock waves and vortices, combined with the

mathematical rigor of multiresolution analysis, made them attractive candidates for adaptive com-

putational approaches and turbulence modeling. Multiresolution schemes, especially in the context

of compressible Euler equations, have been intensively studied in recent years, and a number of

books dealing with the subject are already available (e.g., Cohen 2000, Müller 2003). Conversely,

the use of wavelets for modeling and simulations of turbulent flows is a relatively new area of

research, with a limited number of people working in the field, and the need for a systematic

introduction to the subject is rather pressing. This review aims to provide an overview of wavelet

methodologies in CFD, summarizes existing wavelet-based numerical algorithms, and discusses

state-of-the-art turbulence modeling and simulations using wavelets, and their future potential

for CFD.

CFD of turbulent flows is still a major challenge and preoccupation for the scientific com-

munity. The need to accurately predict the effect of turbulent flows impacts virtually every field

of science and engineering. Turbulence is characterized by its intrinsic multiscale behavior, its

self-organization into coherent structures, and a generic randomness. The major computational

challenge comes from the fact that turbulence is active over a large and continuous range of length

scales, which increases with Reynolds number such as Re1/2 and Re3/4 for two-dimensional (2D)

and 3D turbulence, respectively. As a result, direct approaches that solve the governing Navier-

Stokes equations at all scales without any model [i.e., by direct numerical simulation (DNS)] are

limited by the available computing power, which restricts the applicability of DNS to flows of en-

gineering interest. Hence turbulence models are unavoidable to reduce computational complexity

while capturing the physics of turbulent flows.

The traditional methodology that dominated turbulence modeling over the past 40 years is

the Reynolds-averaged Navier-Stokes (RANS) approach (e.g., Durbin & Reif 2001, Gatski et al.

1996), in which time- or ensemble-averaged flow fields are computed. This approach can capture

some basic features in turbulent flows but cannot accurately predict the spatiotemporal character-

istics. This motivated the development of large-eddy simulations (LES), in which a formal scale

separation is obtained by means of low-pass filtering of the Navier-Stokes equations. The filtered

Navier-Stokes equations are closed by modeling the subgrid-scale (SGS) stresses that account for
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the effect of the unresolved small scales (e.g., see Germano et al. 1991, Lesieur & Métais 1996,

Meneveau & Katz 2000). The inherent limitation of both RANS and LES approaches is that

neither takes advantage of the fundamental properties of turbulence, namely, its multiscale char-

acter, its self-organization into coherent structures, and spatiotemporal intermittency. As noted by

Yakhot & Sreenivasan (2005), one needs a way to detect and track energy-containing motions to

describe turbulent flows with a minimum number of degrees of freedom. Wavelet multiresolution

analysis offers such a capability together with a different perspective on turbulence modeling.

Wavelet-based turbulence models rely on observations showing that for a given flow realization,

the dynamically active scales in turbulent flows are not distributed homogeneously, neither in space

nor in time, which corresponds to the flow intermittency. To benefit from this property, a suitable

representation of the flow should reflect the sparsity of the fine-scale activity, in both space and

time. Wavelets yield a compressed representation of turbulent flow fields; i.e., only few wavelets,

with the largest in magnitude coefficients, are sufficient to represent the dynamically active part

of the flow.

Wavelets offer a unique hierarchical framework for modeling and simulating turbulent flows

based on the ability of wavelet multiresolution analysis to identify and isolate the energetic co-

herent structures that govern the dynamics of the flow. Sparse (compressed) representations of

turbulent flow fields coupled with wavelet-based numerical methods allow the tight integration of

the numerics and physics-based modeling. The first approach in this hierarchy is wavelet-based

direct numerical simulation (WDNS), which uses wavelet-based discretizations of the Navier-

Stokes equations to adapt dynamically the local resolution to intermittent flow structures. The

most intriguing part of WDNS is its ability to take advantage of spatial and temporal intermit-

tency and perform simulations of high–Reynolds number flows with computational complexity

lower than commonly accepted. The next method in this hierarchy is coherent vortex simulation

(CVS), which was introduced by Farge et al. (1999). The underlying idea of this method is the

decomposition of the flow into coherent and incoherent contributions by means of wavelet filter-

ing of the vorticity field. The evolution of the coherent flow is then computed deterministically,

whereas the influence of the incoherent background flow is statistically modeled or neglected. To

further reduce computational cost, Goldstein & Vasilyev (2004) recently proposed the stochastic

coherent adaptive large-eddy simulation (SCALES). SCALES inherits CVS’s ability to dynami-

cally track the most energetic part of coherent eddies in a turbulent flow field, while (similarly to

LES) modeling the effect of the less energetic (unresolved) motions.

This review is organized as follows. After a short introduction to wavelets in Section 2, we

discuss different adaptive wavelet-based methods for solving the Navier-Stokes equations in

Section 3, focusing on the incompressible regime. Extensions to compressible flows and tech-

niques for applying wavelet methods to flows in complex geometries are also presented in

Section 3. Section 4 provides a brief introduction to the wavelet analysis of turbulent flows with a

focus on coherent vortex extraction. We review the hierarchy of wavelet-based turbulence mod-

eling approaches in Section 5. Finally, in Section 6, we discuss the future perspectives for wavelets

in CFD, in general, and turbulence modeling, in particular.

2. WHAT ARE WAVELETS?

2.1. General Properties

Wavelet theory, developed mostly over the past 25 years, has generated a tremendous amount of

interest in many areas of research in mathematics, physics, computer science, and engineering. The

continuous wavelet transform was discovered by Grossmann & Morlet (1984) and the orthogonal
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Figure 1

Lifted interpolating wavelet ψ of order 6 (a) and the modulus of its Fourier transform |ψ̂(k)| (b).

wavelet transform by Lemarié & Meyer (1986). Daubechies (1988) developed orthogonal bases

made of compactly supported wavelets, and Mallat (1989) designed the fast wavelet transform

algorithm. The first application of wavelets in fluid mechanics can be traced to Farge & Rabreau

(1988) (for a review, see Farge 1992).

Wavelets are basis functions that are localized in both physical space (owing to their fast

decay or even compact support) and wave-number space (owing to their vanishing moments and

smoothness) (see Figure 1). For comparison, the classical Fourier transform is based on functions

(sines and cosines) that are well localized in wave-number space, but do not provide localization

in physical space as they have global support. Due to this space/scale localization, the wavelet

transform provides both spatial and scale (frequency) information, whereas the Fourier transform

only provides frequency information.

A scalar field u(x) can be represented in terms of wavelet basis functions as

u(x) =
∑

i∈I0
φ

ū0
i φ

0
i (x) +

+∞∑

j=0

2d −1∑

μ=1

∑

i∈Iμ, j
ψ

ũμ, j
i ψ

μ, j
i (x), (1)

where ū0
i and φ0

i (x) are the scaling coefficients and functions on the lowest level of resolution, and

ũμ, j
i and ψ

μ, j
i (x) are the wavelet coefficients and basis functions of different families, μ, and levels

of resolution, j. Bold subscripts denote indicies in d-dimensional space; i.e., i = (i1, . . . , id ), I0
φ ,

and I
μ, j
ψ are d-dimensional index sets, associated with scaling functions at zero level of resolution

and wavelets of family μ and level j. One may think of a wavelet decomposition as a multilevel

or multiresolution representation of a function, in which each level of resolution j (except the

coarsest one) consists of wavelets ψ
j

i or a family of wavelets ψ
μ, j
i having the same scale but

located at different positions. Scaling function coefficients, ū0
i , represent the averaged values of

the field, whereas the wavelet coefficients, ũμ, j
i , measure the fluctuations (details) of the field u(x)

at j scale and around position of the wavelet ψ
μ, j
i (x). In d dimensions, there are 2d − 1 distinctive

d-dimensional wavelet families (Daubechies 1992). The above wavelet decomposition can be also

applied to vector fields component-wise.

Wavelet and scaling function coefficients can be obtained, respectively, by multiplying

Equation 1 by the bi-orthogonal dual wavelets ψ̃
μ, j
i (x) and scaling functions φ̃0

i (x) and integrating
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over the domain, resulting in the following definition of the coefficients:

ū0
i = 〈u(x), φ̃0

i (x)〉, ũμ, j
i = 〈u(x), ψ̃μ, j

i (x)〉, (2)

where 〈·, ·〉 denotes the L2-inner product, defined by 〈u, g〉 =
∫

u(x)g(x)d x. In the case of or-

thogonal wavelets, the dual wavelets are identical to primary ones, i.e., ψ = ψ̃ . The wavelet

decomposition is computationally efficient, thanks to the existence of a fast recursive transform

that allows computation of wavelet coefficients from the scaling coefficients at a finer level of res-

olution. The fast wavelet transform yields an efficient O(N ) algorithm to compute the N wavelet

coefficients ũμ, j
i from the N grid point values of the function u(x) (for a more general discussion

on wavelets, see Daubechies 1992, Mallat 1999).

Traditionally, 1D first-generation wavelets ψ
j

k are defined as translates and dilates of one basic

wavelet ψ , i.e., ψ j
k (x) = 2 j/2ψ(2 j x−k) (Daubechies 1988), resulting in wavelet construction in un-

bounded or periodic domains with uniform sampling interval. Wavelets were further generalized

to bounded domains, mainly by modifying them close to domain boundaries, but keeping them

unchanged in the middle of the domain (e.g., Chiavassa & Liandrat 1997, Cohen & Daubechies

1993, Meyer 1991, Monasse & Perrier 1998). An alternative interval wavelet construction was pro-

posed by Sweldens (1996), who constructed wavelets in physical space without the requirement of

translation and dilation invariance. These wavelets, commonly referred to as second-generation

wavelets, supply additional freedom to deal with arbitrary boundary conditions and irregular sam-

pling intervals, while still being local in both space and frequency and having vanishing polynomial

moments. Both first- and second-generation wavelets can be generalized easily to multiple do-

mains as tensor product wavelets, which leads to the existence of 2d − 1 wavelet families in d

dimensions.

2.2. Wavelet Thresholding and Denoising

Filtering can be performed in wavelet space using thresholding of the coefficients. This can be

considered as a nonlinear filter as the retained coefficients depend on the filtered function. The

wavelet thresholding filter, [·]ǫ , is defined by

[u(x)]ǫ =
∑

i∈I0
φ

ū0
i φ

0
i (x) +

+∞∑

j=0

2n−1∑

μ=1

∑

i∈Iμ, j
ψ

|ũμ, j
i |>ǫ‖u‖

ũμ, j
i ψ

μ, j
i (x), (3)

where u(x) is a scalar field, ǫ > 0 stands for the nondimensional (relative) threshold parameter,

and ‖·‖ is the norm that provides the (absolute) dimensional scaling for the filtered variable u.

For instance, in the case of velocity, the (absolute) dimensional scaling can be specified as the

L2 norm (‖u‖2) or the L∞ norm (‖u‖∞). Once the norm is chosen, the wavelet thresholding

filter (Equation 3) is uniquely defined by the nondimensional threshold parameter ǫ. For clarity of

presentation, a shorter notation of the wavelet-filtered quantity uǫ(x) = [u(x)]ǫ is used throughout

the review when possible.

The reconstruction error due to wavelet filtering with the nondimensional threshold parameter

ǫ can be shown to be

‖u(x) − uǫ(x)‖2 ≤ Cǫ‖u‖ (4)

for a sufficiently smooth function u(x), where C is of order unity (Donoho 1992). This property

of wavelet compression is the foundation of the active error control used in all wavelet-based

numerical algorithms.
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Wavelet thresholding for denoising signals corrupted with Gaussian white noise is based on

the fact that in wavelet space only few strong coefficients represent the signal, while the large

majority of small coefficients correspond to the noise. Thus for reasonable signal-to-noise ratios,

thresholding of the weak coefficients allows the recovery of a denoised signal with optimal minimal

error, as shown by Donoho & Johnstone (1994).

3. WAVELET-BASED NUMERICAL METHODS

The mathematical properties of wavelets motivate their use for the numerical solution of PDEs.

The localization of wavelets, both in scale and space, leads to effective sparse representations of

functions and pseudodifferential operators (and their inverses) by performing nonlinear thresh-

olding of the wavelet coefficients of the function and of the matrices representing the operators.

The most appealing feature of wavelet analysis for the numerical solution of PDEs is the ability

to estimate the local regularity of the solution, which allows self-adaptive discretizations with au-

tomatic local mesh refinement. Furthermore, the characterization of function spaces in terms of

wavelet coefficients and the corresponding norm equivalences (Dahmen & Kunoth 1992, Jaffard

1992) allow diagonal preconditioning of operators in wavelet space. Finally, the existence of the

fast wavelet transform yields algorithms with optimal linear complexity. For a more mathematical

overview on wavelet methods for PDEs, the reader is referred to the following reviews (Cohen

2000, Dahmen 1997, Müller 2003).

Adaptation of the wavelet expansion occurs quite naturally and is based on the analysis of

the wavelet coefficients of the decomposition (Equation 1). If one is interested in representing a

function or a field with the fewest degrees of freedom, while still retaining a good approximation,

then the wavelet thresholding criterion (Equation 3) is optimal for this purpose. However, when

solving PDEs, one needs to apply an additional criterion to ensure that the wavelet basis or

computational mesh is sufficient to approximate the solution throughout the time-integration

step for an evolution problem or at the next iteration in the elliptic case. The adaptation strategy

for an evolution problem is illustrated in Figure 2. To ensure the adequate approximation of the

solution during time integration, Liandrat & Tchamitchian (1990) introduced the concept of a

safety or an adjacent zone, which includes wavelets whose coefficients are, or can possibly become,

significant during the period of time integration, when the grid remains unchanged. Most current

wavelet-adaptation techniques are based on this strategy. In actual implementations, the safety

i

j

J

0

Figure 2

Illustration of the adjacent zone for adaptive wavelet methods in wavelet coefficient space with scale index j
and position index i. Solid pink circles indicate the positions of wavelets. The locations of wavelets with
significant coefficients kept in Approximation 3 at time t are marked by the orange bell curve. The second
bell-shaped region on the right of the original one marks the locations of the significant wavelet coefficients
at the end of the time integration, i.e., at t +�t. The safety zone is represented by the red bell-shaped region.
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zones [neighboring wavelets at the same, one above (children) and one below (ancestors), levels

of resolution] are added for each significant coefficient, and the time step is chosen to ensure

that the solution does not propagate outside the safety zone. This typically results in a CFL-like

constraint (Courant et al. 1928), which ensures that no energy at a given resolution scale propagates

outside the safety region. The thickness of the safety zone determines the time interval during

which the calculations can be carried out without modifying the computational grid. However, for

computational efficiency, it was found (e.g., Schneider et al. 2006, Vasilyev 2003) that the safety

zone, which includes the immediate neighboring wavelets, is the optimal.

The current wavelet-based algorithms can be classified in different ways depending on whether

they take full or partial advantage of wavelet analysis, namely, multiresolution properties, wavelet

compression, the detection of localized structures and subsequent use for grid adaptation, fast

wavelet transform, wavelet-based interpolation, and active error control. For this review, we

roughly divide wavelet methods into three main classes: pure wavelet, multiresolution, and wavelet-

optimized methods. In addition, there are two unmistakable groups of wavelet-based methods that

have unique characteristics: Lagrangian and space-time adaptive wavelet methods. Here we briefly

outline the main characteristics of each class of wavelet-based algorithms. Pure wavelet schemes

(either Galerkin or collocation) directly use wavelet decomposition to discretize the PDEs. Mul-

tiresolution methods were inspired by wavelets but are based on finite-difference, finite-volume,

or finite-element formulation with multiresolution and automated refinement capabilities. La-

grangian wavelet methods are based either on moving wavelets or Lagrangian particle methods

complemented with multiresolution capabilities. Space-time strategies include methods that either

use local time stepping or treat time as an additional dimension and apply wavelet decomposition

and adaptation simultaneously in space and time. Finally, wavelet-optimized methods include al-

gorithms based on classical discretizations (e.g., by finite differences or finite volumes) but use

wavelet analysis either to define adaptive meshes or to speed up the linear algebra.

In fluid dynamics, different approaches have been developed for the compressible and in-

compressible Euler and Navier-Stokes equations for both inert and reactive flows. The earlier

attempts to solve incompressible Navier-Stokes equations using wavelet methods were based

on either vorticity-stream function (Charton & Perrier 1996, Fröhlich & Schneider 1996) or

vorticity-velocity (e.g., Vasilyev & Kevlahan 2002) formulations, mainly to avoid the issues related

to dynamic pressure, which limited their use to two spatial dimensions. The velocity-pressure

formulation in both two and three dimensions was used by Vasilyev and colleagues (Goldstein

et al. 2005, Kevlahan & Vasilyev 2005), who applied an adaptive wavelet collocation method to

solve the Poisson equation to impose the incompressibility condition. Another way to impose

solenoidality on the velocity field is to use divergence-free wavelets for solving the incompressible

Navier-Stokes equations in two dimensions for periodic boundary conditions (Bittner & Urban

2007, Deriaz & Perrier 2006, Zhou & He 2005). In addition to model incompressible flows in

complex geometries, different adaptive wavelets methods with Brinkman penalization for station-

ary (e.g., Schneider & Farge 2002, Vasilyev & Kevlahan 2002) and moving (e.g., Kevlahan &

Vasilyev 2005) obstacles have been proposed.

For compressible Navier-Stokes equations, a wide range of approaches has been developed,

e.g., wavelet collocation (Vasilyev 2003), multiresolution (Roussel & Schneider 2009), and wavelet-

based acceleration (Chiavassa & Donat 2001). The equations have been modeled both for inert

(e.g., Vasilyev & Paolucci 1996, 1997) and reactive (e.g., Prosser 2007, Prosser & Cant 1998,

Rastigejev & Paolucci 2006, Vasilyev & Bowman 2000) flows. Starting with the earlier work of

Harten (1994, 1995), there have been significant efforts to develop multiresolution approaches for

the solution of compressible Euler equations using fully adaptive, multiresolution finite-volume

methods (e.g., Cohen et al. 2003, Müller 2003, Roussel et al. 2003), the weighted essentially
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nonoscillatory approach (Burger & Kodakevicius 2007), and a wavelet-based shock-capturing

scheme (Regele & Vasilyev 2009). For more details on multiresolution methods for hyperbolic

systems, the reader is referred to Chiavassa et al. (2003).

3.1. Pure Wavelet Methods

This section describes pure wavelet methods of both Galerkin and collocation type. Either wavelets

are used directly to discretize the underlying PDE or their properties are used for grid adaptation,

preconditioning, or inversion of the operators and fast interpolation. To simplify the presentation,

let us consider the general elliptic problem Lu = f , where L represents, for example, the Laplace

∇2 or the Helmholtz (I − ∇2) operator, which arises when solving the incompressible Navier-

Stokes equations. Boundary conditions may occasionally have been incorporated into L.

3.1.1. Adaptive wavelet Galerkin methods. In Galerkin methods, the unknown u is developed

into a wavelet series given by Equation 3 considering only coefficients with absolute value above a

given threshold (e.g., Maday et al. 1991, Maday & Ravel 1992). Substituting Approximation 3 into

the differential equation and requiring that the residual vanishes with respect to test functions1

result in a system of equations for the unknown wavelet and scaling function coefficients, ũμ, j
i and

ū0
i , which can be solved at each time step. The underlying adaption strategy is based on analyzing

the wavelet coefficients ũμ, j
i and the adjacent zone as explained at the beginning of Section 3 and

illustrated in Figure 2. With such a strategy approximation, Equation 3 automatically tracks the

solution in space and scale. Boundary conditions can be imposed either using boundary-adapted

basis functions (e.g., Chiavassa & Liandrat 1997) or imposing them afterward, as done for spectral

methods using the tau method (Canuto et al. 1987).

We illustrate the wavelet Galerkin method using a Petrov-Galerkin discretization of the 2D

incompressible Navier-Stokes equations in vorticity-stream function formulation as proposed by

Fröhlich & Schneider (1996, 1999). Vorticity-stream function or vorticity-velocity formulations

also can be used in the context of wavelet collocation methods (e.g., Vasilyev & Kevlahan 2002).

Introducing a classical semi-implicit time discretization of vorticity and stream function equations

(here of first order to simplify the presentation) with time step �t, we obtain the following system

of equations:

Lωωn+1 = (1 − ν�t∇2)ωn+1 = ωn + �t(∇ × F
n − u

n · ∇ωn), (5)

L��n+1 = ∇2�n+1 = ωn+1 and u
n+1 = ∇⊥�n+1, (6)

with vorticity ωn = ω(x, tn), stream function �n = �(x, tn), and x ∈ [0, 1] × [0, 1]. The velocity

is denoted by u, F is an external force, ν > 0 is the constant kinematic viscosity, ∇ = (∂x, ∂y ),

and ∇⊥ = (−∂y , ∂x). The above equations are completed with boundary conditions and a suitable

initial condition. At each time step, two elliptic problems (a Helmholtz equation for ωn+1 and a

Poisson equation for �n+1) are solved and a differential operator has to be applied to obtain un +1.

For spatial discretization, a Petrov-Galerkin scheme is used with orthogonal wavelets as trial

functions and operator-adapted wavelets as test functions. The solution is developed into an

orthogonal wavelet series (Equation 3), and with the requirement that the residuum vanishes

with respect to all test functions, a linear system for the unknown wavelet and scaling function

coefficients, ũμ, j
i and ū0

i , is solved. The test functions are defined so that the stiffness matrix turns

1Test functions can be dual wavelets and scaling functions for bi-orthogonal wavelets, wavelets, and scaling function for

orthogonal wavelets, or vaguelettes (Fröhlich & Schneider 1997).
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Adaptive wavelet computation of decaying 2D turbulence: (a) vorticity with (b) the corresponding adaptive
grid. Figure taken from Farge & Schneider 2001 with kind permission of Springer Science and Business
Media.

out to be the identity. Therefore, the solution is obtained by simple projection of the nonlinear

term.

For the evaluation of the nonlinear term (in which the wavelet coefficients of un are given),

there are two possibilities. The first option is the evaluation in wavelet coefficient space, which

requires the computation of connection coefficients,2 as done by Myers et al. (1995), for example.

Although many connection coefficients are vanishing or very small, this approach is not efficient

in practice (Perrier & Wickerhauser 1999). A second possibility is the evaluation in physical space,

similar to pseudospectral methods (Canuto et al. 1987) and hence also called the pseudowavelet

technique (Charton & Perrier 1996, Fröhlich & Schneider 1996, Holmstrom & Walden 1998).

Starting from the significant wavelet coefficients of u, the solution is reconstructed on a locally

refined grid, and the nonlinear term is then evaluated pointwise. The wavelet coefficients of the

nonlinear term can then be computed using adaptive decomposition.

Figure 3 shows an adaptive wavelet computation of decaying homogeneous turbulence in two

space dimensions. Comparison of the vorticity with the adaptive grid (locations of active wavelets)

demonstrates the automatic grid refinement in regions of strong gradients of vorticity.

3.1.2. Adaptive wavelet collocation methods. In contrast to adaptive wavelet Galerkin meth-

ods that solve problems in wavelet coefficient space, adaptive wavelet collocation methods solve

problems in physical space on an adaptive computational grid. This removes two major difficulties

associated with wavelet Galerkin methods, namely the straightforward treatment of nonlinearities

and general boundary conditions. The evaluation of the nonlinear terms in adaptive wavelet col-

location methods is performed in the physical domain, analogous to the pseudowavelet Galerkin

methods described above.

Earlier attempts to construct wavelet collocation methods were similar to the wavelet Galerkin

approach in that they tried to use operator compression combined with grid adaptation and

2The connection coefficients allow the evaluation of nonlinear terms in coefficient space, similar to spectral methods in which

quadratic terms become convolution sums.
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wavelet interpolation (e.g., Cai & Wang 1996, Prosser & Cant 1998, Vasilyev et al. 1995). In

particular, to calculate derivatives, these methods differentiated Approximation 3 and evaluated

derivatives of wavelet and scaling functions at collocation points using precomputed values of

wavelet derivatives at dyadic grid points. This procedure was proven to be computationally more

expensive, especially in multiple dimensions, than finite-difference approximations of the wavelet-

based interpolant. Many current adaptive wavelet collocation methods take advantage of wavelet

interpolation properties and evaluate spatial derivatives using finite-difference approximation on

either fixed stencils using a ghost-point approach (e.g., Holmstrom 1999, Vasilyev & Bowman

2000) or variable stencils that use values at the nearest grid points (Rastigejev & Paolucci 2006).

Grid adaptation in wavelet collocation methods is done similarly to other wavelet-based meth-

ods as discussed above. The only difference is that, at the end of each time step (or iteration), an

additional wavelet transform is performed for the analysis of wavelet coefficients and the construc-

tion of the adjacent zone. Once Approximation 3 is constructed, the computational grid is obtained

based on one-to-one correspondence between wavelets and collocation points: A collocation point

is kept if the corresponding wavelet is kept in Approximation 3.

To illustrate the use of wavelet collocation methods in CFD, we discuss the solution of incom-

pressible Navier-Stokes equations in primitive variable form (e.g., Kevlahan & Vasilyev 2005).

We note that a similar formulation can be used for the wavelet Galerkin approach (Schneider

et al. 2001). To simplify the presentation, we discuss only the first-order time integration of the

Navier-Stokes equations. The time-integration scheme is based on a split-step method in which

a nonsolenoidal velocity field is first calculated and then is made divergence-free using a pressure

projection. In the first step, the nonsolenoidal velocity u(x, tn+1) ≡ un+1 is obtained by solving the

linearized equation

Lu
∗ ≡

u∗

�t
+ u

n · ∇u
∗ − ν∇2

u
∗ =

un

�t
, (7)

where L is a linear operator. The Laplacian is discretized implicitly, whereas the advection term

is discretized semi-implicitly, which allows the use of a fine grid in the boundary layer, without

having to use unreasonably small time steps because of the wavelet-based CFL-like restriction.

Once the linear system (Equation 7) is discretized using a wavelet collocation approach (e.g.,

Prosser 2007, Vasilyev 2003), it can be solved using a variety of methods, e.g., BI-CGSTAB (van

der Vorst 1992). In the second step, the velocity u
∗

is corrected by making it divergence-free using

the following pressure projection,

u
n+1 = u

∗ − �t∇ Pn+1, (8)

where Pn+1 satisfies

∇ · ∇ Pn+1 =
1

�t
∇ · u

∗. (9)

The combination of Equations 8 and 9 ensures that the velocity at tn+1 is divergence-free, i.e.,

∇ · un+1 = 0. The Poisson equation (Equation 9) is solved using a wavelet collocation method

(e.g., Vasilyev & Kevlahan 2005). Since pressure and velocity are given at the same grid points, one

should be careful when choosing the approximation of the Laplace operator. One way to avoid

the odd-even decoupling instability associated with nonstaggered grids is to construct the Laplace

operator as the inner product of a downwind gradient operator and an upwind divergence operator

(Kevlahan & Vasilyev 2005, Schneider et al. 2001). The method was applied for homogeneous

turbulent flows in two (Kevlahan et al. 2007) and three (Goldstein et al. 2005) dimensions and for

flows around moving and stationary bluff bodies (Kevlahan & Vasilyev 2005). An example of an

impulsively started flow through a tightly packed cylinder array at Reynolds number 104 is given in

Figure 4, where the obstacle was modeled using Brinkman penalization (described in Section 3.6).
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Figure 4

(a) Vorticity field and (b) corresponding computational grid for the direct numerical simulation of flow
around a 2D periodic cylinder array at Re = 104 using the adaptive wavelet collocation method. Figure
taken from Kevlahan & Vasilyev 2005.

3.2. Adaptive Multiresolution Methods

Multiresolution-based schemes were originally developed by Harten (1994, 1995), first for hyper-

bolic conservation laws. Harten’s approach was then extended and further developed in different

directions by Cohen et al. (2003), Kaibara & Gomes (2000), Müller (2003), and Roussel et al.

(2003). The main idea of the multiresolution method is to use a hierarchical data representation

of the solution. The decay of the wavelet coefficients yields information on the local regularity of

the solution. Therewith the truncation error can be estimated, and coarser grids can be used in

regions where this error is small and the solution is smooth. An adaptive grid can be introduced

by suitable thresholding in which only significant wavelet coefficients are retained. Hence a given

discretization on a uniform mesh can be accelerated as the number of costly flux evaluations is

significantly reduced, while maintaining the accuracy of the discretization. The memory require-

ments could also be reduced, for example, by using a dynamic tree data structure. An overview

of the different multiresolution methods can be found, e.g., in the books by Cohen (2000) and

Müller (2003).

Adaptive multiresolution techniques have been mostly employed in the context of compressible

flows (for fully adaptive versions with additional memory reduction, the reader is referred to,

e.g., Müller 2003). Domingues et al. (2008, 2009) developed a fully adaptive multiresolution

method using cell averages in combination with finite-volume schemes for the compressible Euler

equations, which has recently been extended to the compressible Navier-Stokes equations in two

and three space dimensions (Roussel & Schneider 2009).

Finally, we mention that, compared to classical adaptive mesh refinement (AMR) methods

(e.g., see Berger & Oliger 1984), which are now widely used for many applications with struc-

tured or unstructured grids, multiresolution techniques yield increased data-compression rates in

regions where the solution is smooth, thanks to the vanishing polynomial moments of the wavelet

functions. Additionally, the grid adaptation error in multiresolution approaches, introduced by

thresholding of the details, can be estimated and thusly controlled, which is not the case for AMR

methods.
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3.3. Lagrangian Wavelet Methods

An interesting extension of adaptive wavelet methods is the traveling wavelet method (Basdevant

et al. 1990), in which both the position and scale of the wavelets can change continuously in

time. Although attractive in principle, the method was proven to be unstable when applied to

nonlinear problems, mainly because of wavelet collision. An additional difficulty is associated

with the time variability of the scale of the wavelet, resulting in a nonlinear system of ordinary

differential equations, even for the case of a linear advection-diffusion problem. Bergdorf &

Koumoutsakos (2006) recently overcame this difficulty by enhancing Lagrangian particle methods

with multiresolution wavelet-based grid adaptivity. The method extends the adaptive wavelet

collocation method (Vasilyev 2003, Vasilyev & Bowman 2000) by combining it with particle

methods (Koumoutsakos 2005). This approach leads to a new generation of particle methods with

adaptive multiresolution capabilities. A related application for plasma simulations using particle

methods for solving the Vlasov equation and wavelet-based grid adaption was proposed by Gutnic

et al. (2004).

3.4. Space-Time Wavelet Methods

Most of the dynamically adaptive numerical methods, both wavelet- and nonwavelet-based, rely

on spatial adaptation, while globally adapting the time step either to ensure stability or to control

the time-integration error. This makes these schemes far from optimal for problems that are si-

multaneously intermittent in both space and time. Different adaptive time-stepping strategies for

space-adaptive discretizations of PDEs have been pursued to overcome this difficulty. In the con-

text of adaptive wavelet methods, Bacry et al. (1992) introduced for the first time a scale-dependent

time step. They applied this method to linear parabolic equations and the Burgers’ equation. For

adaptive multiresolution schemes, spatially variable time stepping has been developed to overcome

this restriction (Domingues et al. 2008, 2009; Müller & Stiriba 2007) and applied in combination

with time-step control (Domingues et al. 2009) for the compressible Euler equations. The under-

lying idea of these approaches is the following: For explicit time-integration schemes, the time

step is imposed by the stability condition on the finest resolution level, whereas in the regions of

coarser resolution, the time step can be increased without violating the stability requirement. The

missing values at the boundaries between two scales are interpolated in time.

Despite some definite advantages of the local time-stepping methods (especially in the con-

text of adaptive wavelet or multiresolution methods), they are still based on the classical time-

marching technique, thus resulting in error accumulation in time, even though the spatial and

time-integration errors are controlled at each time step. To address this issue, Alam et al. (2006)

proposed a simultaneous space-time adaptive wavelet collocation method in which the problem

is solved in a space-time computational domain, which naturally adapts to both space and time

resolution to adequately resolve the spatially and temporary intermittent structures of the solu-

tion. Besides generating a near-optimal grid for the full space-time solution, this approach also

allows the global time-integration error to be controlled. The efficiency and accuracy of the

method are demonstrated by applying it to 2D vortex merging (Alam et al. 2006) and 2D homo-

geneous turbulence (Kevlahan et al. 2007) problems. The space-time method uses substantially

fewer (in some instances up to 20 times fewer) space-time grid points and is faster than a compa-

rable adaptive wavelet time-marching method, while achieving similar global accuracy. The main

drawback of the simultaneous space-time method is a considerably larger memory requirement,

which can be reduced by solving the problem using temporal slices, as described by Alam et al.

(2006).
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3.5. Wavelet-Optimized Adaptive Methods

Both adaptive Galerkin and collocation wavelet methods require the integration of the computa-

tional environment, the adaptive multiresolution wavelet transform, wavelet-based interpolation,

adaptive grids, and active error control. A computationally efficient implementation of such an

integrated approach necessitates the development of a computational environment specifically

tailored to adaptive multiresolution wavelet transforms. This is one of the main reasons why many

researchers intentionally stayed away from adaptive wavelet methods. However, good wavelet-

compression properties and the ability to identify localized structures made them an effective

tool to be used together with other numerical algorithms. Today, there are a number of wavelet-

optimized extensions for finite-difference (e.g., Jameson 1998, Leonard et al. 2006), finite-volume

(e.g., Liu & Schwarz 2005), and finite-element (e.g., Canuto et al. 1999) methods. In all these

extensions, wavelet transforms and analysis of wavelet coefficients are used as a sensor for local

mesh refinement. Another wavelet-based acceleration of numerical methods often used in the con-

text of compressible Navier-Stokes solvers is the sparse point representation (SPR) of the fluxes

(Chiavassa & Donat 2001), in which fluxes are calculated at a subset of grid points identified by

wavelet analysis and interpolated to the rest of the mesh. Different implementations of wavelet-

based acceleration exist, from simple flux or solution interpolation to more advanced implemen-

tations, in which the solution is only advanced at points that belong to the SPR set. The appealing

feature of such hybrid approaches is that a wavelet module can be used as an add-on to existing

software (e.g., Liu & Schwarz 2005, Sheta et al. 2006). The main disadvantage is that the method-

ology still requires the use of a fine mesh everywhere in the domain and thus does not reduce

memory requirements. Finally, wavelet-based accelerated linear algebra (Beylkin et al. 1991) can

be used in the context of any numerical method that requires matrix multiplication or the solution

of linear systems.

We note, mainly as a precaution, that there are a number of papers in the literature that claim

to be wavelet methods, but are based only on single-level approximation using scaling functions

(e.g., Qian & Weiss 1993). These methods in no way can be called wavelet methods because they

lack the most important aspect, namely multiresolution approximation. Single-level methods, if

carefully analyzed, are not that much different from standard finite-difference methods or standard

Galerkin methods.

3.6. Complex Geometry Treatment

Numerical simulations of flows around solid obstacles of arbitrary complexity are often required

for practical engineering applications. There are two general approaches to deal with the complex

geometry, namely, body-fitted grid methods (Thompson et al. 1982) and immersed boundary

techniques (Mittal & Iaccarino 2005, Peskin 2002). To use adaptive wavelet methods in the context

of conventional structured/unstructured body-fitted grid methods, the wavelet transform should

be generalized to nontensorial/unstructured meshes that are generated to conform to the complex

boundaries. Some progress has been made in this direction, mostly motivated by computer graphics

applications (Lounsbery et al. 1997, Reissell 1996, Szczesna 2006, Wang et al. 2008). The use of

surface-fitted wavelets for the simulations of flows in complex geometries is mostly limited to SPR

of the solution on unstructured meshes (e.g., Valette & Prost 2004). The only use of nontensorial

wavelets is the recent extension of the dynamically adaptive wavelet collocation method to second-

generation spherical wavelets on nested spherical triangular grids (Mehra & Kevlahan 2008).

Although the method was only demonstrated for the sphere, it has the flexibility to be extended

to other curved manifolds.
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An alternative approach to simulate flows in complex geometries is to use immersed boundary

methods, in which simulations are carried out on nonbody conformal Cartesian meshes, while

enforcing complex geometries through penalization. Since Peskin’s (1972) immersed boundary

method, which was originally introduced to study flow patterns around heart valves, various

immersed boundary techniques have been developed. Qian & Weiss (1993) first attempted to

combine the single-level wavelet Galerkin method with a capacitance matrix method. Adaptive

wavelet Galerkin methods were then extended to solve elliptic and parabolic problems in complex

domains using fictitious-domain approaches with boundary conditions imposed through Lagrange

multipliers (e.g., Baccou & Liandrat 2006, Diaz 1999, Glowinski et al. 1996, Kunoth 2001). The

use of immersed boundary methods in the context of adaptive wavelet methods and Navier-Stokes

equations is limited to the Brinkman penalization approach, originally proposed by Arquis &

Caltagirone (1984). The main advantage of Brinkman penalization, compared with other im-

mersed boundary methods, is that the error between the solutions of penalized and nonpenalized

equations can be estimated rigorously in terms of the penalization parameter (Angot et al. 1999).

Furthermore, the solution of the penalized equations converges to the exact solution in the limit

as the penalization parameter tends to zero (Angot et al. 1999). Since this volume penalization is

simple and cheap to calculate, it is well-suited for flows in complex geometries, including moving

or deformable obstacles. The use of adaptive wavelet methods with Brinkman penalization for

complex geometry flows was successfully demonstrated for both fixed (Farge & Schneider 2001,

Keetels et al. 2007, Schneider & Farge 2002, Vasilyev & Kevlahan 2002, Wirasaet & Paolucci

2005a) and moving (Kevlahan & Vasilyev 2005) obstacles.

Let us briefly outline the main features of the Brinkman penalization method for the incom-

pressible Navier-Stokes equations. Assuming that the problem is defined in a rectangular domain

containing obstacles Oi, we solve the following set of penalized equations to model the solid

boundaries defining Oi without explicitly imposing the no-slip condition:

∂tuη + uη · ∇uη + ∇ Pη = ν∇2
uη −

1

η
χ0uη, (10)

with the continuity equation ∇ · uη = 0 and appropriate external boundary conditions. We note

that Equation 10 is valid in the entire domain. Here η > 0 is the penalization coefficient, and χ0

denotes the characteristic (or mask) function that is unity inside the obstacles and zero outside. As

η → 0, Carbou & Fabrie (2003) proved theoretically that the error of the solution of the penalized

equations (Equation 10) is bounded by ‖u − uη‖ ≤ Cη1/2‖u‖. Since η is an arbitrary parameter,

independent of the spatial or temporal discretization, the boundary conditions can be enforced

to any desired accuracy by choosing η appropriately, provided that the penalized equations are

properly resolved. This property distinguishes the Brinkman method from other penalization

schemes and allows the error to be controlled precisely.

Although it is a flexible and simple method, Brinkman penalization does have a few drawbacks

when used with many solvers. First, the large factor 1/η means that the penalty term in Equation 10

is stiff and must be solved implicitly, which is easily achieved owing to its diagonal nature. The

second drawback is that the penalization term introduces small scales, O((νη)1/2), inside the obsta-

cle in the immediate vicinity of the boundary that needs to be resolved. This often-cited weakness

of immersed boundary methods is of concern because of the significant perceived cost associated

with the unnecessary resolution introduced outside the boundary region when resolving these

small scales in the boundary region. However, this observation is correct only if the penalization

method is used together with structured tensorial or zonal meshes, because the overhead in terms

of unnecessarily increased resolution outside this region is significant (Mittal & Iaccarino 2005).

The use of adaptive wavelet methods reduces this cost to a minimum: The computational overhead
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is proportional to the volume fraction of the thin skin layer relative to the whole computational

volume. The sparseness of the grid inside the obstacle is illustrated in Figure 4b. Moreover, with

adaptive wavelet methods, the total simulation error can be maintained to an a priori–prescribed

level with optimal grid compression because the automated wavelet-based grid adaptation guar-

antees the adequate resolution of this skin layer with an a priori–prescribed error controlled by

the threshold parameter ǫ.

The use of immersed boundary methods with adaptive wavelet methods in the context of com-

pressible Navier-Stokes equations is limited to the recent extension of the Brinkman penalization

to compressible flows (Boiron et al. 2009, Liu & Vasilyev 2007). To have physically consistent wave

reflection from the boundaries, in addition to penalizing momentum and energy equations, the

continuity equation for porous media is considered inside obstacles. In the compressible Brinkman

penalization approach, the penalized porous region acts as a high-impedance medium, resulting

in negligible wave transmissions.

4. WAVELET ANALYSIS OF TURBULENT FLOWS

A generic feature of turbulent flows is the formation of vortex-like coherent structures whose mo-

tions are chaotic, resulting from their mutual nonlinear interactions. To either capture or accurately

model vortex dynamics, it is essential to identify and extract coherent structures. Wavelet decompo-

sitions of turbulent flows, presented in Section 2, offer an alternative view, as coherent vortices can

be defined in an objective way using few wavelet coefficients and without assuming any model for

them. Wavelet-based coherent vortex extraction (CVE) allows one to split the flow into two parts:

dynamically active coherent vortices, represented by a few wavelet coefficients, and an incoherent

background flow, which is noise-like. In addition, the availability of the scale-space information of

wavelet coefficients allows one to define statistical tools for the analysis of scale-dependent flow

characteristics, such as flow intermittency and anisotropy and local and global energy spectra.

These unique features of wavelet-based flow analysis are briefly discussed in this section (for more

in-depth discussion, see Abry 1997, Farge 1992, Farge & Schneider 2006, Van den Berg 1999).

4.1. Coherent Vortex Extraction

Farge et al. (1999, 2001) proposed a wavelet-based method to extract coherent vortices out of

both 2D and 3D turbulent flows. This method is based on the vorticity field rather than on the

velocity because it preserves Galilean invariance, and simply connected vortex tubes are preserved

by nonlinear dynamics due to the Helmholtz theorem. Coherent structures are defined as what

remains after denoising. Hence no model is needed for the structures, except for the noise. In the

simplest model, the noise is assumed to be additive, Gaussian, and white (i.e., uncorrelated).

CVE can be viewed as a wavelet denoised vorticity field using Equation 3 with the optimal

thresholding parameter ǫopt, which depends on the variance of the incoherent vorticity σ n and

on the sample size N. The particular choice of the threshold ǫopt = σn

√
2 ln N is motivated

by denoising theory (Donoho & Johnstone 1994). However, as the variance of the incoherent

vorticity is unknown, it has to be estimated from the available total vorticity ω. Azzalini et al.

(2005) developed an iterative algorithm based on the method presented by Farge et al. (1999).

Typically only one iteration step is performed, which can be justified by the fast convergence of the

iterative procedure and by the computational effort being minimized. For notational convenience,

the subscript C denotes the coherent component, i.e., ωC = [ω]ǫopt .

The CVE algorithm thus allows one to split the flow into two parts: a coherent flow, corre-

sponding to the coherent vortices, and an incoherent flow, corresponding to the background noise
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(Farge et al. 1999). This decomposition yields

ω = ωC + ω I , (11)

where the subscript I denotes the incoherent component. For orthogonal wavelets, it is easy

to show that 〈ωC ,ω I 〉 = 0 and, hence, the enstrophy is conserved, i.e., Z = ZC + ZI , where

Z = 1
2
〈ω,ω〉. The corresponding velocity fields can be obtained by inverting the curl operator:

u = uC + uI . (12)

The algorithm also works for bi-orthogonal wavelets, with the exception that the enstrophy con-

servation is not valid anymore.

So far CVE has been applied mostly to homogeneous flows in two and three space dimensions.

Homogeneous turbulence was decomposed using either orthogonal (Farge et al. 1999, 2001, 2003;

Okamoto et al. 2007; Schneider et al. 2006) or bi-orthogonal wavelets (Goldstein & Vasilyev 2004,

Roussel et al. 2005). Divergence-free wavelets have also been used (Albukrek et al. 2002, Deriaz &

Perrier 2006, Deriaz et al. 2007). Comparisons of CVE with proper orthogonal decomposition–

Fourier decomposition were presented by Farge et al. (2003). Jacobitz et al. (2008) extracted

coherent vortices in homogeneous shear flows with and without rotation. Temporally developing

mixing layers were studied by Schneider et al. (2005), and channel flows were studied by Weller

et al. (2006). Lewalle et al. (2000) analyzed experimental mixing-layer data.

To illustrate CVE, we consider its application to 20483 DNS data of a 3D homogeneous

isotropic turbulent flow (Okamoto et al. 2007). The Reynolds number based on the Taylor mi-

croscale corresponds to Rλ = 732 (Kaneda et al. 2003). The flow exhibits elongated, distorted,

and folded vortex tubes similar to those observed in laboratory (Douady et al. 1991) and numerical

experiments (Siggia 1981). Applying CVE yields the coherent and incoherent flow contributions

for which isosurfaces of vorticity are shown in Figure 5a. The coherent vorticity is represented

by only 2.6% of the wavelet coefficients and retains the same vortex tubes as in the total vorticity,

whereas the incoherent vorticity is structureless. The value of the isosurface chosen for visualiza-

tion is the same for the total and coherent vorticity, but it has been reduced by a factor of 3 for

the incoherent vorticity whose fluctuations are much smaller.

The corresponding energy spectra in Figure 5b show that both coherent and incoherent

contributions are multiscale. The spectrum of the coherent flow is identical to the one of the total

flow all along the inertial range, implying that vortex tubes are responsible for the k−5/3 energy

scaling. For the incoherent flow, E(k) is close to k2, which corresponds to an equipartition of energy

between all wave numbers k. The incoherent velocity is therefore spatially decorrelated, which

is consistent with the observation that incoherent vorticity is structureless (Figure 5a). Higher-

order statistics of the total and coherent flows also agree well, for both velocity and vorticity, as

shown in the corresponding probability density functions in Figure 5c,d.

This example illustrates that CVE works well and yields an efficient representation of coherent

vortices with few wavelet coefficients, while preserving the high-order statistics of the flow. In

addition, by considering the energy transfer, the nonlinear dynamics is completely preserved all

along the inertial range by the coherent contributions (Farge et al. 2003, Okamoto et al. 2007).

Okamoto et al. (2007) found that the compression rate (the percentage of wavelet coefficients

representing the coherent flow) increases with Reynolds number as N ∝ R3.9
λ , which proves that

the number of modes increases more slowly than for traditional DNS, i.e., N ∝ R9/2
λ .

Goldstein and colleagues (De Stefano et al. 2005, Goldstein & Vasilyev 2004) studied the effect

of the coherent and incoherent contributions on SGS dissipation in the context of LES using a

priori and dynamic tests, respectively. Almost all SGS dissipation results from the few SGS modes
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Figure 5

Homogenous isotropic turbulent flow at Rλ = 732 and resolution N = 20483. (a) Isosurfaces of total (left panel), coherent (middle
panel), and incoherent (right panel) vorticity. The values of the isosurfaces are |ω| = 5σ for the total and coherent vorticity and 5/3σ for
the incoherent one with the root mean square σ = (2Z)1/2 (only subcubes of size N = 2563 are visualized). (b) Energy spectra of the
total, coherent, and incoherent velocity fields. Probability density functions of (c) velocity and (d ) vorticity for the total, coherent, and
incoherent components. Reprinted with permission from Okamoto et al. 2007. Copyright 2007, American Institute of Physics.

that make up the coherent part of the SGS field, which indirectly confirms that the coherent

component is responsible for the nonlinear flow dynamics.

4.2. Scale-Dependent Statistics, Anisotropy,
and Relation with Structure Functions

Scale-dependent statistical analysis of turbulent flows can be performed by considering the wavelet

coefficients of velocity or vorticity in Equation 1. The coefficients can be interpreted as general-

ized increments; for example, the classical increments u(t + τ ) − u(t) are recovered by considering

the wavelet ψ δ(t) = δ(t + 1) − δ(t). Thus, moments of wavelet coefficients can be directly re-

lated to classical structure functions (e.g., Abry 1997, Schneider et al. 2004). Considering ratios

of moments, one can define scale-dependent flatness and skewness (Meneveau 1991, Schneider

et al. 2004). For orthogonal wavelet decompositions, Parseval’s identity holds, which allows the

definition of the energy distribution in wavelet coefficient space, depending on scale, position,

and direction (Farge 1992, Meneveau 1991). The relation of wavelet spectra to classical Fourier

energy spectra has been shown by Farge (1992), Meneveau (1991), and Perrier et al. (1995).

Yoshimatsu et al. (2009) studied scale-dependent statistics of fully developed turbulence consid-

ering also geometrical interpretations (e.g., the scale-dependent helicity).

Bos et al. (2007) developed additional wavelet tools that allow the extraction of directional

information. Therefore, one can quantify not only longitudinal and transversal intermittency,

but also horizontal or vertical intermittency, which has some interest for anisotropic turbulence,
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e.g., due to the presence of rotation or stratification. The underlying ideas are straightforward.

Considering moments of one of the three components of the wavelet coefficients ũμ, j
i in Equation

1, one can obtain scale and directional information; e.g., second-order moments yield information

on the energy distribution as a function of scale and in one of the seven possible directions3 for

one of the three velocity components. Ratios of moments allow the definition of scale-dependent

flatness and skewness in different directions. Schneider and colleagues (Bos et al. 2007, Yoshimatsu

et al. 2009) furthermore demonstrated that the scale-dependent flatness is directly related to the

spatial variability of the energy spectrum and thus allows the quantification of the intermittency

of turbulent flows. They studied applications for isotropic, rotating, and stratified homogeneous

turbulent flows computed by DNS at resolution 5123 (Bos et al. 2007) and 20483 (Yoshimatsu

et al. 2009) for isotropic turbulence.

4.3. Analysis Based on the Continuous Wavelet Transform

There is a large amount of literature on the analysis of turbulent flows based on the continuous

wavelet transform, which is beyond the scope of this review. For more in-depth discussion, the

reader is referred to Farge et al. (1990) and Narasimha et al. (2002). Recent work deals with applica-

tions of continuous wavelet transforms to vortex-bursting phenomena (Ruppert-Felsot et al. 2009).

5. HIERARCHY OF TURBULENCE MODELING

Traditional turbulent flow simulations are generally divided into three distinctive classes: (a) fully

deterministic simulations, in which all scales of motion are resolved and deterministically computed

as in DNS; (b) semideterministic methods, in which some degrees of freedom are computed, while

the influence of the others is modeled as in LES; and (c) statistical models, such as RANS methods,

in which time- or ensemble-averaged flow fields are computed and the influence of all turbulent

fluctuations is modeled.

These three modeling approaches are characterized by different computational costs and a

decreasing level of information on the turbulent motions. The most computationally demanding

method is DNS, for which the number of degrees of freedom to be computed at each time step

is N ∝ Re and N ∝ Re9/4 for 2D and 3D isotropic turbulent flows, respectively. Therefore, the

maximal Reynolds number is limited by the available computational resources (i.e., by memory

and CPU performance). The number of degrees of freedom needed by LES, in principle, does not

depend on the Reynolds number, as long as one does not resolve the viscous boundary sublayers.

Therefore LES allows one to compute much higher–Reynolds number flows than DNS. The least

demanding approach in terms of computational cost is RANS, as only the mean flow is computed.

Turbulence is characterized by energetic eddies localized in space and scale, yet the traditional

methods discussed above do not take advantage of this localization. In addition to numerical tools

for solving the Navier-Stokes equations with self-adaptive discretizations (Section 3), wavelets offer

an alternative paradigm to turbulence modeling. The main difference in wavelet-based turbulence

modeling is in its compression of the turbulence problem such that a simulation with a subset of

the total modes captures the dynamics of the most energetic eddies across the full spectral range

of the flow. This section describes a wavelet-based hierarchy of turbulence modeling. The most

precise and computationally most demanding approach in this hierarchy is WDNS, which applies

the adaptive wavelet-based methods described in Section 3 to solve the Navier-Stokes equations.

3In three dimensions, seven wavelet families correspond to the x, y, z, xy, xz, yz, and xyz directions.
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WDNS (Section 5.1) utilizes the compression properties of the wavelet representation to reduce

the computational cost and the memory requirements of DNS, while preserving its accuracy,

without performing any modeling. In CVS (Section 5.2), only coherent vortices are resolved. The

CVE method described in Section 4 plays a key role in the identification and isolation of coherent

vortices. Further reduction of computational cost can be achieved by resolving and tracking only

the most energetic part of the coherent eddies, which, similar to LES, necessitates additional

modeling of the effect of the less energetic unresolved motions, and results in SCALES (Section

5.3). Finally, we also discuss the application of wavelet-based numerical methods in combination

with RANS modeling (Section 5.4).

5.1. Wavelet-Based Direct Numerical Simulations

The use of self-adaptive, wavelet-based discretizations of the Navier-Stokes equations described

in Section 3 allows one to perform DNS on adaptive grids. The choice of a sufficiently small

threshold for wavelet filtering (Equation 3) eliminates the need to do any modeling because the

eliminated flow part is not significant for the flow dynamics and the resulting simulations could

be interpreted as adaptive DNS (Sagaut et al. 2006).

WDNS have been applied successfully to compute various flows, including transitional and tur-

bulent flows in the incompressible and compressible regime, e.g., flow around cylinder (Schneider

& Farge 2002, Vasilyev & Kevlahan 2002, Wirasaet & Paolucci 2005a), benchmarks for vortex

dipole-wall interactions (Keetels et al. 2007), 2D and 3D homogeneous turbulence (Fröhlich &

Schneider 1996, Goldstein et al. 2005), natural convection flow in a differentially heated cavity

(Wirasaet & Paolucci 2005b), thermoacoustic wave propagation (Vasilyev & Paolucci 1997), and

combustion (Rastigejev & Paolucci 2006, Vasilyev & Bowman 2000).

One of the most important features of the wavelet-based methods, in general, and WDNS, in

particular, is the ability to adapt the local resolution to intermittent flow structures and perform

simulations with computational complexity considerably lower than commonly accepted. The

usual computational estimate of the number of spatial and space-time modes required to simulate

decaying 2D and 3D turbulence is N ∝ Re3/2 and N ∝ Re3, respectively. These statistically

based estimates neglect intermittency. To determine how N (the number of grid points) and the

overall complexity scale with Reynolds number and to verify the claim that WDNS is well-suited

for calculating intermittent high–Reynolds number flows, Kevlahan & Vasilyev (2005) conducted

a series of 2D simulations of impulsively started flow through a tightly packed cylinder array

over a large range of Reynolds numbers, 3 × 101 ≤ Re ≤ 105. Figure 4 shows the vorticity

and adapted grid at Re = 104. The number of active grid points scales similar to Re1/2 over five

orders of magnitude, whereas the computational complexity scales similar to Re. This represents

a significant improvement over the classical estimate of Re3/2 for 2D turbulence.

Additional studies of 2D decaying turbulence confirmed that the spatial modes scale similar

to Re0.7, which is slower than the traditional estimate of O(Re) (Kevlahan et al. 2007). A further

improvement is obtained by introducing the simultaneous space-time adaptive wavelet method

(Alam et al. 2006). Thus the computational complexity of the space-time simulations was N ∼
Re0.9 for 1.26 × 103 ≤ Re ≤ 4.04 × 104 over many eddy turnover times (Kevlahan et al. 2007).

The relatively high compression confirms the importance of intermittency and encourages further

development and application of wavelet-based methods to compute 3D turbulence.

5.2. Coherent Vortex Simulation

CVS, introduced by Farge and colleagues (1999; Farge & Schneider 2001) for the simulation

of turbulent flows, combines nonlinear approximation with denoising and additionally exploits
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the properties of wavelets for numerical analysis. As discussed in Sections 3 and 4, wavelets yield

attractive discretizations for the Navier-Stokes equations and allow the extraction of coherent

vortices in an objective way from turbulent flows.

The principles of CVS are (a) to deterministically compute the evolution of the coherent

vortices in a wavelet basis, which dynamically adapts to the regions of strong gradients and thus

resolves the nonlinear interactions between coherent vortices, and (b) to model the influence of

the incoherent components, produced by nonlinear vortex interactions, which are discarded at

each time step to model turbulent diffusion.

In the hierarchy of turbulence simulations, CVS falls between DNS and LES. From the filtering

viewpoint, what distinguishes CVS from LES is the use of wavelet threshold filters, which depend

on the instantaneous flow realization, whereas LES uses linear low-pass filters, which do not adapt

to the flow evolution.

The evolution equation of coherent vorticity is obtained from the Navier-Stokes equations by

inserting the coherent-incoherent decompositions of vorticity (Equation 11) and velocity (Equa-

tion 12) into the equations in vorticity-velocity formulation. Neglecting the influence of the

incoherent components ωI and uI , we obtain the following evolution equation for the coherent

vorticity ωC :

∂tωC + uC · ∇ωC = ωC · ∇uC + ν∇2
ωC , (13)

where ν denotes the kinematic viscosity, and ∇ · uC = 0.

An orthogonal wavelet threshold filter (Equation 3) with the optimum threshold ǫopt, based on

Donoho & Johnstone’s (1994) criterion, is applied. The coherent velocity is constructed from the

coherent vorticity by applying the Biot-Savart kernel. At the end of each time step, the safety zone

described in Section 3 is added and the solution is advanced in time. CVS was successfully applied

for 2D and 3D turbulent flows (e.g., Farge & Schneider 2001; Goldstein et al. 2005; Roussel &

Schneider 2009; Schneider et al. 1997, 2006).

For example, Schneider et al. (2005) compared CVS simulations of a time-developing 3D

turbulent mixing layer with DNS, using pseudospectral methods for both computations. For

CVS, they filtered the vorticity field each time step and applied the safety zone. This a posteriori

test illustrates the potential of CVS without performing fully adaptive computations.

Isosurfaces of the vorticity modulus colored by the spanwise vorticity are plotted in Figure 6.

Both visualizations are almost identical; entangled vortex tubes around the two main rolls are

present in both DNS and CVS.

The evolution of energy and enstrophy in Figure 6c,d shows that, before the flow is fully

turbulent, both quantities are the same for CVS and DNS. After the flow has become fully

turbulent, the nonlinear flow dynamics begins to produce incoherent enstrophy. The CVS filtering

removes this incoherent enstrophy, explaining why the CVS flow contains less enstrophy than the

DNS flow.

Conversely, the time evolution of turbulent kinetic energy E is almost the same for CVS and

DNS. Up to the final time, the discrepancy remains less than 0.4% of E. This is a result of the

noise-like nature of the incoherent vorticity, which contributes almost nothing to the total energy

because it is cancelled out in the Biot-Savart kernel.

The number of wavelet modes retained during CVS (Figure 6e) varies between 8% and 15% N,

corresponding to a factor of about two in each Cartesian direction. Approximately 4% N are in

the filtered wavelet basis, and the rest correspond to the safety zone, which has been added to

track the nonlinear dynamics in space and scale. Figure 6 shows that the number of active wavelet

coefficients evolves in time. In particular, when pairings occur, the number of wavelets increases

as reflected in the first two peaks in Figure 6e.
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Figure 6

Turbulent mixing layer. Isosurfaces of the vorticity modulus colored by the spanwise vorticity at the onset of turbulence: (a) direct
numerical simulation (DNS) and (b) coherent vortex simulation (CVS). Time evolution of (c) energy, (d ) enstrophy, and (e) the
percentage of retained wavelet coefficients (including the safety zone) used by CVS: DNS ( green line), CVS (red dashed line), and the
ratio CVS/DNS (blue dotted line). Reprinted with permission from Schneider et al. 2005. Copyright 2005, Cambridge University Press.

Roussel & Schneider (2009) have presented fully adaptive CVS computations of a 3D weakly

compressible, temporally developing, turbulent mixing layer. An adaptive mulitresolution method

based on a second-order finite-volume discretization is used to solve the 3D compressible Navier-

Stokes equations in Cartesian geometry (Roussel et al. 2003). CVS were performed by decom-

posing the conservative flow variables (density, velocity, total energy) into a bi-orthogonal wavelet

series by applying the cell-average multiresolution transform. The flow evolution of the coherent

part is computed deterministically on a locally refined grid using the adaptive multiresolution

method. Figure 7 shows isosurfaces of vorticity together with the corresponding adaptive grid

used for the CVS computation. The computational efficiency of CVS in terms of memory and

CPU time compression demonstrates that both can be reduced by a factor of three with respect

to DNS, whereas energy and enstrophy are reasonably well predicted.

5.3. Stochastic Coherent Adaptive Large Eddy Simulations

To further reduce the computational demand of CVS, mainly associated with the requirements of

resolving locally coherent modes down to their smallest scale, one has to apply further modeling,
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ba

Figure 7

Coherent vortex simulation (CVS) of a weakly compressible mixing layer for Re = 200. (a) Isosurfaces of
vorticity ‖ω‖ = 0.5 (red ) and ‖ω‖ = 0.25 ( yellow). (b) Adaptive mesh for the CVS computation. Figure
taken from Roussel & Schneider 2009.

which makes the wavelet-based method more computationally feasible for simulations of turbulent

flows of engineering interest. In SCALES, introduced by Goldstein & Vasilyev (2004), the formal

separation between resolved coherent structures and unresolved eddies is shifted toward the range

of more energetic eddies so that the effect of the background flow can no longer be neglected and

must be modeled. Introducing an SGS model makes it possible to further reduce the degrees of

freedom of the numerical solution, and a higher grid compression with respect to CVS is achieved.

In fact, the use of an SGS model makes the SCALES methodology similar to LES. However,

in contrast to standard LES based on linear low-pass filters, SCALES exploits a wavelet-based

nonlinear thresholding, which depends on the instantaneous flow realization. Furthermore, the

distinct difference of the SCALES approach is in the direct coupling of the computational grid and

the SGS model: The method has the ability either to compensate for inadequate SGS dissipation

provided by the model by increasing the local resolution and hence the level of resolved viscous

dissipation or to coarsen the mesh in regions of high SGS dissipation.

The SCALES equations, which describe the space-time evolution of the most energetic co-

herent eddies in a turbulent flow, can be formally obtained by applying the wavelet thresholding

filter (Equation 3) to the incompressible Navier-Stokes equations:

∇ · u
ǫ
i = 0, (14)

∂tu
ǫ + ∇ · (uǫ ⊗ u

ǫ) = −
1

ρ
∇ pǫ + ν∇2

u
ǫ − ∇ · τ, (15)

where ρ and ν are the constant density and kinematic viscosity, respectively; p is the pressure; and

the operator ⊗ denotes the tensor product. As a result of the filtering process, the unresolved

quantities, τ = [u ⊗ u]ǫ − uǫ ⊗ uǫ, commonly referred to as SGS stresses, are introduced. They

represent the effect of unresolved (less energetic) coherent and incoherent eddies on the resolved

(energetic) coherent vortices. As in an LES approach, one needs an SGS model to express the

unknown stresses in terms of the resolved field to close Equation 15. Similar to LES, the SGS stress

has been shown to comprise a minority of coherent modes that dominate the total SGS dissipation

and a majority of incoherent modes that, because of their decorrelation with the resolved modes,
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add little to the total SGS dissipation (De Stefano et al. 2005, Goldstein & Vasilyev 2004). The

coherent/incoherent composition of the SGS modes is reflected in the name of the SCALES

methodology. Most recent efforts in developing SGS models for SCALES, as for classical LES,

have focused on the approximation of the deterministic effect of the coherent SGS motions,

whereas the development of stochastic models to simulate the effect of incoherent SGS motions

is still an open question.

Different SGS models, originally developed in the context of LES, have been successfully

extended to the SCALES framework. For instance, there is the dynamic Smagorinsky model, based

on the extension of the classical Germano procedure redefined in terms of wavelet thresholding

filters (Goldstein et al. 2005). To fully exploit the dynamic adaptivity of the method and to remove

the reliance on the presence of homogeneous directions to stabilize the numerical calculations

(e.g., Lilly 1992), investigators have recently proposed two classes of local dynamic SGS models

for SCALES: a Lagrangian path-line/tube dynamic model (Vasilyev et al. 2008) and local one-

equation dynamic models based on the SGS turbulent kinetic energy (De Stefano et al. 2008). The

above models make use of the local characteristic filter width, �(x, t), which is implicitly defined by

the wavelet thresholding procedure (Equation 3) and can be extracted from the analysis of wavelet

coefficients during the simulation. It can be interpreted as a measure of the local turbulence

resolution. The smaller the value of ǫ is, the smaller the turbulence resolution length scale �

and the greater the fraction of resolved turbulent kinetic energy. In the limit of very small ǫ, the

WDNS solution is obtained. Such an interpretation of wavelet threshold filtering highlights the

similarity between SCALES and classical LES approaches. However, the wavelet filter is different

from the LES filters, primarily because it changes in time following the evolution of the solution,

which in turn results in an adaptive computational grid that tracks in physical space the areas of

dynamically significant flow structures.

Figure 8 summarizes the results of the SCALES simulation of incompressible homogeneous

freely decaying turbulence using different SGS models, as well as compares them with CVS,

no-model simulations with SCALES threshold, and LES with the global dynamic Smagorinsky

model. We note the unique feature of the SCALES approach, namely the coupling of modeled

SGS dissipation to grid compression: More grid points are used for models with lower levels

of SGS dissipation. In other words, the SCALES approach compensates for inadequate SGS

dissipation by increasing the local resolution and, hence, the level of resolved viscous dissipation.

This can be seen clearly by comparing the SCALES results using different models with no-model

simulations (Figure 8c,d ). Finally, one of the most crucial strengths of the CVS and SCALES

approaches is their ability to match the DNS energy and enstrophy density spectra up to the

dissipative wave-number range using few degrees of freedom (Figure 8b). Furthermore, the close

match for SCALES is achieved using less than 0.4% of the total nonadaptive nodes required for

DNS with the same wavelet solver. Comparing these results with those of LES with the global

dynamic Smagorinsky model highlights the significance of such a close match. Despite LES using

almost four times the number of modes (1.56%), it fails to capture the small-scale features of

the spectrum. In addition, with the decrease of SGS dissipation, the spectrum approaches the

wavelet-filtered DNS spectrum. Even better approximation of the DNS spectrum is achieved in

CVS with the number of modes comparable to LES.

5.3. Use of Wavelet-Based Methods with Low-Fidelity Approaches

The use of wavelets with low-fidelity approaches such as RANS is limited to the solution of

the modeled equations using adaptive wavelet-based approaches. The computational savings are

simply achieved from wavelet compression. The unsteady RANS simulations of the turbulent flow
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Figure 8

(a) Energy decay, (b) energy density spectra at t = 0.08, (c) field compression, and (d ) percentage of subgrid-scale (SGS) (modeled)
dissipation for SCALES (stochastic coherent adaptive large-eddy simulations) of decaying homogeneous turbulence at Reλ = 72. Data
taken from De Stefano et al. 2008, Goldstein et al. 2005, and Vasilyev et al. 2008.

around single and tandem cylinders have been performed using both a wavelet-based acceleration

approach (Sheta et al. 2006) and the adaptive wavelet collocation method (Liu & Vasilyev 2006). For

the latter, the Brinkman penalization method was extended to k −ω unsteady RANS equations with

additional penalization terms for turbulent kinetic energy and specific dissipation-rate equations.

6. CONCLUSIONS AND PERSPECTIVES

Wavelet methods in CFD compose a relatively young area of research. Despite their short, decade-

long existence, a substantial number of wavelet techniques have been developed for numerical

simulations of compressible and incompressible Euler and Navier-Stokes equations for both inert

and reactive flows. What distinguishes wavelet methods from traditional approaches is their ability

to unambiguously identify and isolate localized, dynamically dominant flow structures such as

shocks, flame fronts, and vortices and to track these structures on adaptive computational meshes.
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This article provides a review on the subject of wavelet methods in CFD and discusses different

wavelet-based approaches, emphasizing turbulence modeling and simulations using wavelets.4

Wavelet multiresolution analysis offers a unique framework for modeling and simulating tur-

bulent flows, namely the tight integration of the numerics and physics-based modeling that enables

the development of a unified hierarchy of turbulence models of different fidelity. The centerpiece

of these models is the energetic coherent structures that capture the dynamics of the flow across the

full spectral range. The integration of turbulence modeling with adaptive wavelet methods results

in a hierarchical approach, in which all or most energetic parts of coherent eddies are dynami-

cally resolved on self-adaptive computational grids, while modeling the effect of the unresolved

incoherent or less energetic modes. Although several open questions still have to be addressed

before the methodology can be used for the simulation of high–Reynolds number turbulent flows

of engineering interest, it has been demonstrated that adaptive wavelet-based methods for solving

Navier-Stokes equations, either in the spirit of adaptive DNS or with wavelet-based turbulence

models (such as CVS or SCALES), are more efficient than classical methods in terms of com-

putational complexity with respect to Reynolds number and their ability to capture more flow

physics using the same computational resources. The current results found in the literature are

promising and show that CPU and memory requirements can be reduced with respect to DNS,

while preserving reasonably well the statistical predictability of the computed flows. Nevertheless,

for full assessment of wavelet-based turbulence modeling, further detailed benchmark studies are

necessary.

Currently we see the largest potential for wavelets in the coupling of adaptive wavelet methods

with penalization approaches to compute flows in complex geometries, which may even vary

in time or interact with the fluid, as is the case with fluid-structure interactions. The essential

properties of wavelet methods, automatic grid generation and error control in combination with

turbulence modeling, seem to be most advantageous in these configurations, as dominant flow

structures are well localized, even if changing in time, and thus adaptivity pays off. The coupling

of multiresolution techniques to accelerate classical solvers is also an interesting direction of great

promise. Implementing these multiresolution tools in existing codes is quite straightforward and,

similar to AMR techniques, allows the reduction of computational cost, although, in addition to

AMR, with an automatic error control.

Adaptive wavelet methods for modeling and simulation of turbulent flows are still in their

infancy, and so far mostly flows of academic interest have been studied. Many open questions

need to be answered before the methodology can be used as a practical tool for simulations of

turbulent flows of industrial relevance. The most pressing issues are the extension of the modeling

framework to bounded flows, the definition of coherent structures for highly anisotropic flows,

and the efficient implementation of adaptive wavelet solvers on massively parallel computers. In

conclusion, we emphasize that wavelet methods in CFD compose a relatively new and evolving

area, which involves many challenging issues to be investigated, and we invite researchers to this

rapidly advancing field.
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Fröhlich J, Schneider K. 1996. Numerical simulation of decaying turbulence in an adaptive wavelet basis. Appl.

Comput. Harmon. Anal. 3:393–97
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