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Abstract. Recently, considerable amount of attention is being given to the 
field of wavelets and wavelet packets. It has found numerous applications in 
signal representation, image compression and applied mathematics. 

In this paper, we present a channel equalization method based on wavelet 
packets. The proposed equalizer structure is based on the fact that for sufficiently 
narrowband sequences, a non-ideal channel can be modelled as an attenuation 
and delay. If the data sequence is used to modulate a set of narrowband wavelet 
packets, then no equalization is required at the receiver end. The equalization 
problem reduces to that of determining the delay introduced by the channel for 
each of the wavelet packets. A minimum square variance algorithm for adap- 
tively choosing thedelay has been proposed. This algorithm has been shown 
to perform as desired analytically in a simple delay channel case. Simulations 
have been used to study its performance in the non-ideal channel's case and the 
results corroborate theoretical predictions. 
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1. Introduction 

Practical communication channels are noisy and band-limited. Hence, the received se- 
quence is usually an attenuated, delayed and distorted version of the transmitted sequence 
(besides the noise introduced by the channel). When a stream of symbols is transmitted 
over the channel, the distortion results in interference between neighbouring symbols. This 
inter-symbol interference (ISI) is primarily due to the band-limited nature of the channel. 
A filter or signal processing algorithm, called an equalizer, is required at the receiver end 
to remove (or minimize) the effects of ISI. The parameters of the equalizer are adjusted 
on the basis of measurements of the channel characteristics (Proakis 1983; Qureshi 1985). 
These measurements could be made by initially transmitting a training sequence which 
is known to the receiver. Alternatively, in the blind equalization schemes (Benveniste & 
Goursat 1984), measurements made on the received sequence itself are used to estimate 
the channel characteristics. 
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The complexity of the equalizer is substantial for channels with severe ISI. To reduce 
the complexity of the receiver, the data symbols are used to modulate a narrow-band carrier 
which is then transmitted over the channel. Since a channel behaves like an ideal delay 
channel in a sufficiently narrow band, the narrow-band cartier suffers much less distortion 
thereby requiring reduced compensation and reduced equalizer complexity. However, a 
single narrow-band carrier would use only a fraction of the channel bandwidth available. 
This would mean transmitting the data at rates much lower than is possible. There are two 
complementary approaches to increase the data rate for a given bit error probability. 

The first approach to increase the data rate is to use multi-level amplitude (M-ary) 
modulation of the carrier. The carrier takes M possible signal amplitudes, corresponding 
to M ---- 2 k possible k-bit symbols. The increase in data rate, by a factor of M, is gained at the 
expense of increased signal power; the bandwidth utilization is still the same. Quadrature 
amplitude modulation is an efficient method to trade-off data rate against signal power. 

The second approach to increase the data rate is to use multiple ~arriers, each occupying 
different regions of the channel bandwidth. Here, the increase in data rate is gained at 
the expense of greater bandwidth utilization. An orthonormal set of carriers would, in 
general, offer the best performance. A number of orthonormal sets have been suggested in 
the literature. The discrete multi-tone (DMT) (Chow 1992, ch. 2 -4)  system, for example, 
uses the Fourier basis sequences as the orthonormal set. 

Recently, considerable amount of attention is being given to the field of wavelets and 
wavelet packets. Wavelet theory provides a unified framework for a number of signal 
processing techniques which have been independently developed. It has found numer- 
ous applications in signal representation, image compression and applied mathematics 
(Coombes et al 1989; IEEE 1992). 

Whereas the Fourier basis sequences are all of equal bandwidth, wavelet packets are 
a generalization to the unequal bandwidth case. Here, we present a channel equaliza- 
tion method based on wavelet packets. The ability to select the bandwidth of the carri- 
ers could conceivably be used to improve the efficiency of the DMT system, though, of 
course, the DMT system has the advantage of having a number of fast algorithms for its 
implementation. 

2. Problem statement 

The problem of designing an equalizer and then adaptively choosing the equalizer param- 
eters is a classic one. Recently, with the development of wavelets and renewed interest in 
multirate systems, a number of adaptive equalization algorithms using sub-band concepts 
have been proposed (Gilloire & Vetterli 1992; Shynk 1992; Sathe & Vaidyanathan 1993). 
These algorithms are based on splitting the output signal of the channel into sub-bands, 
applying standard adaptive equalization algorithms in each sub-band and then recombining 
the sub-bands to generate the equalized output. The sub-band scheme has greater com- 
putational efficiency than the full-band scheme. Furthermore, the convergence speed is 
improved as the adaptation step size can be matched to the energy distribution of the input 
signal in that band. However, if decimation is done close to the maximal rate in an attempt 
to reduce the ~aumber of computations, then the performance deteriorates. 

Here, we approach the problem of channel equalization using wavelet packets in a differ- 
ent way. Any channel response can be sub-divided into a set of regions (possibly unequal), 
where its behaviour closely approximates the ideal delay channel. Since a wavelet packet 
is essentially a narrow-band sequence, a suitably designed packet would be essentially 



Wavelet packet based channel equalization 77 

undistorted by passage through the channel. If a data bit is used to switch the polarity of 
the packet, then at the receiver the bit could be recovered by a simple matched filter-sampler 
combination. 

Since wavelet packets can be designed with finite support, a data sequence could be 
transmitted over the channel by using time-delayed (shifted) versions of the same wavelet 
packet. If the delay between two successive wavelet packets is sufficient, the overlap 
between them is minimal, and at the receiver the data sequence can easily be identified and 
recovered. However, to increase the data rate, one would like to reduce the delay between 
the transmission of successive wavelet packets to a minimum. But, as one reduces the 
delay it becomes increasingly difficult to pick the correct sample at the matched filter 
output. This is because of the increased overlap between the wavelet packet and its shifted 
versions. 

An important property of a wavelet packet is that it is orthogonal to an nk-shifted version 
of itself (where nk is the decimation factor associated with the wavelet packet in the kth 
sub-band). Thus, if we reduce the delay between successive wavelet packets to nk, this 
property can be exploited by the receiver to recover the transmitted sequence, despite 
large amounts of overlap. Picking the correct sample is equivalent to estimating the delay 
introduced by the channel before decimating the matched filter output. Thus, if we use the 
data sequence to modulate a set of wavelet packets and its shifted versions, no equalization 
is required at the receiver end. A simple delay and matched filter combination followed 
by a decimator would suffice. The equalization problem reduces to that of determining the 
delay introduced by the channel, for each of the wavelet packets. 

3. Proposed equalizer structure 

The wavelet packet transform (IEEE 1992; Mathiarasan 1992) is a generalization of the 
Discrete Time Wavelet Transform (DTWT). The transform coefficients for the sequence 
x(n) are given by 

+ o 0  

xk(n)= E x(m)hk(nkn-m),k---O, 1 . . . . .  M - l ,  (1) 
m =  - o 0  

where the nk's are arbitrary positive integers which satisfy 

M-l__l = 1, (2) 
nk 

k - - 0  

and the filters hk(n), k = 0, 1 . . . . .  M - 1 form the analysis bank of a non-uniform perfect 
reconstruction (PR) system. The decimation factor associated with the kth sub-band is nk 
and the bandwidth of the kth sub-band is nominally zr/nk. The non-uniform filter bank 
can be generated by cascading uniform filter banks together in an arbitrary tree structure. 

Similarly, the inverse transform relation is given by 

M - 1  + ~  

x(n) = E Z xk(m) fk(n -- nkm). (3) 
k = 0  rn = - e ~  

The filters fk(n), k = 0, 1 . . . . .  M - 1 form the corresponding synthesis bank of the PR 
system. 
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For perfect reconstruction, the analysis and synthesis filters have to satisfy the following 
conditions, 

and 

fk(n)  = hk(--n), (4) 

-k-O0 
Z fk (n) fm(n  -- nk,mp) = 8(k - m)6(p) ,  k, m = 0, 1 . . . . .  M - 1, (5) 

n---~--OG 
where nk,m = gcd(nk, nm). 

The transform can also be interpreted as a projection of the sequence onto a set of 
orthonormal basis sequences ~lkm (n), where 

Okra(n) = fk(n - nkm), k = O, 1 . . . . .  M - 1, andre ~ Z. (6) 

This orthonormal set of basis sequences is used as the "carrier" set for the data sequence. 
Before modulating these wave packets with data bits, we first split the data sequence into 
M sub-sequences. Since the bandwidth of the kth wavelet packet is inversely proportional 
to nk, the bits allocated to the kth wavelet packet should also be inversely proportional 
to n k. For example, in the uniform case, we could split the sequence a(n) into blocks of 
length M and assign the kth element of every block to the kth sub-sequence. 

The problem reduces to that of transmitting M sub-sequences {ak (n)}M--~ on the chan- 
nel. Each of these sequences could be used to modulate a set of wave packets {Okm (n)}meZ, 
to generate the transmitted sequence t(n) as follows 

M - I  +oo 

t(n) = Z Y~. ak(m)~Ikm(n). (7) 
k = 0 m = - o o  

Note from (7) that the ruth bit of the kth sub-sequence of the data modulates (i.e., multiplies 
with the amplitude of the bit) the mth wave packet of the kth set. 

Combining (6) with (7), we get 

M - 1  +oo 

t(n) = y ~  Z a k ( m ) f k ( n - - n k m ) ,  (8) 
k = 0 m = - o o  

or in the z domain 

M - I  M - 1  

T(z)  = y ~  Ak(Znk)Fk(z) = y ~  (Ak(z))tnkFk(z).  (9) 
k = 0  k = 0  

That is, the modulation can be performed by passing the M sub-sequences through a bank 
of expanders followed by a synthesis bank as shown in figure I. 

a(n) = ao(n) i ~ l ~ ~  

Demuxer 

: : : : 

Figure 1, A wavelet packet based equalization scheme: Transmitter section. 
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t(n) 

q(n) 

Figure 2. Noisy channel model. 

The modulated signal t (n) is then transmitted over a noisy channel (see figure 2). To 
demodulate the received signal r (n), we first pass it through a bank of matched filters. From 
(4), the matched filters are simply the corresponding analysis filters. Before decimating the 
output of the matched filter by a factor n i, we need to compensate for the delays experienced 
by the different wave packets (i.e., the different carriers). The receiver structure consisting 
of the matched filters, delays and decimators (see figure 3) performs the role of equalizer 
here. Figure 1 is called a transmultiplexer (Vaidyanathan 1993) as it converts a TDM signal 
into FDM, and vice-versa. We will now consider the problem of determining the delays at 
the receiver end. 

4. Analysis of the equalization scheme 

Consider the block diagram of figure 1. The z transform of the transmitted signal, T (z), is 
given by 

M-1 M-1 
T(Z) = ~ (Ak(z))tnkFk(Z)= ~ Ak(Znk)Fk(Z). (10) 

k=0 k=0 

The z transform of the received signal, R(z), is given by 

R(z) = T(z)C(z) + Q(z). (11) 

After equalization in the ith branch, we have 

• 4i(z) = (R(z)Hi(z)z-Si~n~, 0 < 8i < ni - 1. (12) 

Using (10) and (11) 

Ai(z)= (~lak(znk)Fk(z)C(z)Hi(z)z- ' i  W O(z)Hi(z)z - ' i )  . (13) 
\ k  = 0 ,[,ni 

Using (4), we get 

C,~. ~M-1 ) 
Ai ( z )  = . z_,  A k ( z n k ) H k ( z - 1 ) C ( z ) H i ( z ) z - S i  + Q(z)Hi(z)z- '~ i  (14) 

r (n)  

aI(~) , 

• • : ." • [ 

I 
-I 

Muxer 

-- a(,~} 

Figure 3. A wavelet packet based equalization scheme: Receiver section. 
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To simplify the notation, we define 

Ski(Z) ~ Hk (Z - l )H i ( z ) ,  

Dki(Z) =A Ski(z,)C(z). 

This gives 

(15) 

(16) 

M - 1  

Ai(z)  = Z (Ak(Znk)Dki(Z)Z-~i)$ni + (Q(z )Hi (z ) z - r i )~n i  (17) 
k=0 

or in the time domain 
M - 1  +oo 

Cli(n) = ~ Z ak(m)dki(nin -- nkm -- ~i) 
k = 0 r n = - ~  

+oc  

+ E hi(rn)q(nin - m - 3i). (18) 
rn = - o o  

In the noiseless case, (18) reduces to 

M - I  +¢x~ 

cti(n) = y ~  Z ak(m)dki(nin -- nkm -- 3i). (19) 
k : 0 m = - ~  

Thus, the output in the ith branch is not a delayed version of the input even in the noiseless 
case. This is due to the interference between samples of the same branch signal as well 
as the interference across branches. We should choose t] i such that this interference is 
minimized and the output cti(n) is mapped to a delayed version of ai(n). The minimum 
square variance (MSV) algorithm developed below meets this objective. We will motivate 
this algorithm for the noiseless case. 

5. Motivation of minimum square variance algorithm 

Consider (19). If dki(rtin -- nkm -- 8i) = 0 for k :~ i, the interference across branches 
will be zero. Further, if dii (nin - n i m  - r~i) is a delta sequence, the interference between 
samples of the same branch will be zero. Now the question we ask is the following. Will 
an appropriate choice for 6i force the above mentioned conditions on the dki (-)? To see 
this, we first investigate the properties of d k i  ( ' ) .  

We begin by noting that, using Euclid's identity, we can make the substitution nin - 
nkm = nk,i p, where p is some arbitrary integer and nk,i = gcd(nk, ni). Thus, instead of 
investigating the properties Of dki (nin -- nkm -- 6i ), we look at the properties of dki (nk,im -- 
6i ). Using Parseval's theorem and the fact that the wavelet packets and their shifted versions 
form an orthonormal set, it can be shown that (Gracias 1994) 

M - I  +o¢~ l f 2 ~  
Z Z dk 2(nk , im - - ~ i )  : ~ Jo [C(eJ°)Hi(eJ°)12dO" (20) 

k = 0 m = - o ~  

We note from (20) that M-| +oo ") Y~k = 0  ~ , "  = - o o  d k i  ( n k , i  m - -  r~i) is  independent of ¢~i and is equal 
to the channel energy in the portion specified by the ith branch. 

Now, squaring the LHS of (20) gives 

dk 2 (nk.im -- 8i) = dk 4. (nk,im -- Si) 
\ k  = 0  m = - o o  k = 0  m = - o o  

+positive cross-terms. (21) 
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Since each term in the RHS of (21) is positive, we get the following inequality 

Z Z d4i (nl~.im - 6 i )  <_ dki(nl~,im-6i) (22) 
k = 0 m  = - o o  \ k = 0 m  = - o o  

The equality in the above equation holds only if all the positive cross terms are zero. This 
can happen only if exactly one of the terms (i.e., dki (')) of the sum is non-zero (the trivial 
case of the equality when all the terms are identically zero is not permissible since the 
RHS of (20) is guaranteed to be positive). If the wave packets are chosen with a small 
overlap in the frequency domain, then Hk (z - l )  Hi (z), i ~ k will be close to zero. This 
implies from (16) that dki(n), i ¢ k will be close to zero. Thus the above equality holds 
only if dii (nk . im - -  ¢ ~ i )  is a delta sequence and dk~ (nk , im -- 6i), i ¢ k is identically zero. 
If dii ( n i m -  8i) is a delta sequence, then the output sequence is a delayed version of the 
input sequence, i.e., there is no ISI. 

Note from (20) that the RHS of (22) is independent of~i. This suggests that if we choose 
t~ i to maximize the LHS of (22), then the sequence dki (nk.im -- 6i) will approximately 
assume the properties mentioned above, thereby minimizing the ISI. 

In practice, the channel response is unknown, and hence, dki (-) is unknown. Thus, we 
have to make the appropriate choice of~i based on the output signal ai (n) and its statistics. 

6. Minimum square variance algorithm 

In the previous sections, we have shown that to minimize the ISI, we should choose t~ i such 
that y-~M--I +o~ d 4 M-I +oe d2i(nk,im_~i) ~.,rn = -oo ki (nk,i m --~i) is maximized. Since ~ k  = 0 ~m = -oo 
is independent of ~i (see (20)), we can rewrite 

max ~ 4 d~i(nk,im - 3i) w.r.t. 3i ¢~ 
\ k = 0  m = - o o  

min 2 4 E dki(nk'im di) dki(nk,im -- t$i) -- 
k k = 0 m = - o o  k = 0  rn = - o o  

w.r.t, ai. (23) 

From the statistics of fii (n), we can show that 

var[ai2 (n ) ]  = 2 a  4 E dki (nk , im -- gi) 
\ \ k = 0 m = -  

M - I  +~o ) 

E Z -- d~i(nk, im -- 3i) • (24)  
k = 0 m = - o o  

From (24) and (23), we get the following relation 

m a x i m i z e  dki(nk , im - -3 i  4- 1) w.r . t .  ~i ¢~ 
\ k  = 0 m = - o o  

2 minimize (var[fii (n)]) w.r.t. 8i. (25) 

Thus if we choose ~i such that var[fi2(n)l is minimized, then the ISI will be minimized. 
We call the algorithm which performs this minimization as the minimum square variance 
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r(,) a~(n)16.=o 

ai(n)l~,=l- 

a~Cr,)l,~ .... _, 

Variance 

Update 

Switch 

1 
Decision 

Logic 

, a~(n)fopt 

Figure 4. Block diagram of the MSV algorithm in the i-th branch. 

(MSV) algorithm. The block diagram of the MSV algorithm in the ith branch is given in 
figure 4. 

The output of the ith receiver filter is decomposed into its ni polyphase components. 
At every nith instant, the sample variance of each of these components is updated. The 
polyphase component with the smallest sample variance is declared as the output of the 
branch. We can re-state the algorithm formally as follows: 

For each branch at the receiver, 

• split the filter output into ni length blocks, 

• setup ni registers to hold the sample variances, 

• initialize these registers to zero, 

• use the kth sample of the block to update the variance in the kth register, 

• declare the kth sample of the block as the desired received output of the branch, if the 
value of the kth register is minimum. 

7. Performance of the MSV algorithm in a simple delay channel case 

We will now explore how the MSV algorithm performs in the simple case of a noiseless 
delay channel. Assuming, 

C(z)  = z -× (26) 

and using (16), we get 

Dki (Z) ~ Z - Y  Ski (Z). (27) 

Substituting (27) into (17) with Q(z)  = 0 gives 

M-1 
f~i(Z) -~ Z (Ak(Znk)Sk i (Z)Z-Y-6 i  )'~ni" (28) 

k=0  

Suppose we choose Si such that, 

- -Y  -- ~i = - - p n i  (29) 



Wavelet packet based channel equalization 83 

where p is some arbitrary integer (note that this is always possible as 0 < ~i <-- ni -- 1). 
Using the Noble identities, (28) reduces to 

Now 

M-1 
/~i (Z) : ~ (Ak (z "~lnk'i )z -p"i Ink'i (Ski (Z)).!.nk. i )Snil,k.i.  

k=0 
(3o) 

(Ski (Z)) J, nk. i : ( n k  (Z-  1 ) Hi (Z)) J, nk.i" (31) 

The LHS of the above equation is just a rewriting of the orthonormality condition in the 
z-domain. Thus, we have 

(Ski(Z)).[.nk. i : 8(k, i). 

Using (32) in (30), we have 

(32) 

M-I 
• 4i (Z) : Z (Ak (Z nk/nk'i )Z -pni/rlk'i ~ (k, i)) J, ni/nk, i 

k=0 
= (Ai (Z ni/ni'i )Z-pni/ni.i ) ~.ni ~hi. i 

= Ai(Z)Z - p .  (33) 

Thus, if we choose t~ i according to (29), then the output is an undistorted version of the 
input. 

To see what the MSV algorithm gives, substitute (27) in (24). This gives 

var[di 2 (n)] = 2or 4 2 ~i) Ski (nk.im -- Y -- 
\ \k=Om=-oo  

M-1 +oo ) 
Z ~ 4 - - 5 i )  • (34) -- Ski(nk,im Y 
k=Om=-oo 

If ~i satisfies (29), then 

( ( ~ l + C ~ o o S 2 i ( n k . i m  ) 2  var[di 2 (n) ] = 2or 4 ~ - -  n i p ) 
\ \ k = 0 m = -  

M-1E +oo 4 ) 
-- E -  Ski(nk.im -- n ip )  • (35) 

k=0m=-oo 

Making the substitution l = m - ni/nk,iP in (35), we get 

( ( ~ 1  ~_~ 2 )2 ~ 1  ~ s4i(nk.it)).  (36) var[diZ(n)]=2~4 Z_, S k i ( n k , i l )  - -  

\ \ k=01=-oo  k=0l=-oo 

Now, using (15) and (5), 

Ski(nk,il)= Z fk (n) f i (n- -nk . i l )  

= ~(k - i)~(1), k, i = O, 1 . . . . .  M - 1. (37) 
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From (37), we obtain 

var[di2(n)] = 2ct 4 ~ (3(k - i)3(/)) 2 
\ \ k = 0 1 = - o o  

M-1 +oo ) 
- - i ) 8 ( l ) )  4 

k = O / = - o o  

= 2a4(1 - 1) = 0. (38) 

Thus, for 6i satisfying (29), the variance of a2i(n) is identically zero. For all other values 
of ,~i, the variance would be non-zero as (37) can no longer be applied. We can therefore 
conclude that for a simple delay channel (with no noise), the MSV algorithm will yield 
the proper value of the delay. 

7.1 Computational issues 

Suppose the data sequence is arriving at a rate B (with respect to some system of units). 
At the transmitter end, the sequence is split into M sub-sequences. The ith sub-sequence 
will be at the rate B/ni .  The sub-sequences are passed through an ni-fold expander. Thus, 
the filtering operations have to be performed at the rate B. Since the bandwidth of the 
ith filter is inversely proportional to i, we can assume that its length is niL. Thus, the 
computation rate in each branch is approximately ni L B. Thus, the total computation rate 

M-1 at the transmitter end is approximately ~ i  =0 ni LB. However, if we use the polyphase 
representation to implement the ni-fold expander and filter cascade, then we can reduce 
the rate in each branch by a factor ni (Vaidyanathan 1993). This makes the computation 
rate for the transmitter section approximately MLB.  

The computational rate at the transmitter can be further reduced if the filter bank is 
implemented using a tree structure. For example, consider the uniform case, with M = 2 p. 
Instead of implementing the filter bank as a set of M-fold expander-filter combinations, 
we could implement it as a cascade of p stages of 2-fold expander-filter combinations. 
The filter lengths would be ML and 2L respectively. This would reduce the computation 
rate to 2pL B, which compares favorably to FFr-based schemes. 

The sequences are then combined and transmitted over the channel at the rate B. As in 
the case of the transmitter the total computation rate for demodulation is approximately 

M-I Y~i =0 niLB. The polyphase representation cannot be used here as all the polyphase 
components of the received signal are required to make the decision. 

Since M- 1 +oo 2 ~ k  = 0 ~ m  = _ ~  dki (nk , im  -- ~i) is independent of  tS i , minimizing the variance 
of fi/2 (n) is equivalent to maximizing the fourth moment of  ai (n). Updating of the sample 
fourth moment requires 4 multiplications and 1 addition operation. If we consider only the 
multiplications, the computation rate is 4MB since there are ni polyphase components in 
each branch, and these components are arriving at a rate of B/ni .  Thus the total computa- 

M-I  tion rate at the receiver is (4M + ~-~i =0 niL)B. Once the algorithm converges, only the 
polyphase component corresponding to the selected delay has to be computed. This brings 
down the computation rate at the receiver to MLB.  

The equalization scheme has been proposed for a stream of bits. At the transmitter, 
we map the bits 0 and 1 to the levels +et and -or, respectively, to generate the input to 
the equalizer. Similarly, at the receiver the received signal (after equalization) has to "be 
mapped back to a bit stream. This can be done using an appropriate threshold. 
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The equalizer scheme is based on the fact that the channel can be approximated by a 
simple delay in a sufficiently narrow band. For the M branch (uniform case) equalizer, each 
wavelet packet has a bandwidth of rr/M.  Clearly, if we increase M, the approximation 
gets better. However, we have seen that the computation complexity per sample is 0(M2). 
Thus, increasing M imposes a heavy computational burden on the system. 

The design of appropriate wavelet packets is equivalent to the design of a non-uniform 
PR filter bank. This can be accomplished by cascading appropriate (uniform) paraunitary 
filter banks. A design technique for such banks, based on cosine modulation (Koilpillai 
& Vaidyanathan 1992), requires the desired length of the filters and a cost function (to be 
minimized) as design parameters. Recall from the previous sections that the inter-branch 
interference in the ith branch is small ifdki ( n k i n  - -  ~ i ) ,  i ~ k is close to zero. In the absence 

~--,+o~ S 2 of any information about the channel, we could use the cost function 2.,n = - ~  ki (n) for 
the design of the wave packets. This will ensure that d k i ( n ) ,  i ~ k is small (see (16)), and 
hence, the inter-branch interference using the designed wave packets is small. 

8 .  S i m u l a t i o n s  

In the simulations, we considered the uniform case, i.e., ni = M, i = 0, 1 . . . . .  M - 1. 
The input was a random sequence taking values +1 and -1 with equal probability. We first 
consider the case of a simple delay channel, C(z) = z -1 . The received signal for the two- 
branch equalizer with compensating delays of both zero and one is shown in figure 5. It is 
clear from the figure that the output depends critically on the delay chosen. A wrong choice 
of delay would result in a wrong decoding of the received signal. This clearly illustrates 
the problem of picking the correct sample at the output of the matched filter. The delay 
computed by the MSV algorithm for this case is shown in figure 6. 

- ~ t " i Z l 
5 0  1 0 0  5 0  1 0 0  

T i m e  T i m e  

(b) 

x " x " [ ' " 

x x x  • x x ~ ~ x  

o x; . , , . . %  -- : ; : -  o 

5 0  1 0 0  5 0  1 0 0  

T i m e  T i m e  

(d) 

Figure 5. Received signals for a simple delay channel with a two-branch equalizer 
with 8i = 0 and I. (a)  i = 0,  t~i = 0 .  ( b )  i = 0 ,  t~i -~- 1. ( c )  i = 1, t~ i = 0 .  

(d)  i = i ,  ~i  : I. 
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Delay computed by the MSV algorithm for the two-branch equalizer for 
a simple delay channel in the noise-less case. (a) i = 0. (b) i = 1. 

To study the effect of noise, we consider the simple delay channel with zero mean white 
Gaussian noise for the two-branch case. The delay computed by the MSV algorithm for the 
noisy case with SNR's of 10dB and 5dB are shown in figure 7. We note that the algorithm 
takes longer time to converge, but the converged value of the delay is unaffected by noise. 
The convergence of the fractional error for the noiseless case and for the noisy case with 
SNR's of 10dB and 5dB is shown in figure 8. Note that the noise affects the decoding to a 
bit stream and hence the steady-state error. 

To test the wavelet packet based equalization scheme and the MSV algorithm, simula- 
tions were carried out using the three channels (denoted by A, B and C, respectively) with 
impulse responses as shown in figure 9. 
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Figure 7. Delay computed by the MSV algorithm for the two-branch equalizer for 
a simple delay channel in the noisy case. (a) i = 0, (b) i = 1 (SNR = 10dB). 
(c) i = 0 , ( d ) i =  I(SNR =5dB) .  
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Figure 8. Fraction of bits in error for a delay channel for a two-branch equalizer 
with additive noise. (a) i = 0. (b) i = 1. 

The fractional error (the fraction of  bits in error, i.e., the number of  bits in error upto the 
nth instant divided by the total number of  bits received upto that instant) at the receiver 
output is shown in figure 10 for a typical two-branch equalizer in the case of  the three 
channels A, B and C. Note that the steady state error is minimum in channel C and 
maximum in channel B. This implies that channel B causes maximum ISI. This is evident 
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Figure 9. Impulse responses of three typical channels. (a) Channel A. (b) Channel 
B. (c) Channel C. 
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Figure 10. Fraction of bits in error for a typical two-branch equalizer for different 
channels. (a) i = 0. (b) i = 1. 

from the impulse response of  channel B, where two coefficients have nearly the same 
amplitude. 

The effect of  increasing the number of  branches is shown in figure 11, which gives the 
plot of the fractional error in the zeroth branch for equalizers with two, three and five 
branches, respectively. The steady-state fractional error is lowest in the five-branch case. 
This is because in the five-branch case, each wavelet packet occupies a comparatively 
smaller bandwidth and hence is relatively undistorted. 
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Figure 11. Fraction of bits in error for the zeroth branch of an M-branch equalizer. 
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9. Conclusions 

The paper addresses the problem of channel equalization using wavelet packets. Wavelet 
packets were introduced as a natural generalization of the orthonormal basis sequences 
used in Fourier analysis, namely, the sinusoids. The proposed equalizer scheme was based 
on the fact that wavelet packets, being narrow-band, suffer only attenuation and delay 
when passed through a non-ideal channel. 

The equalizer structure, comprising a wavelet packet modulator, a compensating delay 
and a matched-filter demodulator was shown to be easily implementable in terms of filters 
and other multirate components. An algorithm to choose the delay values adaptively for 
each wavelet packet was motivated using the inherent multirate and orthonormal properties 
of the wavelet packet set. The algorithm (called the MSV algorithm) uses the variance of 
the square of the received sequence to choose that value of the compensating delay which 
minimizes the ISI. 

Simulations were carried out to test the equalizer structure and the MSV algorithm. 
The two-branch equalizer was tested for different channel models and also for various 
noise levels. The algorithm converges rapidly, and the steady state fractional error (which 
asymptotically becomes the probability of error) is low except for cases where the channel- 
generated interference is pronounced. It is demonstrated that such cases can be tackled 
by increasing the number of branches in the equalizer, i.e., by appropriately selecting the 
wavelet packets. 
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