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CHAPTER I

INTRODUCTION

1.1 Condition Monitoring

Any major piece of industrial machinery equipment requires a certain degree of

maintenance to assure successful operation over a long period of time. To achieve this

objective, an automated condition monitoring system is needed. This system allows early

detection of potentially catastrophic faults which could be extremely expensive to repair.

It also allows for implementation of condition based maintenance, and significant savings

can be made by delaying scheduled maintenance until convenient or necessary. Generally,

a simple condition monitoring system i' approached li'om a pattern classification

perspective. It can be decomposed into three general tasks: data acquisition, feature

extraction and condition classification [I] as briefly described next.

1.2 Data Acquisition - Vibration Signal

The most common family of monitoring methods is based on the vibration

measurements using multiple sensors [2, 3, 4, 5, 6, 7, 8J. The general principle behind

using vibration signals for monitoring is that components in mechanical systems generate

vibration during operation. When faults develop, some of the system dynamics change.



This results in significant deviations in vibration pattern. By employing appropriate data

analysis algorithms, it is feasible to detect changes in vibration signals caused by fault

components, and to make decisions about the machinery health status.

1.3 Condition Classification

In many of classification systems currently used. neural networks in particular, the

process of feature extraction is inherently embedded in the classification technique rather

than being apparent as a separate process. If a multi-layer neural network is used to

classify unprocessed data, the i.nput layer, which learns from examples. will essentially

become a feature extractor. However, in problems such as vibration time series data, the

input dimensionality becomes an impediment to classification. Even neural networks are

limited by the problem of parameter estimation - as the number of parameters increase,

the number of the data required to train the neural networks increases for satisfactory

performance. For a complex problem, obtaining the necessary data may be expensive or

even impossible. The feature extraction is needed to reduce the dimensionality of the data

before performing classification. This is based on the assumption that the important

structure in the data actually lies in a much lower dimensional space.

1.4 Feature Extraction

Feature extraction involves preliminary processing of sensor measurements to

obtain suitable parameters that reveal whether an interesting pattern is present. It is

generally not possible to classify machine conditions based upon an individual sample of

the vibration, therefore, a feature extraction technique is needed for preliminary
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processing of recorded time-series vibrations to obtain suitable parameters that, in linear

and/or nonlinear combination, reveal whether a fault is developing. This, in generaL

requires windowing of the time-series vibration signals to fonn signal segments on which

linear, bilinear. or nonlinear transformations are applied. The aim of feature extraction is

to devise a transformation that extracts the signal features hidden in the original domain.

Corresponding to different characteristics of signals, transformations should be properly

selected such that specific signal structure could be enhanced in its transformation

domain. This might make the following fault classification easier.

1.5 Problem Background

Usually, the vibration signals of defective components are highly structured and

could be grouped into two categories: sustained defects and intermittent defects [9]. For

sustained defects, the signal is sinusoidal. Fourier based analysis. which uses sinewave

functions as basis functions, provides an ideal candidate for extraction of these

narrowband signals. For intermittent defects. features reflecting machinery faults in the

pick-up (windowed) time series vibration signals neither appear in a repetitive manner

nor consist of regular frequency components with the evolution of time. Instead, these

signals often demonstrate a nonstationary and transient nature, and carry small yet

informative components embedded in larger repetitive signals. In this case, the Short

Time Fourier Transorm (STFT) can be employed to detect the local transient.

Unfortunately, fixed windowing implies fixed time-frequency resolution in the time

frequency plane [10, 11]. The di fficulty is that the accuracy of extracting frequency

information is limited by the length of the window relative to the duration of the
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interesting signal. For example, in helicopter transmissions, the important information

concerning bearings can be on the order of tens of hundreds of Hertz, whereas mesh

frequencies and important fundamentals associated with gearing of the engine input, can

be on the order of tens of thousands of Hertz. To overcome the fixed time-frequency

resolution problems, recently developed wavelet based analysis [10], which provides

flexible time frequency resolution, becomes an efficient alternative in dealing with this

type of machinery transient process.

Nonetheless, linear expansions in a single basis, whether Fourier or wavelet, is not

flexible enough. Fourier basis provided a poor representation of signais localized in time.

Wavelet bases are not well adapted to represent signals whose Fourier transform have a

narrow "high" frequency support because of poor resolution in high frequency. In both

cases, it is difficult to detect and identify the signal pattern from their expansion

coefficients because information is diluted across the whole basis. The Wavelet Packet

transform [12], on the other hand, uses a rich Iibrary of redundant bases with arbitrary

time frequency resolution. Therefore it enables the extraction of features of signals that

combine non-stationary and stationary characteristics.

1.6 Motivation of the Study

The collection of all wavelet packet coefficients contains far too many elements to

efficiently represent a signal. Care must be taken in choosing a subset of this collection in

order to be really useful in practical situations. For classification applications, a natural

direction is to address the issue of finding a wavelet packet based feature set that offers

maximum feature separability due to class-specific characteristics. Our study explores the
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feasibility of the wavelet packet transfonn as a tool in the search for features that may be

used in the detection and classification of machinery vibration signals. In particular, we

formulate a systematic method of detennining wavelet packet based features that exploit

class specific differences among interested signals. This would avoid human interaction.

One could simply input a sample data set that represents the signals of interest, and

receive as output the dominant features that are suitable for classification purposes. In this

thesis, we introduce a novel methodology for classifying vibration signals based on

wavelet packet analysis. We suggest that such analysis can provide more effective method

to achieve robust classification than traditional single resolution techniques.

1.7 Thesis Outline

The thesis investigates the use of the wavelet-packet-based feature in the

classification of vibration signals. In chapter 2 we discuss the inefficiency of Fourier

based analysis for transient signal analysis, and lead the reader to the wavelet based

analysis - wavelet transform and its generalization the wavelet packet transform. 'hapter

3 presents an overview of the proposed classification system based on wavelet packet

features. The feature measure used throughout the thesis is first described. Then we

present two feature selection methodologies that aim to reduce the input dimension for

the classifier. In chapter 4 the feasibility of the proposed wavelet-packet-based feature

extraction technique is examined through numerical simulations of seed faults in the

Westland helicopter transmission data set. We present our results and discuss the

performance with respect to parameters considered in our investigation. We conclude our

study in chapter 5.

5



CHAPTER II

WAVELET THEROY

2.1 Introduction

The aim of signal analysis is to devise a transformation that extracts the signal

features hidden in the original domain. Corresponding to characteristics of signals.

different transformations should be properly selected such that specific signal structure,

which is hidden in its original domain, can be revealed on its transformation side. This

might make the subsequent processing easier (in our case the vibration signal

classification application). In following sections we briefly discuss the Fourier based

analysis and its inefficiency in dealing with non-stationary signals. This naturally leads to

the Wavelet analysis. which lS more efficient than Fourier based analysis for non

stationary signals. Then the Wavelet analysis leads at last to the Wavelet PackcL

Transform.. the generalization of the Wavelet Transform.

2.2 Fourier Based Analysis

Vibration signal classification generally requires windowing of the time-series

vibration signals to form signal segments on which linear, bilinear, or nonlinear

transformations are applied. The Fourier based methods in particular the Short Time

6



Fourier Transform (STFT), are usually employed for the extraction of narrow band

frequency content in signals. The difficulty with STFT is that the accuracy for extracting

frequency information is limited by the length of this window relative to the duration of

the signal. Specifically, the STFT is defined as;

G(f,r)= f x(t)g'Ct-r)e-J2nft dt, (2.1 )

where g(t) is a window function. The STFT decomposes a signal in time domain into a

two-dimensional function in a time frequency plane (f, r) . At a given frequency f, Eq.

(2.1) is equivalent to filtering a signal at all times with a bandpass filter having as impulse

response the window function modulated to that frequency f. Alternatively, given a

segment of signal windowed around time instant T, one computes all frequencies of the

STFT. Now consider the ability of the STFT to discriminate between two pure sinusoids.

Given a window function gCt) and its Fourier transform G(f), define the bandwidth !':.f

of the filter as

f f 2
IG(f)1

2
dl

JIG(j)12
df

(2.2)

Then two sinusoids will be discriminated only if they are more than !:if apart. Similarly,

the spread in time is given by M defined as:

f t2
, g(t) 1

2
dt

M 2 = _

f I g(t) 1
2

dt

(2.3)

So, two pulses in time can be discriminated only if they are more than I1t apart. Thus, the

resolution in frequency of the STFT analysis is given by !':.f, and the resolution in time is

7



given by 6/. One important property, according to the uncertainty principle [13], is that

for any suitably chosen window function, the time-bandwidth product of the window

function has lower bound given by

6t6/ =c ~ 1/ 41Z" . (2.4)

Here c is a constant dependent on the choice of g(t). Note that once the window

function g(t) is defined, the area (time-bandwidth product) of the window function in the

time frequency plane remains fixed. It means we cannot increase the time and frequency

resolutions simultaneously. If we choose a window function with small 6t (good time

resolution), then the corresponding frequency resolution will be poor (6/ will be large).

Figure 2-1 shows how the STFT decomposes a signal into the time-frequency plane using

two different window functions. We can use a shorter duration window function to get a

better time resolution, at the cost of losing frequency resolution or vice versa.

frequency frequency

Time

(a)

Time

(n)

Figure 2-1: Decomposition of signal using STFT (a) long analysis window

function, (b) short analysis window function.
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Con ider analyzing various signals with different analy is window functions to

demonstrate the possible drawbacks of fixed time-frequency resolution associated with

the STFT. In Figure 2-2, the signal, X(l), contains a high fr quency component, so the

window function, g{t), has captured enough numbers of cycles for extracting accurat

frequency information in the signal. Whereas in Figure. 2-3, the duration of g(L) is too

long for the high frequency burst, therefore it will also capture other components of the

signal in that time duration. This may cause the short-time pulse to be buried and remain

undetected. For Figure 2-4, g(t) is too short to capture the low frequency signal.

Consequently, if we are analyzing the low frequency content of a signal, we might desire

a wide window function in time. Conversely, if we were interested in high frequency

phenomena, a short duration window function would be preferred. The STFT does not

allow this desired flexibility, but, as we will see in next section, wavelets give a

framework for which this is automatic.

'V\ 1\ r\ j Wl'l
f'

~ ... ' (\ / .. / \ /\J\\

\)1- \J \!
0 / \

\)111 \j \) \j \ \J.,
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-(0-;(1)
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-2
'0 '00 "0 200 2'0 JOO BO '00 "0 '00 >50 800
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Figure 2-2: Proper analysis window function
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2.3 Wavelet Based Analysis

Whereas Fourier based analy is is bas d on sinusoidal functions of various

frequenci s, the wavelet analysis, on the other hand, is founded on basis functions form d

by dilation and translation of a prototype function I/I(t), also known as a mother wavelet.

A typical wavelet function is shown in Figure 2-5. One could note that the wavelet

function is localiz d in both time and frequency domains.

The wavelet basis function, 'IIa.r(t), is a family of short-duration, high frequ nc

and long-duration, low frequency functions defined as [14]:

I (t - r)I/Ia r (t) = fIj 1/1 - , a > 0, T E 91 .
. -vIal a

(2.5)

The parameter T indicates the translation In time, and the parameter (/ 1S the scale

parameter.

IYPlcellllta.el.' Pun,llcn
o 3

"o 2 I '.
! \

i
o 1

, ,
I \

-~. /'. \ ./

\
o 1 \J \ /

V
o 2

0 o 1 02 o 3 o • o ~ o • o 7 o • o •

".. "
pOW.' .peellum of "... vel.' ""ncuon

0)5

o 3 II'::Iil o " \

o 1 \

005 \

0
0 o 1 o 2 o 3 o • o 5 o • o 7 o • o •

h'equeney

Figure 2-5: A typical wavelet function and its spectra. The frequency

axis is in units of 1t x radians.
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From the scaling property of Fourier transforms, if

(2.6)

fonned a Fourier transfonn pair. then

(2.7)

where a > 0 is a continuous variable. Thus a contraction in one domain is accompanied

by an expansion in the other, but in a nonuniform way over the time-frequency plane.

Depending on the dilation parameter, a, the wavelet function dilates or contracts in time

causing the corresponding contraction or dilation in the frequency domain. Figure 2-6

displays a set of wavelet functions and their corresponding Fourier transform for different

dilation parameters. When (J is large (a> l), the basis function becomes a stretched

version of the mother wavelet (a = 1) and demonstrates a low-frequency characteristic.

When a is small (a < l ), this basis function is a contracted version of the mother wavelet

function and demonstrates a high frequency characteristic. Note, however, that cach scale

parameter represents a frequency band, not pure frequency information.

• < 1

,. ,

•• I

: I ~, I
-,

o 0 ~

tim a

:: ~---- .•
o 0 , I

,:l j
o 5

(,equency

Figure 2-6: Wavelet basis function and corresponding frequency

spectrum. The frequency axis is in units of 7t x radians.

12



Similar to the STFT, one can analyze a signal with continuous wavelet transform

(CWT) which decomposes a signal in time domain into a two-dimensional function in

time-scale plane (a, r) :

(2.8)

The wavelet coefficient qJ(a, r) measures the time-frequency content in a signal indexed

by the scale parameters and translation parameters. The term frequency instead of scale

has been used in order to aid in understanding since a wavelet with large scale parameter

is related to high frequency content component, and vice versa. Similar to Figure 2-1, we

can construct a picture giving some idea of the simultaneous time-frequency localization

that takes place when applying CWT. Figure 2-7 gives a rough idea of the time-frequency

localization corresponding to the CWT. Thus we see that the CWT corrects the noted

deficiencies of the Fourier analysis as described in the previous section. That is, the CWT

analyzes the low frequency content of a signal with a wide duration function and

conversely, analyzes high frequency phenomena with a short duration function.

frequency

r l r 2

Figure 2-7: Decomposition of signal using continuous wavelet transform
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2.4 Fast Wavelet Transform

In practice, calculating wavelet coefficients at every possible scale using Equation

(2.8) is a fair amount of work and it generates a lot of redundant data. It turns out that if

we limit the choice of a and T in Equation (2.5) to a discrete number then our analysis

will be sufficiently accurate. In particular, if we choose scale and translation parameters

based on power of two, then there exists If/(t) with good time-frequency localization

properties. The set of functions

(2.9)

constitutes an orthonormal basis for [2 (91) [151. Here Z denotes the set of integers. and

[2 (9-1) denotes the class or measurable functions, x(l) , in :H satisfying:

f I x(t) 1
2

dt < 00 .

1!

Any si gnal x(l) in [2 (9\) can then be expressed as

x(l)=I <1,If J ,k >If,.kU),
l,k

(2.10)

(2.11 )

This is called a discrete wavelet transform (DWT). In practice, the implementation of the

DWT suitable for finite length discrete time signals is based upon the multiresolution

analysis (MRA) introduced by S. Mallat [16] which leads to a highly efficient algori thm

known as the Fast Wavelet Transfom (FWT). By introducing a new function, the scaling

function, the orthogonal wavelets could be constructed and incorporated into a system

that uses a cascade of filters to decompose a signal. This practical filtering algorithm is in

fact a classical scheme knoVvn as a two-channel subband coding using quadrature mirror

filters (QMF) [17]. A consequence of multiresolution is that we can transform a signal

14



into wavelets without using wavelets or scaling functions. In general these functions do

not exist as explicit functions; they are limits of iterations. To compute the wavelet

transfonn all we need are filters. Rather than taking the scalar product of the scaling

function or the wavelet with the signal, we convolve the signal with these filters.

Specifically, MRA consists of a sequence of closed subspaces {V;};EZ of L 2 ( ~ )

which have the following properties:

(a.l) {a} c. .. C V_I C Vo c V; c. .. C L2(~H)

(a.2) UV
j

= I} (9\) and nV; = {a}
leZ ;EZ

(a.4) There ex ists a scaling function, ¢( r) E Va, such that Vj E Z . the set

{¢;.k (I) =2JI2 ¢(2J I - k)} keZ constructs an orthonormal basis for V
J

.

Let WI to be the orthogonal complement of V
J

in V;.I ' i.e. VI.LW, and

V =VE9W
1.1 I I •

(2.12)

where E9 denotes the direct sum of vector spaces. Then the 1.2(91) can be decomposed as

an infinite direct sum of WI :

(2.13)

is an orthonormal base for ~ [17]. This function, If(t), is the mother wavelet function

associated with the multiscale analysis.

15



Since Vo C VI' any function in Vo can be expanded in tenns of basis functions of V;, i.e.

{~.k LeZ . In particular, ¢(r) E Vo so

¢(t) =fiI h(k)¢(21 - k)
Ie

[n analogy, since '11(/) E Wo and Wo E V; we can expand 'II(t) as

'11(/) =fiI g(k) '11(21 - k)
Ie

Now suppose that the function X(/) is in Vo so that:

/I

(2.14)

(2.15)

(2.16)

Since Vo = V_I E9 W_
1

' we can express the function x(t) E Vo a the sum of two functions,

one lying in V_I and the other in the W_
1

x(t) = lv-I (I) + I:'(r)

where

lv-I (I) = Ia_I.k¢_I,Ie(l)
Ie

f:] (t) =I d_ I .1e 'II-1.1e (t)
Ie

Multiplying both sides of Eq. (2.17) by ¢_I)t) and integrating yields

(x(r), ¢_I.II (t)) =(/.-1
(r), ¢_I,)r)) + (/:

1
(t), ¢_I)t))

(2.17)

(2.18)

(2.19)

(2.20)

Since 1:1(I) is a linear combination of {'II-I,1e (I)}, each component of which is

orthogonal to ¢-I,Jt), the second inner product in Eq. (2.20) is zero. Also, since {¢-I,1e (r)}

16



is the orthonormal basis for V_I' all component ar mutuall rth gonal to each oth r

such that:

(f.,-I(t)'¢_I,n(t») = I J a_ l,k¢_I,k(t)¢_l,n(t)dt = a_l.n
k

Therefore we have:

by substituting ¢-I,fl (I) = ~ ¢( ~ - n) into Eq. (2,20), we have

From Eq. (2.14)

therefore

a_I,ll =J2 J:c(t)I h(k)¢(1 - 2n - k)dl
k

=J2I h(k) f x(t)¢(1 - 2n - k)dt
k

=J2I h(kPo)n+k = J2I h(k - 2n)uO,k
k

In a similar way, we can arrive at

d_l,n =J2Ig(k - 2n)aO,k
k

Following the same process, we have

17
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am-Ill =J2I h(k - 2n)anr .•

k

(2.27)

dm_1.11 =J2I g(k - 2n)am,k

k

(2.28)

Therefore, the wavelet coefficients at coarse level d
m

_

'

•
1l

can be computed by

filtering am.k using'(k) as filter coefficients and discarding every other point. I.

Daubechies [15] has developed a procedure to solve Eq. (2.14) and Eq. (2.15) such that

the sequences h(k) and g(k) have only finite nonzero coefficients. which leads to a very

efficient algorithm for computing wavelet coefficients. In general. h(k) is the coefficient

of the low pass filter, whereas g(k) represents a high pass filter. Figure 2-8 shows the

filter sequences, h(k) and g(k), associated Daubechies 8 point wavelets and their

respective frequency spectra.

-"-..
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Figure 2-8: Daubechies 8 point filters and corresponding spectra. The

frequency axis is in units of 7t x radians.
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In practice, a discrete time signal can only represent a continuous time signal at

fmite time resolution dependent on the sampling frequency. The wavelet decomposition

of a discrete time signal could be implemented by regarding the data values (Xl' X 2 , .•• , XII ]

as the finest resolution scaling function coefficients, i.e. Q O•k in Equation (2.16), and from

which all coarse-level coefficients are recursively computed using Eq. (2.27) and Eg.

(2.28). This decomposition procedure is illustrated in Figure 2-9.

G:

/--....

4,--:_g(k_)--J1-7\9

H

H:

I ~

'~';2 )-~
'---_-' .. J

i
I

Figure. 2-9: Implementation of fast wavelet transform
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The procedure just described indicates that the wavelet transfonn is equivalent to

two step filtering of the signal. The filter bandwidth is successi ely changed by

decimation. Figure 2-10 shows the time frequency plane corresponding to a wavelet

decomposition. In contrast with STFT, the time resolution becomes arbitrarily good at

high frequency, while the frequency resolution becomes arbitrarily good at low

frequencies. Note that in FWT, the number of points is gradually decreased through

successive decimation. Thus if we start with a signal of 2) points, then in the following

level we have 2.1-1 wavelet coefficients. Therefore. the maximum decomposition level is

equal to J.

r.
i• 1,. I

• 1 I
! I '

, !.,-,
.•1 - - - - - - - - - - - - - ~ - - - - - ~ - - - - - - - - - - '
51
eI
~~

~'-----------------------

Figure 2-10: Time frequency plane ofFWT
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2.5 Wavelet Packet Decomposition

Whereas the wavelet transform provides one with more flexible time-frequency

resolution properties as described. one possible drawback is that the frequency resolution

is rather poor in high frequency region. Therefore, it faces some difficulties for

discrimination between signals having close high frequency components.

Wavelet packets, a generalization of wavelet bases, are alternative bases that are

fonned by taking linear combinations of the usual wavelet functions [12] [18]. These

bases inherit the properties such as orthonormality and time frequency localization from

their corresponding wavelet functions. A wavelet packet function is a function with three

indices: W / (I). As with usual wavelets, integers j and k are index scale and
J.

translation operations respectively:

W n(t)=2 J'2 W"(2't-k)
J,k

(2.29)

The index n =0,1, ... is called the modulation parameter or the oscillation parameter. The

first two wavelet packet functions are the usual scaling function and mother wavelet

function respectively:

(2.30)

(2.31 )

Wavelet packet functions for n =2,3, ... are then defined by the following recursive

relationships:

Wo.o2n (r) =J2I. h(k)W
1
/ (r)

k
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and

Wo,o ~n.l (f) =J2""i g(k )wl,k n (2t - k)
k

(2.33)

where h(k) and g(k) are the QMF associated w'ith predefined scaling function and

mother wavelet function. To measure a specific time-frequency information in a signaL

we simply take the inner product of the signal and that particular basis function. The

wavelet packet coefficients of a function f can be computed via

(2.34)

The idea of the usual wavelet decomposition as shown in Figure 2-9 is generalized to

describe the calculation of wavelet packet coefficients w l. of a discrete time signal.
J,n".

Computing the full wavelet packet decomposition of a discrete time signal involves

applying both filters to the discrete time signal [XI' x ~ .... , XII] and then recursively to each

intermediate signal. The procedure is illustrated in Figure 2-1 I.

H

Figure. 2-11: Implementation of discrete wavelet packet decomposition
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Note that the method of decomposition described above does not result in a WPT

tree displayed in increasing frequency order. This is because aliasing occurs. which

exchanges the frequency ordering of some nodes of the tree. A simple swapping or the

appropriate nodes results in the increasing frequency ordering referred as the Paley

ordering [18] of the tree as sho'WTI in Figure 2-12. Here the differences with Figure 2-11 is

highlighted by the dashed lines. In this way, the leftmost node at each level will

correspond to the lowest frequency band. In following section, we will use this

representation for easier interpretation.

HL' G
------- I .--__--""L --,

.w.. .
Ci ••• ••• f-l

: )f~_ -jr- . ~ - --- -I

"
I

/\

..
G'" \H..

~L_._--l
H/'G

• °
G .: 0•••-1..H/ G

Figure 2-12: The WPD tree displayed in Paley order

Whereas the FWT decomposes only the low frequency components, WPT

decompose the signal utilizing both the low frequency components and the high

frequency components. This flexibility of a rich collection of abundant information with
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arbitrary time-frequency resolution can allow extraction of the features that combine 000-

stationary and stationary characteristics.

2.6 Example of Wavelet Packet Decomposition

Through the thesis, the image representation as shown in Figure 2-13 will be

employed to represent the full wavelet packet decomposition tree as shown in Figure 2-10

for interpretation purpose. For example, cell w(O,O) refers to the root node in the

decomposition tree, which corresponds to the time domain signal.

w(D,O)

w(l,O) w(l,l)

w(2,1) w(2,2)
I

w(2,3)w(2,O) I I

w(3,O) w(3,1) w(l2) I w(3,3) w(3,4) I w(3,5) w(3,6) iw(3,7)

Figure 2-13: Image representation of WPD

Figure 2-14 shows a pulse which is extremely localized in time. The image

representation of WPD ror the signal is displayed in Figure 2-15 where the darker color

corresponds to the higher coefficient value. The level 1 of the WPD image represents the

time domain signal. In this level, the signal representation provides the best time

resolution while no frequency information is available. Level 2 contains 2 nodes. The

left-most node displays the WPD coefficient vector obtained from a lowpass-

downsampling operation (H) on the time domain signal. In this level, one has two degrees
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of frequency resolution. but due to the down-sampling, each node contains only half of

the time resolution that exists in level I. As one proceeds down to the bottom level. a

tradeoff between time resolution and frequency resolution can be observed.

Figure 2-14: A signal localized in lime domain

a 5

~
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f
.a 5

., -

., 5

2 a • 0 e 0 8 a 1 a a I 20

I

I
I I
I I I
,I~ J

Figure 2-15: The WPD image representation of a time localized signal

Figure 2-16 shows a signal which is extremely localized .in frequency domain.

From Figure 2-17 we see that at each successive level. the infonnation is gradually

distributed into fewer and fewer wavelet packet coefficients.
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Figure 2-16: A signal localized in frequency domain

j
JI

2 0 ~ 0 eo eo 1 00 1 2 0

Figure 2-17: The WPD image representation of a frequency localized signal

The next example (Figure 2-18) shows a signal that is both localized in time and

frequency domain. As can be seen from Figure 2-19, the infonnation is effectively

extracted at level 3. This infonnation is, however, less focused either at the top or bottom

level.
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Figure 2-18: A signal localized in both time and frequency domain

II

j
.II

2 0 8 0 I 00 120

Figure 2-19: The WPD image representation of a time and frequency localized signal

It is clear now that WPD provides us flexibility that can adapt to the diverse time-

frequency information in a signal. At levels near the top level time localized

characteristics could be highly enhanced, while at levels near the bottom level frequency

localized events are enhanced. Therefore, it is believed that the WPD provides the

potential for dealing with signals exhibiting stationary and non-stationary characteristics.
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CHAPTER [II

CHOICE OF A FEATURE SET BASED ON WAVELET PACKET

DECOMPOSITION

3.1 Overview

The wavelet packet transform is applied in classification problems based on time

series vibration signatures. First the vibration data is decomposed via the wavelet packet

transfonn to extract the time-frequency dependent information. Features are then defined

based upon the WPD coefficients. Second. simple statistical processing based on

discriminant analysis is applied to identify a set of robust features that provides the most

discrimination among the classes of vibration data. Then. a neural network c1as ifier is

trained based on this reduced feature set. With statistical-based feature selection criteria. a

lot of feature components containing little discriminant information could be discarded,

resulting in a feature subset with a reduced number of parameters. This will significantly

ease the design of the classifier and enhance the generalization ability of the system. In

following sections, we define the WPD based feature measurement used in this study.

Then, we discuss some feature selection methods and present the ones applied in this

study aiming to reduce the number of feature variables.
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3.2 Feature Measures Based on \VPD

One deficiency that wavelet bases inherently possessed is the lack of a translation

invariant property. To illustrate this by example. consider two signals with a slight shift in

time. as shown in Figure 3-1. When the two signals are decomposed via the wavelet

packet transform, we can see appreciable differences between the two representations of

the signals as shown in Figure 3-2 (a darker color corresponds to a larger WPD

coefficient value). Therefore. direct assessment from all wavelet packet coefficients often

turns out to be tedious or leads to inaccurate results.
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Figure 3-2: Wavelet packet decomposition of time shifted signals

Recall that each wavelet packet coefficient is given by:

W . =< rW (t»=< f' 2/
12

W (2'1- k»
j,II,J< ." J . I l ~ k ' ~ /I

(3.1)

where j is a scaling parameter, k is a translation parameter and n IS an oscillation

parameter. Each \V"II.k coefficient measures a specific subband frequency content.

controlled by the scale parameter j and the oscillation parameter n, of a signal around

time instant 2/ t ,

We define the wavelet packet node energy as:

e ='J.n L...J
k

(3.2)

which measures the signal energy contained in some specific frequency band indexed by

parameters j and n. In the sequel, we will call each (j,n) a wavelet packet node. Figure

3-3 displays the energy distribution that is calculated based on all coefficients in each

wavelet packet node of the two signals given in Figure 3-1. We can see that node energy
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values at level two. three or four show no clear difference between the two signals. This

example reveals that the node energy representation provides us with a more robust signal

feature for classification than using coefficients d i r ~ c t l y . In our strategy, each wavelet

packet node energy value was defined as an individual feature component and was used

as a robust rudimentary exploration of the specific signal features that provide useful

information for classification purposes.

1
.. 5

, 20'0080

In'fGY m.p 01 .. 2

-------
20

1 5

Figure 3-3. Wavelet packet node energy of time shifted signals

3.3 Dimension Reduction with Linear Transformation

One advantage of using wavelet packets transfonn to decompose a signal is that it

allows us to examine different time-frequency resolution components in a signal. For

example, by computing the full wavelet packet decomposition on a signal segment with

n =2J points for r resolution levels (where J, r denotes positive integers), the result is a
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group of 2
1
+ 2

2 + ... + 2' = 2'~1 - 2 sets of coefficients where each set corresponds to a

wavelet packet node. If node energy as described before is used as a feature, we can

obtain _,., - 2 feature components. However, direct manipulation on a whole set of node

energies is prohibitive because the space nonnally has very high dimensionality and the

existence of Wldesired components makes the classification unnecessarily difficult. In the

training of a neural network classifier, it is desirable to use a lower dimensional vector as

input to the neural network to ease the design of the classifier and enhance the

generalization ability of the neural network classifier.

One popular technique in reducing the dimensionality is the Karhumen-Loeve (K

L) transfonn [19]. The K-L transform is optimal for signal representation in the sense that

it provides the smallest mean square error for a given number of features. However. the

features defined by the K-L transforms are not optimal for class separability. As an

example, the data from two-class categories with a Gaussian distribution is shown in

Figure 3-4. [n the sense of K-L transform, the principal axis I with larger eigenvalue is a

better vector than axis 2 to represent the vectors of this distribution. That is. the selection

of axis I produces a smaller mean-square error of representation than the selection of axis

2 alone. However, as seen in the figure 3-4, if the two distributions are mapped onto axis

1, the marginal density functions are heavily overlapped. On the other hand, if they aIt.:

mapped onto axis 2, the marginal densities are well separated. Therefore, for

classification purposes, aXIS 2 is a better feature than axis 1 arone, preserving more

classification infonnation.

As described previously, it is not the mean square error, as in the sense of K-L

transfonn, but the classification accuracy that should be considered a primary criterion for
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reducing the feature dimension. The ability to classify patterns relies on the implied

assumption that different classes occupy distinct regions in the pattern pace. Intuitively,

the more distant the classes are from each other, the better the chance of successful

recognition of class membership of patterns. One transformation associated with this

assumption is based on within and between class scatter matrices that are used in linear

discriminant analysis (LDA) of statistics l20]. The idea is to find a linear transformation

vectors about the mean vector is as separated as possible.

samples within each class is as close as possible. and the dispersion of the class mean

axis 1\ axis 2

\
\. .

{v;::"
'\ .

\,

feature :2

that projects the samples onto a lower dimensional space in which the variability of

: - - - - - - - - - - - - - - - - - - - - ~ feature I

Figure 3-4: An example of feature extraction for classification

Specifically, consider an L -class problem. The variabi.lity of samples within each

class is measured by the class sample covariance matrices:
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(3.3)

where Xi· is a sample vector belong to class c. N
e

is the number of samples belong to

class labeled c and me is mean vector of class c:

(3.4)

In this way, the overall within-class variability could be estimated by the sample

covariance matrix:

matrix measures the dispersion of the class mean vectors about the overall mean vectors:

where p" is the priori probability of class c. Similarly, the between-class covanance

(3.5)

(3.6)Sb =,' p({m -mXm .. _m)T
.L....c=1 t. l

where m represents the expected vector of the mixture distribution and is given by

(3.7)

Now if ~ = /fx denotes a linear transformation of the original variables. then the

between- and within-class matrices in the transformed space arc just ~ = ATShA and

S.., = ATSwA . The goal is to find a subspace where the ratio of Sh and Sw are maximized.

In this case it may be measured by the ratio of the determ inant of the proceeding matrices

(the determinant, being the product of the eigenvalues, is the product of the variance in

the principal directions). The problem could thus be fonnulated as: find a transfonnation

A such that:
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- lArS AI
A = argMax .. h

A IA1S",AI
(3.8)

The solution for Eq. (3.8) is given by the min(n,L -I) eigenvectors of Sw-ISb [20]. Once

the transformation map A is obtained. then the feature vector ,/x is computed for each

sample. and finally it is assigned to the class which has the mean vector closest to this

feature vector.

Although the vector found by LOA works well in most cases, several drawbacks

might occur in practice. First, when we apply LOA to extract the discriminant feature

vector, the mathematical procedure automatically combines the feature extractor and the

classifier in a linear fom1. By restricting the form or criterion of the mapping, we

implicitly assume an oversimplistic model of the pattern recognition system. Such a

situation wi II arise if the classes are not Iinearly separable. and we restrict the feature

extractor to a linear form.

Moreover. LOA involves the computation of the inverse of the covarIance

matrices. it may lead to numerical problems, especially when the matrices are estimated

based on a limited data set. In our application on the classification of vibration signal data

collected from multi-sensors. we might have thousands of time-frequency feature

components while only hundreds of training samples are available. For example, given a

256 point signaL full decomposition of the signal to the 7th level and use of node energy

as the feature component will result in a 254 dimensional feature vector. Combining all

feature vectors from multiple sensors, say 8, will result in a 2032 dimension vector.

However, only a few eigenvalues, such as 10, are dominant, so that

.J

A, + ~ + ... + ~032 .= A, + ... + A.,o
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This means that in a practical sense we are handling S.. with rank 10, even though the

mathematical rank of S.. is still 2032, i.e. AI;oF 0, Vi. In the calculation of S",-I the

determinant Is.. I is rr~;2 A, and 2032-10=2022 A, are very close to zero. Suppose

I
2032

A., + ... + A.,o =0.9 out of A, =1, then
1.1

fI lO A X fl2032 A =I1 lo
A X (0.1/2022)2022 == 0

1=1 I }=II J 1=1 1

for the assumption A., I = An = ... = ~032 = 0.1/2022.

(3.10)

This indeed leads to some computational difficulty 10 handling such a near-

singular matrix. For this reason, we resort to employing the feature selection in feature

measurement as described in the following section, which considers the numerical

problems of calculating the inverse of covariance matrices as LDA does. Instead of trying

to find a linear transformation to reduce the dimensionality, we evaluate the discriminant

power of each individual feature component and discard those feature components

containing little class separability information as measured by selected criterion. Then,

neural networks is employed as a classifier to deal with nonlinearly separable case in the

feature space.

3.4 Dimension Reduction with Feature Selection

The idea of feature selection in feature measurement space is to select the feature

components that contain discriminant information and discard those feature components

that provide little information useful for classification purposes [21]. Specifically, the

feature component {f/c Ik =1,2,... ,n} is ranked:
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3.11)

where J(.) is a criterion function for measuring the discriminant power of a specific

feature component. The feature subset can be selected from the available features that

have larger criterion function values.

To obtain a clearer picture of measuring the discriminant power of a feaure, it is

essential to introduce a concept of probabilistic structure of classes. Consider the

probability density function of class cl and c2 given in Figure 3-5. For a specific feature

variable x, if p(x Icl) is zero for all x such that p(x Ic2) * 0 as illustrated in Figure 3-

5(a), then these two classes can be fully separable. On the other hand, when

p(x Ic1) = p(x Ic2) as in Figure 3-5(b), it is impossible to distinguish elements of class

cI from those belonging to c2. Intuitively, a criterion function for evaluating the

discriminant power of a feature could be assessed by measuring the overlap between

p(x Icl) and p(x Ic2). A high overlap corresponds to a low discriminant power and vice

versa.

p.d.f.(x)

P(xlcl)

P(xlc2)

(1"\" ;/""\
I \ \

/ \ / \
.' \ J \,

/ "-.. ./ "-.

I . . - : : ~ - - - - ~ ~ - - - - ~ X

(a)

p.d.f.(x)

P(xlc I)=P(xlc2)

"

II
/ \

I '.
,/ ,

./

(b)

x

Figure 3-5: Probability density functions of (a) two well separated

classes and (b) two completely overlapping classes
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In general. a crite!ion function for measuring the overlap between classes has the

following properties [21]:

(a) The measure is minimum when the conditional probability density function for class

c I and c2 are identical, i.e.

J(.) =0, if p(x Icl) = p(x Ic2).

(b) The measure is non-negative.

(c) The measure attains a maximum when the classes are disjoint. i.e.

J(.) = max, if p(x Icl) = °when p(x Ic2) :t:- O. '\Ix.

(3.12)

(3.13)

Although the above properties provide an intuitive justification of their suitability

for feature selection, their relative potential can be assessed only if their relationship to

the classification error is known. Nevertheless, these measures are closely related to the

error probability. This relationship is a consequence of the fact that the measures gives a

direct indication of the amount of the overlap of the class probability densities. Some

criterions suggested for feature selection are listed below [21]:

Chernoffdistance:

J(.) = -In f p' (x Icl) . p'-s (x Ic2)dx ,

where s is a parameter from the interval [0, I].

Matusita distance:
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In this study, however, we adopt a simple yet efficient criterion function known as

Fisher's criterion [20]. In a two classes problem it is given by:

(3.16)

where II j.J are the mean values of the k -th feature, 1". , for class i and J', and
ri,f. ' JJ. J 4

(j'tJt 2, a M •
2

are the variance of the k -th feature, f., for class i and j correspondingly.

When there are more than two classes of data, the general approach is to take the

summation of the pairwise combinations of J ft (i, j) :

"II

1.-1 I.

1 ft =I IJf.(i,j)
1=1 Js,+l

(3.17)

as an estimation of discriminant power for the specific feature J.. Here L represents the

nwnber of classes in the problem. Eq. (3.17) provides us with a measure to evaluate the

effectiveness of the "global" feature that is simultaneously suitable to differentiate all

classes of signals. For a small number of classes. this approach may be sufficient. The

more signal classes, the more ambiguous the equation (3.17) becomes. A large value of

(3.17) may be due to a few significant tenns with negligible majority (a favorable case) or

to the accumulation of many tenns with relatively small values (an unfavorable case). A

feature that can effectively differentiate a pair of classes of signals. i.e. with a large

discriminant measure as calculated by Eq. (3.16), might be averaged during the pairwise

summation. To avoid such a problem, we propose two different approaches as described

below.
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Approach f:

Lnstead of trying to select features that are effective for the entire multi-class

problem globally as measured by Eq.(3.l7) , we select a feature subset based on Eq.

(3.16) for each possible pair of classes. Then. we take the union of feature components

selected from each pair of classes to form the final feature vector. Spectically, given an

L -class problem with n feature components, the selection process is detailed in the

following:

1. For each possible class pair {(i,j) I i = 1,2, ... ,L -I,} = i + Li + 2.... ,L}, calculate

the discriminant power measure for each feature component, f:, i.e.:

(3.18)

2. For each class pair. sort lIt (i,}) ~ u c h that:

J ( . ') > J ( , ') > > J ( . .) > > J ( . .)I 1 1,.J - 2 1,.J _... - I" 1,) -, '. - rn 1,) (3.19)

Determine the feature subset F..
J

for each class pair by selecting d feature

components that have maximum J It (i.}) value:

F..
J

= U;, Ik = 1,2, ... ,d},i = 1,2, ... , L -I;} = i + 1,i + 2.... ,L.

3. Form the final feature set by taking the union of each feature subset:

F - {U /.-1 U( F}
/inal - ,=1 J=t+1 I.J

Approach II:

(3.20)

(3.21)

Another approach to avoid the influence of the pairwise summation process is

similarly suggested by Watanabe [22]. Given an L -class signal classification problem,
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we can consider the class k signals as the conceptual opposite of the class k signals

which is the ensemble of data belonging to classes other than the k class. Then, we apply

the Fisher's criterion as was done in two-class problems to evaluate the discriminant

power of each individual feature component.

1. For each class k =1,2,... , L , we partition the data set to be class k signals and

class k signals. In this way, we can get L sets of data that can be used for

selecting features.

2. For each of the L sets, use Fisher's criterion to evaluate the discriminat power for

each feature component,

(3.22)

3. For each of L sets, select d feature components that have larger criterion values

for each set.

4. The final feature set is determined by taking the union of the feature components

of L sets with d feature components selected form step 3.

Suitable feature components which offer favorable separation of classes are found

as described; many classifiers could then be designed based on these features. The

feedforward neural network is employed in the study because of its capability in dealing

with nonlinearly separable distributions.
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3.5 Using Neural Network as Classifier

Once suitable features have been extracted and selected from the vibration data as

described, it is then necessary to determine the fault type based upon these features.

Ideally, the features for normal and faulty conditions will occupy non-overlapping areas

in the feature space. If not, then the classification algorithm will have to approximate a

Bayes classifier [23].

Consider an L -class problem, the probability that a particular pattern, x, comes

from class, c" i = 1,2, ... , L, is denoted p(c j Ix). If the pattern classifier decides that x

came from c) when it actually came from c" it incurs a loss, denoted lei Ij) . As pattern

x may belong to anyone of L classes under consideration, the average loss incurred in

assigning x to class c} is

L

r} (x) =I l(k I j)p(Ck Ix)
k-l

(3.23)

In general. the loss for a correct decision is zero, and it has the same nonzero value (say

1) for any incorrect decision. i.e.

l(k I j) =Ok.}

where

{

I k = J'° = '".} O,k;;t j'

Then the loss of assigning a pattern x to class c} becomes

r/x) =L p(c" Ix).
" ~ J
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The classifier has L possible classes to choose from for any given unknown pattern x. If

it computes r
j
(x), J = 1.2,.... , L, for each pattern x, and assigns the pattern to the class

with smallest loss, then total average loss with respect to aU decisions will be minimum.

The classifier that minimizes Eq. (3.26) is called the Bayes Classifier. Thus the Bayes

classifier assigns an unknown pattern vector, x, to class c, if:

r,(x) < fJ(X) for J=1,2,...,L; J*i.

Substituting Eq. (3.26) into Eq.(3.27) , the decision rule is then to choose label c, if

L P(Ck IX)<L P(Ck Ix), k=1,2, ... ,L.
hOI k*)

(3.27)

(3.28)

Note that each side of the Eq. (3.28) has all but one term in common. The decision rule

then becomes to assign x to C
I

if for all i * k,

P(CI Ix) > P(Ck Ix). (3.29)

For the decision rule based on Eq. (3.29) to hold, the posteriori density functions

p(c, Ix); i = 1.2,... , L must be known; in practice it must be estimated from the available

data set. To obtain the estimates of the posteriori density functions, neural networks are

applied in the study for the following reasons. First, neural networks are universal

approximators in the sense that they can theoretically approximate any continuous input-

output mapping to any desired degree of accuracy. Hence, they can be used to

approximate the posteriori function p(el Ix). Additionally, neural networks are

inherently nonlinear in the activation function; they have the ability to capture the

underlying non-linearity for the generation of incoming data.
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CHAPTER IV

TEST RESULTS ON WESTLAND HELICOPTER

GEAR BOX VIBRATION DATE SET

4.1 Data Description

In this chapter. the feasibility of the wavelet packet based feature classification

technique was examined through numerical simulations on a real data set known as the

Westland data set. The Westland data set [24] was chosen because it has been analyzed

by a number of other researchers and because it is considered as a benchmark data set in

the field. The vibration data used for simulation is archived at the Applied Research

Laboratory at Penn State University. known as the Westland data set. In this data set.

vibration data are recorded from an aft main power transmission of a U.S. Navy CH-46E

helicopter. Vibration data are collected using eight accelerometers mounted at the known

fault sensitive locations of the helicopter gearbox. The data are recorded for various

seeded faults including the no defect case, listed in Table 4.1. Nine torque levels, ranging

from 27 % up to 100 %, and various fault severity levels are applied. One tachometer is

placed on the aft transmission in place of the rotor position motor. The tach signal is a

256 pulse-per-revolution signal with a once-per-revolution signal superimposed on it.

Based on its position in the gearbox, one revolution describes a complete rotation of the
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rotor position output not that of the main shaft. The vibration data. are sampled at

103,116.08 Hz rate. With the approximate 100 kHz sampling rate th re are betw en 897

and 904 samples within the period defmed by the tachometer signal.

Table 4.1: Westland helicopter gearbox data description

Fault Type Nwnber Description

I No Defect

2 Planetary Bearing Corrosion

3 I Input Pinion Bearing Corrosion

4 Spiral Bevel Input Pinion Spalling

5 Helical Input Pinion Chipping

6 Helical Idler Gear Crack Propagation

7 Collector Gear Crack Propagation

I

8 Quill Shaft Crack Propagation

4.2 Signal Segmentation

For utilization of the Fast Wavelet Packet Transform algorithm, each l024 time

series data points of vibration signal is defined as a sample vector to be analyzed. The

reason for using 1024 points is it covers one period defined by the tachometer period. It is

reasonable to assume that fault symptoms can be fully described within the period. Figure

4-1 shows two signal segments and corresponding power spectrum for normal mode and

fault 3. Looking at the spectrum of the vibration data segment, we observe a long flat
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region toward the end of the frequency range; it is thus inferred that the bandwidth of the

signal is much less than the sampling frequency. Based on this observation the sample

vector is first down sampled by 4 to yield a 256 point signal segment. This low rs the

computational complexity without losing much infonnation of the signal.
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Figure 4-1: Typical vibration signals and corresponding PSD. The

frequency axis is in units of 1t x radians.
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Additionally if a random signal has a nonzero mean its power spectrum has an

impulse at zero frequency. If the mean is relative large, this component will dominate the

spectrum estimate, causing low-amplitude, low-frequency components to be obscured by

the leakage. Therefore, in practice the mean is often estimated and the resulting estimate

is subtracted from the random signal before computing the power spectrum estimate.

Although the sample mean is only an approximate estimate of the zero frequency

components, subtracting it from the signal often leads to a better estimate at neighboring

frequencies [25].

4.3 Generation of Training Data Set I Testing Data Set

There are total of 68 data sets available, which correspond to nine different torque

levels and 8-class conditions. For each torque level, not all fault signals are available.

Each file contains 412464 data points. The 412464 data points are segmented to 400

sample segments containing 1024 data points each. In this study, the first 50 samples

collected represent the training data set, while the following 150 samples are used as

testing data set. In this study, only the data set corresponding to torque level 100% is used

for evaluation.

4.4 System Description

In the following simulations, each vibration signal segment is transfonned in to a

wavelet packet based energy vector as described in Section 3.4. The proposed two feature

selection methods are then employed to identify a subset of feature components that will

be used as the input to the neural network classifier. The steps are summarized below:
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1. A seven-level wavelet packet decomposition IS found for each vibration

signal segment.

2. Energy based feature measures, as discussed in Section 3.2, are found for

each wavelet packet decomposition of signal segment from step 1. This

results in a 254 dimensional feature vector.

3. Identify a subset of feature components as discussed in Section 3.4, to form

input vector for neural network classifier.

4.5 Test Result Using One-Sensor Data

In the following simulations, we conducted tests on features extracted from both

Fourier based features and wavelet packet based features for assessing the applicability of

wavelet packet based analysis as a tool for vibration signatures. The Fourier based

features are defined as the power spectrum of a 256-point signal segment, and the result is

a 129 dimension vector where each component corresponds to one of the 129 uniform

frequency band energies. The two feature selection processes, approach I and rr describ d

in Section 3.4, are applied on both wavelet packet based feature components and Fourier

based feature components to select the best discriminant feature components. The

obtained feature components are then used as input to train the neural network classifier.

For each of the feature selection approaches, the eight highest discriminant (d=8) feature

components (out of 254) are used to form the final feature vector. Table 4.2 provides the

dimension of the final feature vector for the two approaches. In the following, the feature

selection method approach I, as described in Section 3.4, is designated as PWM while the
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approach II is designated as KNK. In general, the computation cost for PWM will be less

than that ofKNK.

The network architecture is D-D-8, where D is the dimension of the fmal feature

vector. In the training process, the network is trained until the mean square error is below

0.01, or the maximum epochs (=10000) is reached. In practice the neural network will not

produce a perfect decision, i.e. only one 1 in the output neuron while others are all O's,

and might produce values between zero and one. Hence, it was decided to use the

maximum output value as the most likely fault condition. In all simulations, a clear

winner can always be identified. The classification results are shown in Table 4.3 to

Table 4.6. Note that the unit of error is % in all classification results. Tr. Err. is referring

to the training error, while Test Err. is referring to the testing error.

Note that the perfonnance of using different sensor data shows significant

differences. For example, the testing errors of using data from sensor 5, 6, 8 are relatively

higher than those of other sensor data for both the wavelet packet based and Fourier based

approaches. It is thus inferred that some sensors are not sensitive to the detection of

speci.fic fault symptom. This suggests the need to use multiple sensor data to search the

class specific features.
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Table 4.2: Dimension of final feature vector using one sensor

Wavelet packet feature

Sensor I Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8

PWM 32 33 42 31 38 47 39 50

KNK 34 36 46 45 34 34 50 33

Fourier Feature

Sensor I Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8

PWM 31 37 31 31 43 51 37 54

KNK 28 30 37 35 31 35 37 35

Table 4.3: Classification results (Sensor I & 2)

Sensor I Sensor 2

WPT FT WPT FT

PWM Tr. Err. 3.25 0.75 0

Test Err. 21.92 4.25 4 2.17

KNK Tr. Err. 2.75 1.25 1.00 0.25

Test Err. 24.50 4.58 4.33 1.92

Table 4.4: Classification results (Sensor 3 & 4)

Sensor 3 Sensor 4

WPT FT WPT FT

PWM Tr. Err. 0.75 0.25 2.25 1.25

Test Err. 6.75 1.75 6.42 5.83

KNK Tr. Err. 0.75 0.50 1.25 1.75

Test Err. 7.25 1.42 8.00 5.08
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Table 4.5: Classification results (Sensor 5 & 6)

Sensor 5 Sensor 6

WPT FT WPT FT

PWM Tr. Err. 0.25 0.75 0.75 1.25

Test Err. 50.33 50.33 62.92 57.92

KNK Tr. Err. 1.25 1.25 4.00 3.25

Test Err. 50.83 53.67 61.58 59.75

Table 4.6: Classification result using one sensor data (Sensor 7 & 8)

Sensor 7 Sensor 8

WPT FT WPT FT

PWM Tr. Err. 1.5 0.5 a

Test Err. 2.25 2.42 62 46.83

KNK Tr. Err. 1.50 0.00 3.25 1.75

Test Err. 5.08 3.08 61.08 45.17

4.6 Test Result Using Eight-Sensor Data

In the following tests, feature components from all eight sensors are all used to

begin the feature selection process; i.e. the comparison of discriminant power is

conducted on features coming from all eight sensors data. Table 4.7 provides the

dimension of the final feature vector for the two approaches based on wavelet packet

features and Fourier features respectively. All simulation settings, network architecture

and MSE goal. are the same as previous tests. The classification results are displayed in
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Table 4.8 and Table 4.9 corresponding to feature selection method PWM and KNK

respectively.

In the tables which follow, FT refers to the Fourier based features while WPT

refers to wavelet packet based features. The results show the performance is much

improved when combining data from all sensors. It could be concluded that some fault

symptom could only be detected by some sensors. If we use only one sensor, the crucial

information for the specific fault symptom may not be detected and the overall

classification performance may be lower. Additionally, it is observed that the

performance of the Fourier based approach shows slightly better results than the wavelet

packet based approach. It is concluded that features providing discriminant information

may demonstrate narrow-band frequency characteristics in this data set. In such cases, the

Fourier based approach is ideally the better candidate for extracting signal features.

Recall that there is a slight amount of frequency overlap among the wavelet basis

functions, thus a particular frequency may be sensed by two different basis function .

This frequency leakage may lead to worse performance using wavelet packet based

features. Nevertheless, the wavelet packet transform is still able to extract the essential

discriminant features and achieve a satisfactory performance.
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Table 4.7: Dimension of final feature vector

Wavelet packet feature

d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=8

PWM 7 14 26 35 42 50 58 62

KNK 8 16 24 32 39 47 55 63

Fourier Feature

d=l d=2 d=3 d=4 d=5 d=6 d=7 d=8

PWM 9 16 24 27 29 30 32 38

KNK 8 16 24 32 40 48 51 56

Table 4.8: Classification results (8-sensor data; PWM)

d=1 d=2 d=J d=4 d=5 d=6 d=7 d=8

WPT Tr. Err. 0.5 0 0 0 0 0 0 0

Test Err. 0.92 0.17 0 0.17 0.25 0 0.08 0.25

FT Tr. Err. a a 0 0 0 0 0 0

Test Err. 0 0 0 0.25 0 0 0 0

Table 4.9: Classification results (8-sensor data; KNK)

d=l d=2 d=3 d=4 0=5 d=6 d=7 d=8

WPT Tr. Err. a 0.25 0 0 0 0 0 0

Test Err. 0.08 0 a 0 0 0.08 0.17 0.08

FT Tr. Err. 2.75 0 0 0 0 0 a 0

Test Err. 2.17 0.33 0 0.08 0 0 0 0
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4.7 Test on Data Corrupted by Additive White Noise

A measured" ibration signa! can be considered to have the following components:

the fault response caused by faulty equipment; vibration from nonna! machine

components, vibration of neighboring machinery and measurement variation. In

monitoring vibration signals, we considered the noise to consist of vibration from

machine components (other than the faulty response), neighboring machinery and

measurement noise. The presence of noise complicates the monitoring tasks in two fonus:

by masking the signal of interest and by increasing the vibration values beyond

monitoring criteria, when in fact the component being monitored experiences no sign of

malfunction. To test further the feasibility of the wavelet packet based feature extraction

technique on the presence of noise, simulated data are artificially generated by adding

different types of noise to the original vibration signals. The goal is to investigate the

robustness of wavelet packet based features when the data are subjected to the presence of

noise. In following simulations, the signals are first corrupted with artificially generated

noise under different SNR, then the WPT and J·T are applied on the corrupted signal t

obtain the signal's time frequency feature. At last, the proposed feature selection method

is used to identify discriminant feature components that will be used as input to train a

neural network classifier. In this study, we use three types of noise to model the vibration

signal other than the signal being monitored.

The first type of noise model used is white Gaussian noise, where no frequency is

dominating as shown in Figure 4-2. This noise has an AR(O) model:

(4.1 )
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where ak are normally distributed with mean zero and variance a a
2

• In this study we use

the Matlab® function randnO to generate ak •

Figure 4-2: White Gaussian noise and its power spectrum. The

frequency axis is in units of 7t x radians.

Tables 4.10 through Table 4.13 show the results under different SNR. The results

reveal that the wavelet packet based approach demonstrates better results than the Fourier

based approach. It was also observed that the difference of performance, between wavelet

packet approach and Fourier based approach, is even higher when the noise power is

increased.
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Table 4.10: Classification results (white noise; SNR=OdB; PWM)

d=\ d=2 d=3 d=4 d=5 d=6 d=7 d=8

WPT Tr. Err. 0.25 0 0 0 0 0 0 0

Test Err. 0.5 0.08 0.17 0.08 0.08 0.33 0.33 0.42

FT Tr. Err. 14.25 1.25 0.25 0.5 0 0 0

Test Err. 17.83 2.25 2.5 2.83 2.08 2.\7 1.25 1.75

Table 4.11: Classification results (white noise; SNR=OdB; KNK)

d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=8

WPT Tr. Err. 0 0.25 0.25 0 0 0 0 0

Test Err. 0.25 0.5 1.08 0.08 0.17 0.17 0.25 0.42

FT Tr. Err. 1.75 0.25 0.5 0 0 0.25

Test Err. 6.33 6.08 3.42 2.08 4 2.25 2.\7 I.5

Table 4.12: Classification results (white noise; SNR=-3dB; PWM)

d=l d=2 d=3 d=4 d=5 d=6 d=7 d=8

WPT Tr. Err. 0.25 0 0.25 0.25 0 0.25 0 0

Test Err. 0.67 0.08 0.92 0.83 0 0.17 0.08 0.08

FT Tr. Err. 5 1.25 1.25 0.75 0.25 0

Test Err. 7.25 5.42 5.92 6.92 4.83 4.83 6.67 5
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Table 4.13: Classification results (white noise: SNR=-3dB; KNK)

d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=8

WPT Tr. Err. 0.5 a 0 0 0.25 0 0.25 0.25

Test Err. 0.17 0.17 0.33 0.75 0.08 1.17 1.33

FT Tr. Err. 16.25 3.25 1.5 1.75 0.75 0.25 0

Test Err. 19 10.58 5 6 4.5 5.08 4.83 4.17

4.8 Test on Data Corrupted by Additive Color Noise

The second type of noise used to corrupt original data is colored noise where a

group of frequencies is dominant, as shown in Figure 4-3. Such a noise can be generally

represented by an ARMA(n, n-l) model [26]:

X k = ¢IXk_1 + cP2 X k-2 + ... + cPnXk-n

+ G k - 0IGk_ 1 - 02 G k_2 - ... - °1l-IGk_n+1

(4.2)

Coefficients cPk and Ok determine the center frequency and bandwidth of the noise. The

G k are normalJy distributed with zero mean and variance era 2. In our tests. however, we

generated such a noise by convolving a white noise sequence with a bandpass filter. We

generated the colored noise such that the dominant frequencies lie between the digital

frequency band a to a.251l' . This is the band where the original signa! contains most of its

energy, as can be seen from Figure 4-1. Table 4.14 through Table 4.17 show the

classification results of conducted simulations corresponding to different SNR. In alJ

simulations, better results are obtained via the wavelet packet based approach.
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Figure 4-3: Color noise and its power spectrum. The frequency axis

is in units of 1t x radians.

Table 4.14: Classification results (color noise, SNR=OdB; PWM)

d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=8

WPT Tr. Err. 12.5 0 0.25 0 0 0 0 0

Test Err. \3.08 0.5 0.25 0.08 0.5 0.25 0.67 1.08

FT Tr. Err. 15.75 2.5 0.75 0.75 0.25 0.25 0 0.25

Test Err. 18 5.92 9.5 6.83 4.75 5.5 4.33 3.75
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Table 4.15: Classification results (color noise; SNR=OdR KNK)

d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=8

WPT Tr. Err. 0.5 0.75 0 0 0 0 0 0

Test Err. 3 2.42 1.17 0.56 0.42 2.25 0.75

FT Tr. Err. 2.25 l.5 0.75 0.75 0 0.75 0 0

Test Err. 7.08 7.08 2.42 3.75 3.25 2.17 2.83 4.17

Table 4.16: Classification results (color noise; SNR=-3dB; PWM)

d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=8

WPT Tr. Err. 12.5 0 0 0 0 0 0 0

Test Err. 13.08 0.08 0.08 0.42 0.25 0.25 0.17 0.25

FT Tr. Err. 27 4.5 2 1.25 1.25 0.5 0.25 0.5

Test Err. 30.25 10.83 16.08 14.42 13.08 12.08 11.92 13.17

Table 4.17: Classification results (color noise; SNR=-3dB; KNK)

d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=8

WPT Tr. Err. 0.25 0.25 0 0 0 0 0.25 0

Test Err. 0.75 0.83 0.58 0.67 1.58 0.33 1.67 2.33

FT Tr. Err. 7.25 3.25 2.25 0.5 1.75 0.25

Test Err. 10 9.83 9.33 11.17 10 13.33 10.92 I I.83
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4.9 Test Result on Data Corrupted by Pink Noise

The third type of noise employed is pink noise, where power decreases as

frequency increases, as depicted in Figure 4-4. It can be expressed by an AR( 1) model:

(4.3)

where Q k are normally distributed with zero mean and variance O'a 2. In the test, ¢I is set

to be 0.95, and resulting noise is displayed in Figure 4-4. The test results are shown in

Table 4.18 through Table 4.21. Again it is confirmed that the wavelet packet based

approach produces better results.
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Figure 4-4: Pink noise and its power spectrum. The frequency axis

is in units of 7t x radians.
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Table 4.18: Classification results (pink noise; SNR=OdB; PWM)

d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=8

WPT Tr. Err. 0.5 0 0 0 0 0 0 0

Test Err. 0.5 0.08 0.67 0 1.33 0.08 0.33 0.08

FT Tr. Err. 0.5 1.25 0 0.25 0 0 0 0

Test Err. 1.33 2.58 2.25 I.5 2.5 0.92 0.42 0.5

Table 4.19: Classification results (pink noise; SNR=OdR KNK)

d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=8

WPT Tr. Err. a 0.25 0.25 0 0.25 0 a 0

Test Err. 0.83 0.92 0.17 0.42 0.25 0.58 0 0.17

FT Tr. Err. 1.75 0.5 0.5 0.25 a 0.25 0.25 0

Test Err. 3.58 4.58 1.92 2 1.91 0.67 1.42 0.83

Table 4.20: Classification results (pink noise: SNR=-3dB; PWM)

d=J d=2 d=3 d=4 d=5 d=6 d=7 d=8

WPT Tr. Err. 0.5 0.25 0 0 0 0.25 0.25 0.25

Test Err. 1.83 0.33 0.33 0.08 0.5 0.42 1.42 0.42

FT Tr. Err. 2.5 0.75 0 0.5 0 0 0

Test Err. 5.67 3.25 4.08 3.17 4.17 1.33 2.5 1.17
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Table 4.21: Classification results (pink noise; SNR=-3dB; KNK)

d=( d=2 d=3 d=4 d=5 d=6 d=7 d=8

WPT Tr. Err. 0.75 0 0 0 0 0.25 0.25 0.25

Test Err. 1.25 0.17 1.25 0.5 0.17 0.75 0 0.17

FT Tr. Err. 1.25 1.25 0.5 0.75 0.5 0 0 0

Test Err. 7 5.25 3.5 4.17 3.08 3.42 3.17 2.83

4.10 Discussion on Test Results

In the sequel, we swnmarize the findings based on the conducted simulation

results on the Westland data set.

1. By examining Table 4.3 and Table 4.4 where only one sensor is used for the searching

of class specific feature components, it is clear that some sensors provide little class

separability information in the sense of frequency analysis. This indeed confirmed our

understanding that the faulted symptom is localized and can only be detected by

neighboring sensors. It suggests that data collected from multiple sensors will provide

better classification information and lead to better performance.

2. From the results of simulation on the original data set, it is observed that no

improvement is made through the wavelet packet based approach on this data set, and

in several cases it is even slightly worse than the Fourier based approach. As

mentioned before, this could be due to the overlap of frequency content among

wavelet packet basis functions.

3. Nevertheless, the wavelet packet based approach shows very promising results in a

realistic environment for which the data are corrupted by noise.
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CHAPTER V

CONCLUSION

5.1 Summary

This thesis has investigated the feasibility of applying the wavelet packet

transform to the classification of vibration signals. Using the wavelet packet transform, a

rich collection of time-frequency characteristics in a signal could be obtained and

examined for classification purposes. In this study, we detailed our systematic feature

selection process that exploits signal class differences in the wavelet packet node energy.

This results in a reduced dimensional feature space compared to dimension 0 f the original

time domain signal. The wavelet packet based features. obtained by our method for

vibration signals, yield nearly 100% correct classification when used as input to a neural

network classifier.

In Chapter 2, we reviewed the Fourier based analysis on the extraction of

frequency information from a signal and discussed the possible inherent drawbacks due to

its fixed time-frequency resolution. The wavelet packet transform that overcomes the

fixed time-frequency resolution was then presented. To alleviate the time variant

characteristics of the wavelet packet transform coefficients, wavelet packet node energy

was used as an essential time-frequency feature measure of the signal. Although the

wavelet packet node energy provided us a multiresolution view of a signal, it
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simultaneously introduced a higher dimension space compared to original time domain

signal. To reduce the dimensionality, it was shown that LDA had some practical problems

when the feature dimension was relatively higher compared to the number of collected

samples. It involved calculation of the inverse of the covariance matrix. In such a case,

two feature selection methodologies based on measures of the overlap of the conditional

probability density function among different classes was proposed to avoid the possible

numerical problems as presented in Chapter 3. In Chapter 4, the proposed wavelet packet

based classification system, which combined a wavelet packet based feature extractor and

a neural network classifier, was tested on a real data set known as the Westland data set.

Numerically, it was observed that significant improvement can be achieved when using

multiple sensor data. This validated our understanding that a faulted symptom is localized

and can only be detected by the neighboring sensors. Both the Fourier based features and

wavelet packet based features achieved excellent classification results on the original

Westland data set when all eight sensor were utilized. Nonetheless, the improved time

frequency resolution of the wavelet packet transform are observed when we are

confronted with signals corrupted by artificially synthesized noises. In the extended tests,

the wavelet packet based approach showed very promising results compared to the

Fourier based approach.

5.2 Suggestion for Future Work

Whereas satisfactory results are obtained from the study based on the Westland

data set, there are some extensions of this research that are recommended for future

studies.
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1. Investigation of a more sophisticated feature selection criterion: In this study a

simplified criterion, Fisher's criterion. IS used to measure the overlap of the

conditional probability density function of a specific feature among different classes.

The criterion is based upon the inherent asswnption that the probability density

distribution of a feature is Gaussian. In practice, the accuracy of the criterion may be

degraded for non-Gaussian distribution.

2. One inherent problem with the two proposed feature selection methodologies,

detailed in Chapter 3, is the lack of a criterion for determines d automatically. How

to select the best d is a tough question and needs further research.
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