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This article shows how a non-decimated wavelet packet transform (NWPT) can be used to model
a response time series, Yt , in terms of an explanatory time series, Xt . The proposed computational
technique transforms the explanatory time series into a NWPT representation and then uses standard
statistical modelling methods to identify which wavelet packets are useful for modelling the response
time series. We exhibit S-Plus functions from the freeware WaveThresh package that implement our
methodology.

The proposed modelling methodology is applied to an important problem from the wind energy
industry: how to model wind speed at a target location using wind speed and direction from a reference
location. Our method improves on existing target site wind speed predictions produced by widely used
industry standard techniques. However, of more importance, our NWPT representation produces
models to which we can attach physical and scientific interpretations and in the wind example enable
us to understand more about the transfer of wind energy from site to site.

Keywords: nonstationary transfer function, nondecimated wavelet packets, wind time series,
WaveThresh

1. Introduction

This article models the relationship between a response time se-
ries, {Yt }t∈Z, and an explanatory time series, {Xt }t∈Z. We hope
that any model we choose might be interesting in its own right
but we shall also be interested in using it to predict future values
of Yt from future values of Xt . When both time series fall into the
class of ARMA type models then it is appropriate to use “transfer
function” models (see, e.g. Priestley 1981, Chap. 9). However,
our modelling methodology can be used when either or both
time series are not stationary although it is intended for series
that exhibit patches of stationarity or are locally stationary (e.g.
fall into the class of oscillatory processes, see Priestley 1981,
Chapter 11, locally stationary (Fourier) processes, see Dahlhaus
1997 or locally stationary wavelet processes, see Nason, von
Sachs and Kroisandt 2000). Although established “transfer func-
tion” models are usually exclusively frequency domain quanti-
ties we widen the scope of the term to include the time-frequency
quantities described in this article.

The models that we build first express Xt in terms of (non-
decimated) wavelet packets which analyse Xt at different scales,

frequencies and locations. Then standard statistical modelling
techniques can be used to relate Yt to the non-decimated wavelet
packet transform (NWPT) of Xt . The selected model often re-
veals valuable information about which types of oscillatory be-
haviour in Xt influence Yt and also supplies a method to predict
future values of Yt from future values of Xt . Appendix 1 pro-
vides instructions on how to compute the NWPT and use all the
methods described in this article in the freeware WaveThresh
package for S-Plus.

We do not (yet) have a theoretical formulation of our
modelling procedure. Our aim is to introduce the computa-
tional method and show that it can produce interesting and
verifiable results on real time series. Recently, Walden and
Contreras Cristan (1998) used the NWPT in the analysis of a
single non-stationary series of hourly averaged Southern
Hemisphere solar magnetic field magnitude observations. Our
work differs in that we relate a time series, Yt , to the NWPT of
another time series Xt . Ramsey and Lamport (1998) carried out
similar analyses to ours but they only used standard decimated
wavelets and decomposed both time series: Xt and Yt which in
their example were economic series of income and consumption.
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They extract decimated wavelet coefficients at the same dyadic
scale for each time series and then statistically model one set in
terms of the other using linear regression (one for each scale).
With decimated wavelets it is tricky to relate coefficients from
different scales or relate coefficients from a scale to the orig-
inal time series (because the number of coefficients and their
location varies with scale). This article uses non-decimated
transforms which have the same number of coefficients at each
scale and coefficients within each scale are located according
to the same time grid. Moreover, we use wavelet packets that
can elicit a greater variety of behaviours than can wavelets
alone.

Wavelet packets form an organized but extremely flexible
class of functions of which wavelets are a subset. Section 3
gives a more detailed overview of non-decimated wavelet pack-
ets. Section 4 explains how we model Yt in terms of the NWPT
of Xt and describes the modelling advantages of using non-
decimated wavelet packets. First though, in Section 2 we intro-
duce our methodology in the context of modelling and predicting
wind speeds at a proposed wind farm site from data taken at a
reference wind speed site. This example contains all the essential
features of our methodology: representation of the wind speeds
at the reference site in terms of a NWPT; relating the wind speed
at the proposed site to the NWPT and selecting the best NWPT
variables for predicting the proposed site speeds and then inter-
preting those NWPT variables and evaluating their predictive
performance.

2. Wind speed modelling and prediction

Before construction of a wind farm an analysis is undertaken
to establish whether a particular target site is suitable. One as-
pect of this analysis involves the prediction of the long-term
mean wind speed at the target site. Typically, wind speeds are
measured by a pilot anemometer at a height of 10m at the
target site for several months. These target speeds are related
to contemporaneous wind speeds measured at a nearby ref-
erence site (a Meterological Office station in the UK) and a
model predicting target from reference speeds is constructed.
The long-term mean wind speed at the target site can be es-
timated using the model and the long-term mean at the refer-
ence site. Modelling of this kind is described, for example, by
Cook (1985) and Haslett and Raftery (1989). For reasons of cost,
only one explanatory series {Xt }T

t=1, for some integer T > 0, is
usually available although our methodology could be easily ex-
tended if data from other Meteorological Office stations became
available.

Figure 1 shows hourly wind speeds recorded at two Welsh
Meteorological Office stations: Valley and Aberporth. Valley is
located approximately 120 km north of Aberporth and they are
mostly separated by Cardigan Bay. In the following example our
aim is to model Valley’s wind speeds ({Yt }T

t=1) in terms of those
at Aberporth ({Xt }T

t=1). We show how our modelling method-
ology can be used to predict the wind regime at Valley from

Fig. 1. Hourly wind speeds from 00:00 on 6th April 1995 at Valley
(solid line) and Aberporth (dashed line). (Data provided by M&N Wind
Power)

future Aberporth values and improves on existing methodology.
More importantly, our model is highly physically interpretable
(unlike existing methodology) and explains what types of wind
activity at Aberporth are important for predicting Valley wind
speeds.

We should emphasize that both Xt and Yt are not stationary
and so classical methods should not be used blindly (indeed, the
wind speed relationship depends on the wind direction). It is pos-
sible that the speed relationship is piecewise stationary (linked to
wind direction) so a modified form of classical “transfer function
model” methodology might possibly be made to work. The ob-
vious technical problem is how does one “join-up” the different
segments of the series that exhibit similar stationarity? Piece-
wise stationarity, or more generally local stationarity does not
cause problems for our wavelet packet methodology since the
wavelet packets naturally adapt to the dominant local oscillatory
behaviour.

2.1. An established wind industry method

Linear regression is extremely simple, effective and is widely
used in practice (e.g. the measure-correlate-predict procedure
from Hannah et al. 1996). First, the data is divided into (typi-
cally) twelve 30◦ direction sectors based on the direction of the
wind at Aberporth. Then 12 separate linear regression models
are computed one for each direction sector. Predictions of the
wind speed are easily obtained by using the current wind direc-
tion at Aberporth to select one of the twelve regression models
and then predict the windspeed at Valley by α̂ + β̂ Xt where
α̂ and β̂ are the fitted regression parameters for that particular
sector. If the number of time series observations T is small then
sometimes fewer direction sectors are chosen.

Wind speeds are usually non-normal, serially correlated
and also subject to measurement error so typically a robust
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regression method that takes account of the measurement error
is used. However, the results from using the simple methodology
described here are typically good probably because of the large
number of data points used to build the regression models.

2.2. Our wavelet packet method

This section explains what we do with wavelet packets although
we are conscious that we have not yet formally defined what
wavelet packets are. To gain an overview of our methodology
it is enough to know that wavelet packets are oscillatory basis
functions from some large library. However, for specific details
about the particular transform refer forward to Section 3.2.

Rather than build a model directly between Yt and Xt we build
a model between Yt and a NWPT version of Xt . The NWPT
generates K = 2T − 2 derived time series which we stack to-
gether to make a K -dimensional multivariate time series Xt .
Each variable of Xt quantifies how similar Xt is to that partic-
ular wavelet packet at time t . In other words each component
of Xt tells us “how much” of each wavelet packet there is in
Xt at any particular time t . The decomposition of Xt into K
different wavelet packet components is extremely useful since
we can subsequently model Yt in terms of the components us-
ing standard statistical methodology. To summarize: Xt is the
“explanatory” time series and Xt is the “collection of NWPT
coefficients” of Xt .

The wavelet packet transformation analyses Xt using a diverse
collection of wavelet packets at different scales, frequencies and
locations. Their diversity is the reason why our methods can
handle piecewise or local stationarity as the wavelet packets will
activate and deactivate as particular behaviours appear and dis-
appear in different regions. Wavelets and wavelet packets come
in families. Given a particular mother wavelet one can derive all
its wavelet packets however the choice of a mother wavelet has
to be made. There are no hard rules about the choice of a mother
wavelet even in areas as well developed as, say, wavelet shrink-
age for curve estimation. For the examples below we shall use the
Haar mother wavelet which works well and produces interesting
scientific results (although in Nason, Sapatinas and Sawczenko
2001 we use a smoother Daubechies mother wavelet). How the
choice of wavelet affects the final model and its interpretation is
an area for future research.

To exhibit our methodology on the wind energy time series we
applied the NWPT to a segment from Xt of length T = 512. This
transform resulted in K = 1022 transformed time series which
we stacked to make a 1022-dimensional multivariate time series
Xt of length T = 512. We then modelled Yt in terms of Xt .

In general the statistical modelling step is completely straight-
forward because our non-decimated wavelet packet transform
allows us to use many of the widely available statistical methods
for modelling a response vector, Yt , in terms of a multivariate
descriptor, Xt . Use of the standard (decimated) wavelet packet
transform would not permit us to model Yt directly in terms of
the wavelet packet coefficients of Xt because the coefficients
exist on different time scales to Yt . Ramsey and Lampart (1998)

demonstrate the utility of relating decimated wavelet coefficients
of {Yt = consumption} and {Xt = income} at the same scale.
However, they do not directly provide a model for the series Yt

itself, nor predict Yt from future Xt (both of which are possi-
ble to do with non-decimated transforms), nor do they use the
increased flexibility of wavelet packets.

Returning to our wind energy example note that the number
of variables (K = 1022) in the K -dimensional time series, Xt , is
always larger than the sample size T = 512. In this article we use
a crude initial dimension reduction technique to reduce the ex-
tremely large dimensional problem into a more manageable but
still large size. We then use more incisive statistical modelling
techniques to reduce the dimensionality further to identify our
“best” model. We stress that it is not the aim of this article to
discuss and develop a comprehensive variable selection method-
ology and we intend to investigate alternatives.

Initially, we used various familiar statistical procedures to
model Yt in terms of Xt . However, residual plots showed that
our models were systematically in error with the error mag-
nitude strongly related to the wind direction at Aberporth. To
improve our model we inserted an extra wind direction sector
factor variable: DIR. (The DIR factor has twelve levels corre-
sponding to winds in the different 30◦ direction sectors. See
Table 2 for a list.) We applied the following crude variable se-
lection approach to select a subset of the K = 1022 variables: we
selected an arbitrary 5% of variables which correlated best with
Yt and labelled the resultant K1 = 51 variables which we label
S1 to S51. (We admit that this procedure is somewhat rough and
ready but it is an adequate initial dimension reduction step which
produces interesting practical results.) Then we used generalized
linear/additive modelling and CART to find a good model for the
Valley wind speeds Yt in terms of the dimension reduced Xt . The
final selected model was a generalized linear model (GLM) ob-
tained using backwards variable selection that assumed Gamma
distributed Yt values (wind speeds are positive and skewed to
the right) with a log link function. Instructions on how to per-
form the NWPT and select the “best” 5% of the variables in
WaveThresh are presented in Appendix 1.

2.3. Our wavelet packet model and interpretation

Tables 1 and 2 show the coefficients of the final GLM model

log (Yt ) ∼ µ + S2 + S20 + S35 + S39 + DIR. (1)

Table 1. Significant wavelet packets included in the final GLM. The
table shows the value of the coefficient in the linear model along with
the resolution level that the term corresponds to and its frequency index
within that resolution level

Term Packet level Frequency index Term coefficient (×1000)

Intercept 8300
S2 7 0 −13
S20 2 15 38
S35 1 6 −10
S39 0 33 −47
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Table 2. GLM coefficients for the factor DIR in the final GLM along
with the associated direction sectors

Term Direction sector (degrees) Term coefficient (×1000)

DIR1 0–29 −31
DIR2 30–59 −18
DIR3 60–89 22
DIR4 90–119 21
DIR5 120–149 5
DIR6 150–179 −2
DIR7 180–209 12000
DIR8 210–239 −1300
DIR9 240–269 −1100
DIR10 270–299 −870
DIR11 300–329 −720
DIR12 330–359 Aliased

The final model is highly interpretable. The DIR factor can be
interpreted as a multiplier reflecting the strength of association
between the wind speeds at the two sites. Since the two sites are in
a NNE/SSW line there is a large multiplier of 12 when the wind
direction is in sector DIR7 (when the wind is at right angles to
this in DIR10 the effect of all the other variables is shrunk by the
multiplier −0.87). This effect is enhanced when the wind comes
from a southerly or westerly (180 → 330◦) direction rather than
a northerly or easterly (330 → 180◦) direction which is natural
given the prevailing wind directions in the UK from the west
and south.

However, the DIR factor only multiplies the linear predictor
in the final model by a fixed amount depending on the wind di-
rection. The four wavelet packets actually model the variations
in wind speed over time and they too are interpretable. Figure 2
shows pictures of the wavelet packets in the model obtained us-
ing the drawwp.default() function from WaveThresh which
requires knowledge of the underlying wavelet, the resolution
level and packet index of the particular wavelet (which can be
obtained from the filter, level and pktix components of
the wpstRO object described in Appendix 1). Each plot in Fig. 2
contains a vertical dashed line at t = 0 which serves as an origin
for obtaining wavelet packet coefficients of a series. Given this,
the interpretation of each of the plots in Fig. 2 is as follows:

(a) S2 is a wavelet packet (actually father wavelet) which av-
erages Xt over the previous four hours. Inclusion of this
wavelet packet indicates that the series Xt + Xt−1 + Xt−2 +
Xt−3 is important for prediction.

(b) S20 is a wavelet packet with average oscillation frequency
of just over 23 hours. We assume that this wavelet packet
captures daily variation in wind speed. Note however, that
the oscillation only occurs over the previous five days. So
daily variation is important for prediction, but only the past
five days is relevant.

(c) S35 is a wavelet packet with average oscillation frequency
of 4.7 days. It is well-known that wind speeds oscillate at
or near this frequency. Indeed, this frequency falls into the

Fig. 2. The Haar wavelet packets used in the final model. The vertical
dashed line in each plot corresponds to time t. Each wavelet packet is
indexed by a pair: (resolution level, frequency index within a level).
They are (clockwise, from top left): a. S2: The wavelet packet (7,0)
(father wavelet); b. S20: The wavelet packet (2,15); c.S35: The wavelet
packet (1,6); d. S39: The wavelet packet (0,33). The wavelet packets
S20, S35 and S39 are plotted on the same vertical scale which is 10×
that of the scale for S2. For the physical interpretation of these wavelet
packets in the model see text

middle of the “macrometeorological peak” and is associated
with the large-scale pressure systems passing overhead (e.g.
Cook 1985, van der Hoven 1957).

(d) S39 is a wavelet packet which mostly oscillates over the
whole series at a frequency of 16 hours except for the pe-
riod around t = 0 where it averages over the immediate eight
hours into the past and future. It is difficult to attach a di-
rect meteorological interpretation to this wavelet packet, al-
though wind takes approximately eight hours to travel be-
tween Aberporth and Valley assuming a mean wind speed
of 4 to 5 ms−1.

The S39 wavelet packet takes values equally from the fu-
ture as well as from the past which is perfectly legitimate
mathematically but would be a problem for real-time pre-
diction. It would be possible to restrict our methodology to
only include wavelet packets that do not overlap with future
data.

Note that the modelling above indicates that wavelet packets
were useful and interpretable, indeed in this practical example
none of the selected basis functions are actually wavelets (this
shows the need for the more complicated wavelet packet trans-
form).

2.4. Model predictions

For this example the differences in prediction between the estab-
lished industrial method and our new methodology are not large.
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In fact, both methodologies often make the same mistakes. Gen-
erally speaking residual plots show that our new methodology is
slightly better (but remember that we also obtain a wealth of ex-
tra interpretable and scientific information as outlined above.)
For wind energy prediction an estimate of the distribution of
wind speeds at the proposed site is required. Our methodology
provides a better estimate of the wind speed distribution because
it provides a better model of the transfer between reference and
proposed sites.

Formally our model is also better in terms of mean resid-
ual sums of squares (MRSS) for predicting wind speeds an-
other 21 days ahead (ours is 0.088, the established industrial
method is 0.094). The other interesting feature is that our
model is better over the early parts of the prediction inter-
val: over 10 days our MRSS is 0.12, the established MRSS
is 0.14; over five days our MRSS is 0.19, the established
MRSS is 0.23. Roughly speaking our model is 10% better
than the established industrial method. Although 10% does
not sound very much in absolute terms it can make a lot of
difference to the wind power output statistics for a proposed
wind farm (wind power output is related to the cube of the
speed) and hence to the economics and viability of the proposed
farm.

Instructions on how to use WaveThresh to generate predic-
tions using our models appear in Appendix 1. The next section
explains how to compute the NWPT and what the coefficients
of the transform mean.

3. Representations using non-decimated
wavelet packets

Our goal is to model the relationship between the response
time series, {Yt }t∈Z, in terms of the local scale and frequency
properties of the explanatory time series, {Xt }t∈Z, which we

Fig. 3. Two tilings of the time-frequency plane. Left: Dirac; Right: Fourier

obtain using a non-decimated wavelet packet transform. Hess-
Nielsen and Wickerhauser (1996) give an excellent description
of wavelet packets and explain how they reveal information
about the variation of signals in time and frequency. In partic-
ular, they make a nice analogy between musical score notation
which indicates the pitch, duration and position of individual
notes and a wavelet packet analysis which gives information
about the frequency, scale and position of energy in a time se-
ries. The analogy cannot be pushed too far as musical notation
has many more subtleties.

3.1. The time-frequency plane and wavelets

The properties of wavelet packets can be conveniently explained
by introducing the time-frequency plane. This two-dimensional
plane represents time along the horizontal axis and frequency
along the vertical axis. Waveforms (segments of time series)
can be schematically represented by areas in the time-frequency
plane with their width indicating duration and height indicating
frequency bandwidth.

As an example consider a simple time series Xt for t = ti =
1, . . . , T = 16. Figure 3 shows two familiar tilings of the time-
frequency plane. The left diagram in Fig. 3 corresponds to a
representation of a time series concentrated purely in time with
each vertical line representing a particular (Dirac) time basis ele-
ment. The right diagram corresponds to a representation concen-
trated purely in frequency with each horizontal line represent-
ing a particular frequency basis element at Fourier frequencies
exp(−iωn) for ωn = 2πn/16 and n = 0, . . . , 15. Each line in ei-
ther of these plots could be given a separate grey-shade intensity
to indicate the “contribution to variance” at each location in time
(for Dirac) or frequency (for Fourier). For example, if X13 was
a large value then the 13th line would be a dark shade of grey,
if X5 was a small value then the fifth line would be light and so
on.
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Wavelets offer an alternative, but fixed, tiling of the time-
frequency plane. See Daubechies (1992) or Burrus, Gopinath
and Guo (1998) for introductions to wavelets in this context
or see Nason and Silverman (1994), Antoniadis (1997), Ogden
(1997), Vidakovic (1999) or Abramovich, Bailey and Sapatinas
(2000) for statistical introductions. Given a suitable mother
wavelet, ψ(t), a set of wavelets

{ψ j,k(t)} j,k∈Z where ψ j,k(t) = 2 j/2ψ(2 j t − k), (2)

can form a basis for function spaces such as L2(R) (or indeed
more complicated function spaces, see Abramovich, Sapatinas
and Silverman (1998)). Since wavelets form bases we can rep-
resent functions f (t) as linear combinations of wavelets by

f (t) =
∑
j∈Z

∑
k∈Z

d jkψ jk(t). (3)

If the wavelet basis is orthonormal, as it will be throughout this
article, then we can write the wavelet coefficients, {d jk} j,k∈Z of
f (t) as

d jk =
∫

R

f (t)ψ jk(t) dt .

In this article we advocate the popular Daubechies’ (1992) com-
pactly supported wavelets. The Daubechies’ family is useful for
several reasons: the degree of smoothness of the mother wavelet
can be preselected, the associated discrete transforms are fast
and efficient and smooth structure is sparsely represented. The
Haar wavelet used in the wind example earlier is the least smooth
Daubechies’ wavelet but seemed to work best in that practical
situation. Formula (3) demonstrates that f (t) can be represented
by basis functions, ψ jk(t) at different scales proportional to 2− j

for integers j i.e. a multiresolution analysis. The mother wavelet
is usually chosen to be a short-duration oscillation and therefore
localized both in time (short-duration) and in frequency (be-
cause it oscillates). The derived wavelets are scaled and trans-
lated (by 2− j k) versions of the mother wavelet: the scaling and
translation operations permit analysis of time series at different
times and frequencies (time-frequency analysis). Figure 4 shows
how wavelets tile the time-frequency plane: as j gets larger the
wavelets become finer and finer scale objects, oscillate more
quickly, are packed closer together (top of figure) and the cor-
responding tiles get taller (they cover a wider frequency range)
and thinner (their duration is less). As j gets smaller the op-
posite happens. The amplitude of any wavelet coefficient in a
representation, |d jk |, can be indicated on Fig. 4 by grey-scale
intensity shading of the rectangle corresponding to the wavelet
basis function in question.

Mallat’s (1989) pyramid algorithm permits fast order O(T )
computation of the discrete wavelet transform (DWT) of a dis-
crete time series X = {Xt }T

t=1 where T = 2J for some positive
integer J . The DWT provides information about variation in a
time series at different scales and locations (like the d jk above).
To fix notation letH andG denote the filter operators correspond-
ing to the low- and high-pass quadrature mirror filters of some
Daubechies’ (1992) compactly supported wavelet with filter co-

Fig. 4. Left: wavelet tiling of the time-frequency plane. The top row of
the tiling corresponds to fine scale, high frequency wavelets (top right)
that “exist” over a short time scale, the bottom but one row corresponds
to the largest scale, lowest frequency wavelet which “exists” over the
whole time domain ( for this example). The very bottom tile corresponds
to the father wavelet (not shown) which again “exists” over the whole
time domain at the very lowest frequency. Right: shows the wavelets
(both derived from the same mother wavelet) at scales 1 and 3. At
scale 3 there are eight fine scale wavelets roughly centred on locations
2k − 0 .5 for k = 1 ,. . . ,8 , at scale 1 there are two large scale wavelets
centred roughly on locations 4.5 and 12.5. Note that the lighter shading
in the box at scale 3 causes the wavelet to the right to have small
amplitude. If the boxes had the same shade then the finer scale wavelet
would actually be taller than the coarser scale one because 2 3/2 is
larger than 2 1/2 in formula (2)

efficients {hk} and {gk}, both of length L . Thus the computational
effort for applying H or G once is of order O(L). Let D0 denote
the even dyadic decimation operator defined by (D0 X )k = X2k ,
i.e. it selects every evenly indexed observation (see Nason and
Silverman 1995 for a more comprehensive discussion). Then
the DWT coefficients of X at level j = 0, . . . , J − 1 may be ob-
tained by d j = D0 G(D0H)(J− j−1) X . We call the concatenated
operators D0H and D0 G packet operators. We can again use
Fig. 4 to schematically visualise the DWT of T = 16 = 24 data
points. At level j = 3 the vector d3 will contain 8 DWT coeffi-
cients corresponding to the eight tiles at the highest frequency in
Fig. 4. At levels j = 2, 1 and 0 the vectors d2, d1 and d0 contain
4, 2, and 1 coefficients corresponding to the tiles (wavelets) at
those levels.

3.2. Wavelet packets

Wavelets are a subset of a larger class of oscillatory functions
called wavelet packets. A wavelet packet library is a collection
of bases where the basis elements are no longer restricted to
just scaling and dilation of one mother wavelet. As an illus-
tration Fig. 5 shows four such wavelet packets from different
scales with varying locations and frequencies. For applications
one does not need to have a detailed knowledge of what all
the wavelet packets look like or indeed need to have detailed
formulae for them. The reason for this is that the statistical
methodology in Section 4 picks out important basis functions
and then effort can be put into interpretation of the selected
functions as was done earlier in Section 2.3 using Fig. 2. A
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Fig. 5. Four wavelet packets derived from Daubechies’ (1992) least-asymmetric mother wavelet with 10 vanishing moments. These four wavelet
packets are actually orthogonal and drawn by the drawwp.default() function in WaveThresh. The vertical scale is exaggerated by 10×

comprehensive description of wavelet packets is beyond the
scope (and length) of the present article. See Wickerhauser
(1994) or Hess-Nielsen and Wickerhauser (1996) for useful tech-
nical introductions. Wavelet packets permit function represen-
tation using a basis selected from the library of wavelet packet
bases where each basis element is indexed by scale, location and
frequency (number of oscillations). For a discrete time series the
wavelet packet transform (WPT) computes the representation of
the series with respect to all basis functions in the library effi-
ciently in O(T log T ). The WPT is computed by a full binary
recursion of the D0H and D0G operators operating on the time
series X (i.e. bothD0H andD0G are first applied to X producing
a low- and high-passed set of coefficients, then both operators
are applied to each set producing four sets of coefficients, then
both are applied again to each set producing eight sets and so
on). Figure 7 depicts the algorithm for an initial set of eight data
points. The total number of different wavelet packets (e.g. total
number of rectangles in Fig. 7 not counting the original data)
can be computed by realizing that there are 2 packets at scale
level J − 1, 4 packets at level J − 2, . . . , 2J packets at level 0.
The total of 2 + 4 + · · · + 2J = 2J+1 − 2 = 2T − 2 = K as
mentioned earlier. More details about wavelet packets and how
they fit into a non-decimated scheme (next section) appear in
Appendix 2.

Wavelet packets have been used in signal representation and
compression. For example, Coifman and Wickerhauser (1992)
use the WPT to represent a given signal in terms of all wavelet
packets and then select a “best-basis” for representing that sig-
nal. Their “best-basis” is one in which the representation is
sparse and an entropy criteria is used in an efficient “branch-and-
bound” algorithm to select the sparsest basis. Sparse function
representations are obviously useful for compression. We use

wavelet packets because they can efficiently represent a wide
range of time series behaviour: e.g. transients, local and pro-
longed oscillations.

Each wavelet packet basis provides a particular tiling of the
time-frequency plane: there are a large number of possible dis-
tinct tilings/bases (let BJ denote the number of bases in a WPT
tree with J levels. Then B1 = 1 and B j = B2

j−1 + 1 which in-
creases very fast). We do not claim that collections of wavelet
packets optimally represent every type of time-frequency be-
haviour, but as Hess-Nielsen and Wickerhauser (1996) point out
“it is more reasonable to correct the deficiencies in fast trans-
forms [like wavelet packets] rather than to wait for slow mathe-
matically perfect transforms to catch up”.

3.3. Non-decimated wavelet packets

Our goal is to spot any relationship between variation in the re-
sponse time series and the time-scale behaviour of the explana-
tory time series expressed though its wavelet-packet coefficients.
For the modelling that we have in mind, it is not possible to use
the WPT algorithm directly because of the dyadic decimation—
the consequence of which is to reduce the number of wavelet
packet coefficients by a factor of two for each coarser scale level
computed (in the continuous representation this just means that
“large scale” basis functions are kept further apart than “small
scale” basis functions because functions are translated by shifts
of 2− j k which is larger for coarse scale wavelet packets). The
NWPT uses exactly the same basis functions as the WPT but
arranges for the wavelet packets on every scale to be present
at all time locations. In other words for every time point in
the explanatory series there is a corresponding wavelet packet
coefficient for each of the wavelet packets at all scales. The
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Fig. 6. Schematic of NWPT for T = 8 points (J = 3 )

resulting NWPT representation is heavily overdetermined and
non-orthogonal but the structure is advantageous for the mod-
elling described in Section 4. Next we briefly summarise the key
components of the NWPT.

First, let D1 denote the “odd” dyadic decimation opera-
tor which selects every odd indexed observation from a se-
quence. The NWPT simply applies the four packet operators
D0H,D0G,D1H and D1G recursively to the time series to form
a tree where each node has 4 children corresponding to the each
of the packet operators. The NWPT was proposed by Pesquet,
Krim and Carfantan (1996) and developed for curve estima-
tion (wavelet shrinkage) by Cohen, Raz and Malah (1997). The
NWPT is illustrated schematically in Fig. 6 for T = 8 data points
input at the root of the tree. Each packet of coefficients in the
NWPT tree can be addressed by an index written in base 4. The
number of digits in the index indicate the level of the packet:
packets at level j have J − j digits for j = 0, . . . , J − 1. The
actual entries in the index describe how that packet was reached
from the root: application ofD0H,D0G,D1H, orD1G augments
a 0, 1, 2 or 3 respectively to the index. For example, the indices 0,
1, 2 and 3 at level 2 and 01, 03, 21 and 23 at level 1 are indicated
in Fig. 6; the 23 packet is so labelled because it is obtained by the
operator D1H followed by D1G. The computational cost of the
NWPT can be found by noting that there are 4J− j packets each
of length 2 j for levels j = 0, . . . , J − 1. Thus the total number
of coefficients is

J−1∑
j=0

4J− j 2 j = 2J
J∑

j=1

2 j

= 2J+1(2J − 1)

= 2T (T − 1) = O(T 2).

Therefore since each coefficient computed costs O(L) the total
effort for the NWPT is O(T 2L). It is possible to compute non-
decimated transforms with an arbitrary number of points T , but
our software restricts us to data sets of length a power of 2. In
practice, this is not a draconian restriction and may be overcome
by padding with zeroes, for example (due to the time localiza-
tion of the wavelet transform the extra zeroes do not affect the
majority of the coefficients except at very coarse scales where

they get included in their calculation. This is unlike standard
spectral estimation where zero padding causes a different spec-
tral interpolation (see Priestley 1981, Section 7.6).

3.3.1. Translation-equivariance of the NWPT

The NWPT has another important property called translation
equivariance which means that if S is the cyclic shift operator
then

NWPT[SXt ] = S(NWPT[Xt ] ).

In other words a shift in the time series is reflected by an iden-
tical shift in the transform coefficients and the relevance of
this property for our modelling is explained in Section 4. Note
that both the DWT and WPT are neither translation-equivariant
nor translation-invariant and cannot be used for our particular
purpose.

3.4. Time-ordered non-decimated wavelet packets

Although the NWPT produces as many wavelet packet coef-
ficients as there are data points at each scale, the coefficients
produced by the recursive algorithm are not delivered in time
order. For example, packets 0 and 2 in Fig. 6 both correspond
to the first stage of low-pass filtering but the coefficients in each
of the NWPT packets would have to be interleaved to produce
a sequence of time-ordered coefficients (i.e. both sets are father
wavelet coefficients obtained by filtering with H but then one
set has every even element selected by D0 and the other has
every odd element selected by D1). Interweaving these two sets
produces a set of eight coefficients in time order where each co-
efficient is associated with a corresponding father wavelet. Other
interweavings are necessary to obtain time-ordered NWPT co-
efficients for other wavelet packets and details on how to achieve
them are presented in Appendix 2.

Finally we note that the NWPT coefficients need to be phase-
corrected to bring them into perfect time-alignment before use.
Walden and Contreras Cristan (1998) specify a phase-correction
technique but we use phase-shifts determined empirically here
(by observing how delta functions are shifted) which work very
well in practice. Note that the computational scheme in Walden
and Contreras Cristan (1998) produces time-ordered sequences
by default.

4. Modelling using NWPT

For every wavelet packet basis function the NWPT of Xt com-
putes the coefficient of that basis function at every time location
t = 1, . . . , T —a large coefficient at t indicates that the Xt is be-
having coherently with the particular wavelet packet function at
that point. With the standard (decimated) WPT it is not possible
to obtain coefficients at all time points.

The translation-equivariance of the NWPT is also critical in
the following sense. If a certain behaviour occurs in Xt which is
reflected in coefficients in the NWPT at t then if that behaviour
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again happens at, say, Xt+τ it turns up again in exactly the same
way in the NWPT at t +τ . For a standard (decimated) DWT this
again does not happen as the same behaviour in X at t and t + τ

might we be reflected in completely different coefficients at these
two locations. Earlier we described modelling Yt in terms of the
transformed version of Xt and clearly the lack of translation-
equivariance would have caused problems (as certain behaviour
in X at different times would not be represented consistently).

The final major advantage of using the NWPT as opposed
to the (decimated) WPT is that for each wavelet packet basis
function we obtain T coefficients—the same as the number of
observations in the response time series {Yt }T

t=1. This means
that we can represent the NWPT coefficients of {Xt }T

t=1 as a
K -dimensional multivariate time series {Xt }T

t=1 where each vari-
able corresponds to the coefficients of a particular wavelet basis
function. It is this property which enables us to make good use
of the huge variety of statistical techniques (e.g. CART, mul-
tiple regression, logistic regression, GLMs, GAMs, Bayesian
variable selection techniques) for modelling a response vec-
tor (Y1, . . . , YT ) in terms of multivariate explanatory variables
(X1, . . . , XT ) where each Xi is K -dimensional.

In Section 2 we noted that the number of variables (K =
2T −2) was greater than the number of observations (T ). Many
standard statistical techniques require K < T . Again, the aim
of the current article is to show the utility of the NWPT and
not dwell on the problem of “more variables than observations”.
However, we mention two techniques we have used. The first,
very simple, approach is just to select a suitable number of those
wavelet packet variables in Xt that correlate best with Yt and
then use standard techniques as described in more detail above.
Although naive this approach is fast and has worked well in prac-
tice. As a further development, since the variables in Xt are corre-
lated, it might be worth subjecting Xt to a principal components
analysis and then use the new PCA projected variables to model
Yt . Secondly, Nason, Sapatinas and Sawczenko (2001) used the
antedependence models of Krzanowski, Jonathan, McCarthy
and Thomas (1995) to perform discrimination in the case of
singular covariance matrices (when the number of variables is
larger than the number of observations).

It is possible to use a non-decimated wavelet transform in-
stead of a NWPT. Indeed, Nason, Sapatinas and Sawczenko
(2001) demonstrated how non-decimated wavelets could be used
to model infant sleep-state from ECG (electro-cardiogram) sig-
nals. In this case only wavelet functions are identified and the
full generality of wavelet packets is not needed. However, we
did not know that a priori only wavelets would be needed so
generally speaking we use the full flexibility of the NWPT.

5. Conclusions and further work

This article has introduced a computational method for building
a transfer function model using non-decimated wavelet packets
for non-stationary time series. The transfer function model may
well be interesting in itself or be useful for predicting future

values of a response time series from future values of an ex-
planatory time series.

Our methods could be easily extended to the case where there
is more than one explanatory time series by using multivariate
statistical procedures. Our methods could, in principle, also be
extended to build non-decimated wavelet packet models between
multidimensional objects although in practice algorithms
for computing non-decimated wavelet packet transforms are
probably only practical for low numbers of dimensions (1, 2
or 3). However, a two-dimensional non-decimated wavelet
packet model may well be useful for relating images in many
applied areas such as industrial inspection and control.

We intend to extend our work to both the multivariate and
multidimensional settings. Although the main aim of this ar-
ticle is to introduce the (time-ordered) non-decimated wavelet
packet transform as a tool for building transfer function models
we recognise that the naive variable pre-selection in this article
could be improved upon. Further, although the main goal of this
article was to describe a computational technique we intend to
supply a mathematical framework for the modelling described
above: our intention is to represent both response and explana-
tory time series as locally stationary Fourier or wavelet processes
and see how slowly varying models can be constructed according
to the principles described above.

Appendix 1: S-Plus functions

We now describe the S-Plus functions used to implement the
modelling methodology described in this article. These func-
tions may be computed using Version 3 of the free WaveThresh
package for S-Plus and R (see Nason and Silverman 1994 for de-
tails on Version 2 or www.stats.bris.ac.uk/∼wavethresh
for Version 3).

1. The NWPT can be carried out using the wpst () function:

wpst(data, filter.number, family,
FinishLevel)

which computes the NWPT on the data set (time series)
data using any of the Daubechies’ compactly supported
wavelets with filter.number vanishing moments from the
family series up to a coarse resolution level specified by
FinishLevel.

2. The NWPT and selection of the “best” 5% wavelet packet
variables (described in Section 2.2) can be carried out using
the makewpstRO() function:

makewpstRO(timeseries, response,
filter.number, family, trans, percentage)

which applies the NWPT to timeseries (a vector con-
taining the explanatory time series Xt ) then finds the best
K1-sized subset of wavelet packet variables by correlat-
ing with the response time series contained in the vector
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response. The wavelet with filter.number vanishing
moments from the family series is used for the NWPT.
The argument trans permits a mathematical transform to
be applied to the NWPT coefficients before correlation with
the response time series (much in the same way that a log()
or sqrt() transform is used to stabilize variance in regres-
sion). The percentage argument specifies the proportion of
the wavelet packet variables that are returned in this initial
crude dimension reduction step. The makewpstRO() func-
tion returns a wpstRO class object which is an S-Plus list
with the following components:

• df: a data frame containing the “best” K1 wavelet packet
variables;

• ixvec: an indexing vector which for each of the selected
wavelet packets in df references the position of that packet
in the matrix version of the NWPT of timeseries;

• level and pktix: the resolution level and packet index
of each selected packet in the NWPT of timeseries;

• nlevels: the total number of resolution levels in the
NWPT of timeseries;

• cv: a vector containing K1 correlation coefficients between
response and each of the selected K1 variables;

• filter and trans: details of the wavelet filter and trans-
form specified in the call to makewpstRO().

Of these components the $df component can be supplied
directly to commands such as glm() or gam() to e.g.
model response on the K1 selected NWPT coefficients of
timeseries as described in Section 2.3.

3. Prediction of future values of Yt from future values of Xt

as described in Section 2.4 can be carried out using the
wpstREGR() function:

wpstREGR(newTS, wpstRO)

which takes a new segment of Xt (possibly detrended to
remove its mean) called newTS and uses the information
stored in the existing wpstRO object to construct a new data
frame containing the same K1 variables as in the wpstRO
but computed with the new time series data in newTS. The
statistical model that was constructed (e.g. like (1)) can then
be applied to the new data frame to obtain predicted values
for Yt .

Appendix 2: Weaving wavelet packets

There is no closed-form formula for the continuous wavelet
packets derived from Daubechies’ compactly supported
wavelets. However their Fourier transform for j = 0, . . . , J −1
can be written (see, for example, Daubechies 1992, p. 333) as

ψ̂ j ;ε1,...,εJ− j (ω)

[
J− j∏
p=1

mεp (2−pω)

]
ψ̂(2−J− jω), (4)

where m0(ω) = 1√
2

∑
k hke−iωk and m1(ω) = 1√

2

∑
k gke−iωk ,

and ψ̂ is the Fourier transform of the particular Daubechies’
compactly supported wavelet determined by the quadrature mir-
ror filters. The sequence εp = 0 or 1 forces selection of the m0

or m1 at each level (in the WPT this is equivalent to following
a D0H or D0G convolution branch in the binary tree respec-
tively). The wavelet packets shown in Fig. 5 correspond to εp

sequences of (clockwise from top left) 0010, 0101, 000010 and
1000001. Formula (4) also shows that the number of distinct
wavelet packets at level j = 0, . . . , J − 1 is given by 2J− j .

A distinction must be made between an “ordinary” NWPT
packet (such as the ones in Fig. 6) and a “time-ordered” NWPT
packet. Time-ordered NWPT packets follow the WPT indexing
scheme and are obtained by weaving together coefficients from
ordinary NWPT packets. Time-ordered NWPT packets are as
long as the original data. For example, in the ordinary WPT at
level J − 1 there are two packets: packet 0 and 1 each of length
2J−1 (see Fig. 7). With the ordinary NWPT at level J − 1 there
appears to be four packets (see Fig. 6). However, one can also
visualise the ordinary NWPT packets at level J − 1 as two time-
ordered non-decimated packets corresponding to the WPT by
interweaving the four packets in the following way:

• weaving together the packets produced by HD0 and HD1.
This produces the time-ordered non-decimated packet H and
corresponds to the time-ordered non-decimated version of the
ordinary WPT packet of index 0.

• weaving together the packets produced byGD0 andGD1. This
produces the time-ordered non-decimated packet G and cor-
responds to the time-ordered non-decimated version of the
ordinary WPT packet of index 1.

Fig. 7. Schematic of the WPT operating on T = 8 points, i.e. J = 3 . At
level j there are 2 J− j packets each containing 2 j points. The numbers
0, 1, 2, 3 next to the packets at level 1 are the indices of packets within
that level from left to right. The DWT coefficients are contained in the
WPT and are shown in the dashed boxes and marked c and d. All other
coefficients are with respect to other wavelet packets such as those
illustrated in Fig. 5. The total number of wavelet packets (excluding the
original data) is 2 T − 2 = 14 . An arrow corresponds to convolution
with the appropriate labelled operator
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Therefore the weaving process is a two-stage procedure: choose
which time-ordered NWPT packet you require (using the WPT
indexing scheme) and then identify the associated ordinary
NWPT packets; weave the associated packets into time-order.

In general, to obtain the correct time ordering, the ordinary
NWPT packets are not taken sequentially but with reference to
the root node. For example, let us refer to level 1 in Figs. 6 and 7.
Suppose that we wished to obtain time-ordered NWPT packet
of index 1 (or in operator notation the packet produced by H
followed by G). This corresponds to ordinary NWPT packet in-
dices 01, 03, 21 and 23 using the base 4 notation from Section 3.3
(each of the cases where a G operator follows a H operator re-
gardless of decimation). To produce correct time-ordering we
take coefficients successively from the ordinary NWPT packets
in the order 01, 21, 03 and then 23. This ordering occurs be-
cause the shift of wavelet packets is finer nearer the root node.
The transition from level 3 to 2 encodes a shift of one position,
the transition from level 2 to 1 encodes a shift of two positions.
So the “distance” of 21 to 01 is only 1, from 03 to 01 is 2 and
from 23 to 01 is 3. So, relative to 01, 21 has undergone a unit
shift, 03 a two unit shift and 23 both a unit and two unit (= 3
unit) shift.

To obtain the ordinary NWPT indices associated with a
time-ordered NWPT packet of index, r at level j , say (r =
0, . . . , 2J− j − 1, j = 0, . . . , J − 1, see Fig. 7 for details of the
WPT indexing scheme) the following recursive procedure can
be used:

1. convert the (decimal) time-ordered non-decimated wavelet
packet frequency index r into binary string s. Convert s into
decimal but this time assuming s is in base 4. Call the result
p (three example conversions: a→

b
means convert from base

a into base b.

1
10−→
2

1
4−→

10
1; 2

10−→
2

10
10−→
2

4; 3
4−→

10
11

4−→
10

5

)
.

2. For i = j, . . . , J − 1 do e <- 2^(2∗J-2 ∗i-1); p <- c
(p, p+e)

This example contains partial S code (see Becker, Chambers
and Wilks 1988). The first line sets e = 2(2J−2i−1) the second
line uses the S concatenation operator c that pastes together
two vectors, i.e. c({xi }n

i=1, {y j }m
j=1) = {x1, . . . , xn, y1, . . . , ym}.

As an example suppose that again the time-ordered NWPT
indices for the non-decimated wavelet packet at level 1 of index
1 for the 8 point data set are required. After the binary to
base 4 conversion: p = 1. In the loop: setting i = 1 we obtain
e = 8 and p = (1, 9). Then setting i = 2 we obtain e = 2 and
p = (1, 9, 3, 11) which are the required indices (in base 4: 01,
21, 03, 23). Time-ordered coefficients are obtained from these
four ordinary packets by taking the first coefficient from each
in order, then the second coefficient from each in order and
so on.

Finally we mention that the functions getpacket.wpst ()
and accessD.wpst () could be used to extract ordinary non-
decimated wavelet packets and time-ordered non-decimated

wavelet packets respectively (see the help on the WaveThresh
package from the Web site mentioned in Appendix 1).
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