
WAVELET-REGULARIZED RECONSTRUCTION FOR RAPID MRI

M. Guerquin-Kern1, D. Van De Ville1, C. Vonesch1, J.-C. Baritaux1, K. P. Pruessmann2 and M. Unser1

1Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne
2 Institute for Biomedical Engineering, University and ETH Zurich, CH-8092 Zürich

ABSTRACT
We propose a reconstruction scheme adapted to MRI
that takes advantage of a sparsity constraint in the
wavelet domain. We show that artifacts are signifi-
cantly reduced compared to conventional reconstruction
methods. Our approach is also competitive with Total
Variation regularization both in terms of MSE and com-
putation time. We show that !1 regularization allows
partial recovery of the missing k-space regions. We also
present a multi-level version that significantly reduces
the computational cost.

Index Terms— MRI, non-linear reconstruction,
sparsity, wavelets, compressed sensing, thresholded
Landweber, multi-level strategy

1. INTRODUCTION
Magnetic Resonance Imaging (MRI) scanners extract
measurements that correspond to the Fourier transform
of the object under investigation. When these so-called
k-space samples are located on a Cartesian grid, one can
rely on the inverse Fourier Transform for fast image re-
construction. When the sampling is non-Cartesian (e.g.,
spiral or radial sampling), a common approach is to re-
grid the data. However, interpolation in k-space leads to
reconstruction artifacts that are difficult to characterize.
Moreover, rapid MRI comes with undersampled k-space
trajectories and noisy measures. Therefore, state-of-
the-art methods tackle the reconstruction as an inverse
problem with a proper regularization to make it well-
conditioned. The most commonly-used algorithms in the
field are linear and are linked to quadratic regulariza-
tion. Unfortunately, in the case of severe undersampling,
they suffer from noise propagation, blurring, ringing or
aliasing errors. These reconstruction artifacts are similar
to those encountered in image deconvolution where the
research focus during the past decade has shifted to-
wards non-linear optimization; in particular, !1 wavelet
regularization which has been found to outperform tra-
ditional linear algorithms (e.g. Wiener filtering) [1].
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The theory of Compressed Sensing (CS) establishes a
strong connection between !1 regularization and sparsity
and is recently attracting a lot of attention in MRI [2,3].
The great majority of CS reconstruction algorithms con-
sider a finite-difference sparsifying transform which is
formally equivalent to Total Variation (TV) regulariza-
tion. Surprisingly, !1 wavelet regularization has received
little attention in MRI so far, with the notable exception
of the work of Liu [4] which uses a differentiable proxy of
the regularization functional to facilitate the optimiza-
tion. In principle, it is possible to solve the !1 wavelet-
regularized MRI reconstruction problem exactly using an
adaptation of Daubechies et al.’s Thresholded Landwe-
ber (TL) algorithm [1, 5]. A potential difficulty that
needs to be overcome is that the procedure converges
slowly when the forward model is poorly conditioned.

In this work, we develop a version of the TL algorithm
that is specifically tailored to the structure of the MRI
problem. Based on simulations, we demonstrate high-
quality reconstructions compared to state-of-the-art al-
gorithms. We also show that our non-linear algorithm
is capable of recovering missing k-space regions which
is not the case for quadratic regularization. Finally, we
propose a modified version of the algorithm that deploys
a multi-level strategy to speed-up the reconstruction.

2. MRI AS AN INVERSE PROBLEM

2.1. Forward model

2.1.1. Physics

In this work, we consider a single receiving coil with ho-
mogeneous sensitivity. The corresponding model for the
complex time-varying MR signal is

m(t) ∝
∫

R2
ρ(r)e2jπ〈k(t) , r〉 dr, (1)

where ρ is the unknown proton density map to be recov-
ered and k(t) denotes the so-called k-space trajectory.
The latter is implemented by time-varying magnetic gra-
dient fields.
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2.1.2. Discretization

In order to perform a numerical reconstruction, we must
provide a discretized version of the forward model (1).
Time is sampled at N instants resulting in the k-space
samples {kn} and the concatenated measurement vector
m = (m1, . . . , mN).

The signal to be reconstructed is represented as a lin-
ear combination of basis functions that are shifted ver-
sions of a generator ϕ on a finite Cartesian 2-D grid Cs:

ρ(r) =
∑

p∈Cs

c[p]ϕ(r − p). (2)

The signal is thereby parametrized by a set of M coeffi-
cients {c[p]}, represented as a vector c.

Then, (1) can be rewritten as follows:

mn = ϕ̂(−2πkn)
∑

p∈Cs

c[p]e2jπ〈kn , p〉 + bn. (3)

The term bn is introduced to represent both the mea-
surement noise and model mismatch. This model is lin-
ear; thus there exists a N × M matrix E such that:

m = Ec + b. (4)

2.2. Variational formulation

2.2.1. General framework

The solution c̃ is defined as the minimizer of a cost func-
tion that involves two terms: the data fidelity F and the
regularization R that favors solutions according to given
prior knowledge. This is summarized as

c̃ = arg min
x

F(m − Ex) + λR(x), (5)

where the tuning parameter λ balances the effects of the
two terms. F is chosen as the square of the !2-norm :
‖m − Ex‖2

"2 , which is justified when the noise is Gaus-
sian. The ill-conditioning, inherent to undersampled tra-
jectories, imposes the choice of an adequate regulariza-
tion term R.

Standard Tikhonov regularization, corresponding to
a quadratic regularization term ‖Rx‖2

"2 , leads to the for-
mal linear solution (EHE + λRHR)

−1
EHm (the super-

script H denotes the Hermitian adjoint). Such linear so-
lutions are quite tractable both theoretically and numer-
ically. However, quadratic cost functionals are of limited
use for measuring the plausibility of natural images.

TV reconstruction is related to the !1-norm of the
modulus of the gradient and is an optimal regularization
for piecewise-constant solutions.

2.2.2. Wavelet regularization
The underlying idea of wavelet regularization is that nat-
ural images tend to be sparse in the wavelet domain. We
hence would like to favor, among all the possible candi-
dates, a solution that has only few significant (non-zero)
wavelet coefficients.

Based on the property that a small !1-norm promotes
sparsity, this solution is defined as:

Wc̃ = arg min
w

∥∥m − EW−1w
∥∥2

"2 + λ ‖w‖"1 , (6)

where W and W−1 are the wavelet decomposition and
synthesis matrices, respectively.

3. ITERATIVE MINIMIZATION
3.1. Principle of the TL algorithm
The important point for comprehension is that the solu-
tion of the simpler wavelet denoising problem (E is the
identity matrix and W is orthonormal) is a single-step
thresholding: c̃ = W−1Tλ(Wm), as was first observed
by Chambolle [6]. Daubechies et al.’s algorithm [1, 5]
can then be explained by iteratively bounding the initial
reconstruction problem by a simpler denoising problem.
Specifically, at iteration step n, one defines the auxiliary
variable zn = c̃n+α−1(a−EHEc̃n) with a = EHm where
the wavelet vector c̃n specifies the current estimate of the
solution. One then considers the upper bound on data
fidelity

‖m − Ex‖2
"2 ! const(x) + α ‖zn − x‖2

"2

which is valid provided that α is greater than the largest
eigenvalue of EHE. The equality holds for x = c̃n.

The minimization is then performed by:
Initialization of c̃0;
repeat

zn ← c̃n + τ(a − EHEc̃n) (Landweber updating);
c̃n+1 ← W−1Tλτ(Wzn) (wavelet thresholding);
n ← n + 1;

until convergence ;

3.2. Structure of the problem
Considering (3), we rewrite the measurements as:

mn = ϕ̂(−2πkn)hn
Hc + bn, (7)

where hn denotes [e−2jπ〈kn , p1〉 . . . e−2jπ〈kn , pM〉]
T and

{pi}i∈[1..M] is the index scanning the grid Cs.
The encoding matrix is then decomposed as:

E = Dϕ̂H, (8)

with H = [h1 . . . hNs ]T and Dϕ̂ = diag (ϕ̂(−2πkn)).
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A fundamental point for our algorithm is that the
multiplication with the matrix EHE corresponds to a 2-D
convolution (Block-Toeplitz matrix). Indeed, by defining
the kernel G[p] =

∑N
n=1 e−2jπ〈kn , p〉|ϕ̂(−2πkn)|2 and us-

ing (8), we get:

y[p] = (EHEx)[p] =
∑

q∈Cs

G[p − q]x[q]. (9)

Note that the kernel G has a support twice as large as
Cs in each dimension.

The matrix-vector multiplication with EHE corre-
sponds to the most computer-intensive part of Algorithm
3.1. Based on the above property, we implement this
operation by a pointwise multiplication in the frequency
domain using FFTs on a grid twice as large as Cs [7].
The advantage is that this computation is exact while it
avoids the use of regridding.

3.3. Bound estimation

In Section 3.1, we mentioned that the parameter α = τ−1

must be chosen greater than the largest eigenvalue of
EHE. We use a standard power method to estimate this
value:

Initialization of v0 as a random vector;
repeat

αn ← ‖Evn‖2
/ ‖vn‖2 (eigenvalue);

vn+1 ← EHEvn/
∥∥EHEvn

∥∥ (eigenvector);
n ← n + 1;

until convergence ;

Here too, we avoid the use of regridding by rewriting
‖Ev‖2 =

〈
v , EHEv

〉
.

3.4. Performance

3.4.1. Description of the experiments

We simulated MRI experiments with two original images:
a 1024 × 1024 version of the Shepp-Logan brain phan-
tom and a 512 × 512 T2 clinical image. We considered
variable-density spiral trajectories as described in [8]; the
parameters are: α = 2, 8 interleaves, undersampling fac-
tor R = 4, supporting 256 × 256 and respectively 192 ×
192 matrices for reconstruction. We added white Gaus-
sian complex noise with Signal-to-Error-Ratio 20 dB and
30 dB to the simulated data. All algorithms were coded
with MATLAB 7.7 (The MathWorks Inc. 2008, Natick)
on a 8-cores machine with 4 GB RAM, running MacOs
10.5. To allow for an objective comparison of methods,
we systematically selected the regularization parameter
that provided the best SER performance (Oracle solu-
tion).
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Fig. 1. Comparison of reconstruction results for the
T2 image. Errors: same intensity scale and dark points
representing high intensities. Fourier: log of modulus.

3.4.2. Results

For the linear reconstruction, we used a Conjugate Gra-
dient (CG) loop, with a tolerance fixed to 1e − 8. The
TV reconstruction was implemented using the Iterative
Re-weighted Least Square (IRLS) method [9] with 10
outer iterations. For the linear solver, we also applied
CG with a tolerance 1e − 8. For the wavelet reconstruc-
tion, we chose the Haar basis, which is the simplest and
fastest wavelet transform. We considered 3 decompo-
sition levels and used cycle-spinning as in [1] to avoid
blocking artifacts. We took the zero image as an initial-
ization. The step size τ was chosen the largest possible
to speed up reconstruction. We stopped the algorithm
when convergence was reached by monitoring the Signal-
to-Error-Ratio (SER) and the cost function. We show
the reconstructed images in Fig. 1. Corresponding SERs
and computation times are given in Table 1.

The simulations show that wavelet regularization is
competitive with TV for the Shepp-Logan brain phantom
which is piecewise-constant. It performs even better (ob-
served SER improvement: 0.7 dB) for the T2-MR image.
Wavelet regularization appears to restore more details.
In Fig. 1, we can note that high frequency components—
missing in the spiral sampling—are partly recovered by
both non-linear approaches. This extrapolation is made
possible by the !1 regularization constraints that induce
some correlations in the Fourier domain.
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Image (noise) Shepp-Logan (20 dB) T2 image (30 dB)
Regularization !2 TV Wavelets !2 TV Wavelets

λopt 2.7 0.3 0.25 0.3 50 60
SERopt (dB) 8.02 12.08 12.19 9.76 13.13 13.88
duration (s) 7 146 117 4 46 268

Table 1. Comparison of reconstruction quality in terms of SER for different types of regularization.
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Fig. 2. Speed acceleration of the Multi-Level TL algo-
rithm.

4. MULTI-LEVEL IMPLEMENTATION
To speed up the computation, we propose to formulate
the problem at different resolutions and to use a "coarse-
to-fine"1 iterative optimization strategy. Our scheme is
inspired by the work of Vonesch et al. in the context
of deconvolution [10]. The key idea is to take advantage
the multi-level representation to iterate at different scales
while adapting the majorization parameters (α) to the
current subband.

To implement the method efficiently we use the fact
that the updating matrix EHE, at every resolution scale,
is equivalent to a convolution on a grid twice as large.
The delicate point of the algorithm is the suitable han-
dling and propagation of boundary conditions.

We compared the number of iterations required to
reach the TV quality for the standard and the multi-level
implementation. Results are shown Fig. 2. Because of
the chosen multi-level strategy, the computational costs
per iteration are comparable. We observe a speed up by
a factor of 5.5.

5. CONCLUSION
We successfully adapted and implemented wavelet-
regularized reconstruction for MRI. Our experimental

1At every iteration each subband is updated once, from the
coarsest to the finest scale.

results suggest that it is competitive with TV regular-
ization both in terms of MSE and computation time.
It also appears that the prior corresponding to !1 reg-
ularization may be better adapted to MR images than
the classical !2-term. We have observed that wavelet
reconstruction usually outperforms TV for images that
contain textured areas and/or many small details.

The current limitation of basic iterative wavelet
reconstruction methods is their slow convergence for
poorly-conditioned problems. We have shown how to
improve the situation by using subband-adaptive step
sizes together with a coarse-to-fine updating strategy.
An important issue that still needs to be addressed is
the optimal adjustment of the regularization parameter
for real-data experiments.
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