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SUMMARY

A formula for recovering the original signal from its

irregularly sampled values using wavelets, which extends

the Walter sampling theorem to the irregular sampling case

and generalizes the Paley�Wiener 1/4-Theorem by remov-

ing the symmetricity constraint for sampling, is pre-

sented.ã 1999 Scripta Technica, Electron Comm Jpn Pt 3,

82(5): 65�71, 1999
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1. Introduction

In digital signal and image processing, digital com-

munications, and so forth, a continuous signal is usually

represented and processed by using its discrete samples.

How, then, are we to reconstruct the original signal from its

discrete samples? The classical Shannon sampling theorem

gives the following formula for band-limited finite energy

signals.

For a finite energy s-band continuous signal

f(t), t Î R, that is, supp f̂(w) Ì [-s, s] and f Î L2 (R), it can

be recovered by the formula

where f̂ is the Fourier transform of f(t) defined by

If we let s = 2mp, m Î Z, Shannon sampling can be

viewed as a special case of sampling in wavelet subspaces,

with j(t) = sinpt /pt playing the role of the scaling function

of MRA (multiresolution analysis) =

{Vm = span
____

{j(2mt - n)}n}m. The dilation equation is

Realizing this property, Walter [4] established a sampling

theorem for a class of wavelet subspaces. Let j(t) be a

continuous scaling function of an MRA {Vm}m such that

j(t) £ O(|t|-1-e) for some e > 0 when |t| ® ¥, q(s, t)
 = Snj(s - n)j(t - n), and j*(w) = Snj(n)einw ¹ 0. Walter

showed that, in the orthonormal case, {q(s, n)}nÎZ is a Riesz

basis of V0. Furthermore, let {Sn(t)}nÎZ be biorthogonal to
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{q(s, n)}nÎZ. Then Sn(t) = S0(t - n) holds and f Î V0 can be

recovered by the formula

Following the Walter sampling theorem, to recover the

original signals from their discrete samples we can use

many proper scaling functions other than the sinc function.

However, in real applications, sampling is not always

strictly regular. The sampling interval of natural sampling

fluctuates according to the signals sampled. There may be

cases where undesirable jitter exists in the sampling in-

stants. Some communication systems may suffer from ran-

dom delay due to channel traffic congestion or encoding

delay. In such cases, system design will be made easier if

irregular sampling is tolerated. Thus, irregular sampling

may help design signal processing systems, and open the

possibilities of new systems that have been considered

difficult so far.

Then how are we to deal with these cases in which

sampling is not regular but irregular? The famous Paley�

Wiener 1/4-Theorem (see Young [6]) states that there is a

{Sk(t)}k Ì V0 such that for any f Î V0,

if tk = -t-k for k = 0, 1, 2, . . . , and |tk - k| £ l < 1 /4.

In this paper, we generalize the Paley�Wiener theo-

rem and establish sampling theorems for irregularly sam-

pled signals in orthonormal and biorthonormal wavelet

subspaces by removing the symmetricity constraint

tk = -t-k. Moreover, the result is shown to hold for general

wavelet subspaces and an example is also calculated to

show the result. 

2. Sampling in Orthonormal Wavelet

Subspaces

First we consider the simplest case of sampling in

orthonormal wavelet subspaces and establish a similar for-

mula for it.

Theorem 1 Let j(t) be an orthonormal continuous

scaling function of MRA {Vm}m such that 

1. j(t) £ O(1 / |t|1+e) for some e > 0 when |t| ® ¥,

2.  j(t) is differentiable in each interval (n, n + 1),
and Snsup(n,n+1)|j¢(t)| < ¥,

3. j*(w) ¹ 0.

Then there is a {Sn(t)}n Ì V0 such that f(t) Î V0 can be

recovered by the formula

and Uo(n, d) is the d-neighborhood of n except for n itself.

In order to prove Theorem 1 we need two lemmas

(Lemma 1 can be found on p. 46 of Ref. 2).

Lemma 1 (see Theorem 9 in Ref. 2) Let {zn}n be a

basic sequence1 in Banach space (X, ||×||) and let {zn
*}n be the

coefficient functional2 of {zn}n extended to X in the Hahn�

Banach sense. Then {yn}n is an equivalent basic sequence

of {zn}n in X if 

The following are, respectively, two norms in L2 (R)

and L2 (0, 2p): 

Lemma 2 Let j(t) be an orthonormal continuous

scaling function of MRA {Vm}m such that

j(t) = O(1 / |t|1+e) for some e > 0 when |t| ® ¥. Then for

f(t) Î V0, 

(4)

(5)

(6)

and

1
{zn}n is called a basic sequence when it is a basis of the Banach space

span {zn}n.
2
Coefficient functional zn

*
 is defined as x = Snzn*(x)zn for any x Î span

{zn}n.
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Proof The assumption j(t) = O(1 / |t|1+e) implies

that q(s, t) = Snj(s - n)j(t - n) is well-defined. Since

{j(t - n)}n Î l2 and {j(s - n)}n is orthonormal, we have 

for a specified t Î R. Thus, f(s)q(s, t) Î L1(R(s)) for any

f(s) Î V0 Ì L2(R) and a specified t Î R. Moreover,

j(t) = O(1 / |t|1+e) also implies that j(s - n) is uniformly

bounded and Sn|j(t - n)| is uniformly convergent with

respect to a specified s Î R. Therefore,

is uniformly convergent with respect to s Î R. From Eqs.

(7), (8), and the orthonormality of {j(t - n)}n, we derive

Proof of Theorem 1 When j*(w) ¹ 0 holds,

{q(t, k)}k is a Riesz basis of V0 (see Walter [4]). Let V̂0 be

the image space of V0 under the mapping Fourier transform

defined in Eq. (2). Since the Fourier transform is isometric3

modulo a coefficient Ö̀`̀2p, we can be sure that {q̂(w, k)}k is
a Riesz basis of V0.

In order to show that {q(t, tk)}k with tk = k + dk is a

Riesz basis of V0, it is enough if we can show that

{q̂(w, tk)}k is a Riesz basis of V̂0. On one hand,

where j*(w) and gk(w) are defined by

For the same reason, we have

where jd
k

* (w) is defined by

From Lemma 1, we need only show

where {qk
*}k is the coefficient functional of {q̂(w, k)}k. But

for any {ck}k Î l2, 

where Eq. (17) is due to the orthonormality of j(t) and the

Parseval identity. Therefore,

From Eqs. (11), (14), and (18),

On the other hand, since j is differentiable in each interval

(n, n + 1) and orthonormal, the Lagrange mean formula

implies

(10)

(18)

(7)

(8) 

(9)

(11)

(13)

(12)

(14)

(15)

(16)

(17)

(19)

(20)3
||F [j]|| = Ö̀`̀2p ||j||.
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where xn,k is the Lagrange mean point in (n, n + dk). By

virtue of ||j|| = Ö̀`̀2p ||j|| = Ö̀`̀2p , Eqs. (16), (19), and (20), in

order to show that {q(t, tk)}k is a Riesz basis of V0, we need

only show

that is, 

This is exactly the given Eq. (6). Let {Sk(t)}k be biorthonor-

mal to {q(t, tk)}k in V0. Then Lemma 2 implies that for any

f(t) Î V0,

Remark 1

1. When j is a cardinal scaling function (see Walter

[5]), j*(w) = 1 holds.

2. Obviously the condition Snsup(n,n+1)|j¢(t)| < ¥
can be replaced by j¢(t)|(n,n+1) = O(1 / |n|1+e) for some e > 0

when |t| ® ¥. But j¢(t) = O(1 / |t|1+e) is easier to verify.

3. In practical cases, we can obtain only finite sam-

ples. For example, t Î [-N, N]. The Paley�Wiener [6] theo-

rem requires that dk = -d-k and |dk| < 1 /4. But we only

require that Eq. (6) hold instead of the restrictive constraint

imposed on each dk, (k Î [-N, N] Ç Z), where the bound

of Eq. (6) depends on d = supk|dk|.
4. When f is not in V0 we also can use the formula

to recover it, but the aliasing error must be estimated (see

Walter [5]).

5. {Sk(t)}k can be obtained by calculating the bior-

thogonal basis of {q(t, k + dk)}k. For regular sampling,

dk = 0. Hence, Eq. (5) is the same as Eq. (4). 

3. Sampling in Biorthogonal Wavelet

Subspaces 

When j(t) is not orthonormal but biorthogonal4,

Theorem 1 cannot hold. But we can find a similar formula

for it.

Theorem 2 Let {j(t), j(t)} be the continuous scal-

ing function pair for biorthogonal MRA {Vm, V
~
m} (with

V0 = V
~

0) such that

1. j(t) = O(1/ |t|1+e), j
~
(t) = O(1 / |t|1+e) for some e >

0 when |t| ® ¥,

2. j
~
(t) is differentiable in each interval (n, n + 1), and

Sn sup(n,n+1)|j
~
¢(x)| < ¥,

3. j
^*(w) ¹ 0.

Then there is a {Sn(t)}n Ì V0 such that for any f(t) Î V0,

if dn Î (-1, 1) and

where

G(j) = (Sk | j(w + 2kp)|2)1 / 2, and j
^*(w) = Sn j(n)e

inw.

Proof Let 

For the same reason as for Lemma 2, we know f(t) =
òRf(s)q(t, s)ds for f(t) Î V0 and that g(s) = òRg(t)q(t, s)dt for

g(s) Î V
~

0. When ĵ*(w) ¹ 0, it is easy to see, by referring to

Walter [4], that {q(t, k)}k is a Riesz basis of V0, or equiva-

lently {q̂(w, k)}k is a Riesz basis of V0. In order to show that

{q(t, k + dk)}k is a Riesz basis of V0, it is enough to show

that {q̂(w, k + dk)}k is a Riesz basis of V̂0 due to the isomet-

ricity of the Fourier transform. Referring to the proof of

Theorem 1, we have

and

(21)

(22)

(23)

(24)

(25)

(26)

(27)

4
See Cohen and colleagues [1] or Long and Chen [3] for biorthogonal

wavelets.
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where xn,k is the Lagrange mean point in (n, n + dk) and

{qk
*}k is the coefficient functional of {q̂(w, k)}k. But for any

{ck}k Î l2,

Hence,

Let

that is, 

Then {q(t, k + dk)}k is a Riesz basis of V0. If we take

{Sk(t)}k as biorthogonal to {q(t, k + dk)}k in V0, then for any

f Î V0,  we have f(t) = Skáf(s), q(s, k + dk)ñSk(t)
= Skf(k + dk)Sk(t).

Remark 2

1. When j(t) is orthonormal, G(j) = 1 holds. Thus,

Eq. (28) is the same as Eq. (22).

2. Since j and j are symmetric, Theorem 2 still

holds when j and j change their positions.

3. Due to ||G(j)||L2(0,2p) £ Ö̀`̀2psup|G(j)|, Eq. (28)

can be replaced by

In many practical cases, the scaling function is neither

orthonormal nor biorthogonal. But we need to use these

scaling functions in recovering signals; the following cor-

ollary is designed for these cases.

Corollary 1 With the same assumption as Theorem

1 except that j(t) is not orthonormal, for any f(t) Î V0, there

is an Sk(t) Î V0 such that

if dk Î (-1, 1) and

where Sn  supU
o
(n,d)  | Skj¢(x - k)j(-k)| ¹ 0, and G(j) =

(Sk |j (w + 2kp) | 2)1 / 2.

Proof Let  q(s, t) = Snj(s - n)j(t - n).  When

j*(w) ¹ 0 holds, {q(s, k)}k is a Riesz basis of V0. Suppose

that {q~k(s)}k is biorthogonal to {q(t, k)}k in V0. Walter [5]

states that q~k(s) = q~0(s - k) and q(s, k) = q(s - k, 0). Thus

{q(s, 0), q~0(s)} is a biorthogonal scaling function pair for

{V0, V0}. Referring to Theorem 2 and point 2 of Remark 2,

there is a {Sk(t)}k Î V0 such that for any f Î V0,

if

where

But from Theorem 9.2 of Walter [5],

(31)

(28)

(29)

(30)
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On the other hand, we also have

From Eqs. (30), (31), and (32), Eq. (29) is equivalent to

Remark 3

1. In practical cases we can select the proper scaling

function j(t) such that the right side of Eq. (33) is big

enough to cover the necessary fluctuation range supk{dk}.

2. But the theorem is still useful even if the right

side of Eq. (33) is not so big. In many practical cases of

sampling the irregular deviation in the sampling points is

only slight. As long as Eq. (33) is satisfied, the original

signal can be reconstructed. However, the Paley�Wiener

[6] method cannot be applied, since it needs constraint

tk = -t-k.
3 . For example, take the B-spline

j(t) = N2(t) = t1[0,1)(t) + (2 - t)1[1,2)(t). Then the right side

of (33) becomes Ö̀`̀2p /(3||G-1(j)||L2(0,2p)) where

G(j) = Ö̀`````````̀1

3 + 2

3
cos2w/2 . Due to ||G-1(j)||L2(0,2p) £ Ö̀`̀6p , we

derive Ö̀`̀2p /(3||G-1(j)||L2(0,2p)) ³ 1 /3Ö̀̀3 . Then the irregu-

larly sampled signals in V0 can be recovered if

Sk|dk| < 1 /3Ö̀̀3. But the Paley�Wiener constraint tk = -t-k
for sampling is not necessary here.

4. In order for the right side of Eq. (33) to be big

enough, the scaling function j(t) should be selected such

that |j¢(x)| is small enough. But a small |j¢(x)| implies that

we can only reconstruct the low-frequency signals. There-

fore, selecting a proper scaling function, such that the

permitted deviation dk and wavelet subspaces can be big

enough, is an important factor for signal reconstruction in

wavelet subspaces by the theorem.

4. Conclusions

In this paper, a reconstruction formula for irregularly

sampled signals in general wavelet subspaces is estab-

lished. Compared to the Paley�Wiener theorem, the sym-

metricity constraint is removed.

The B-spline of order 2 is calculated as an example

to demonstrate the theorem. 

It is interesting to know what class of scaling func-

tions can allow a large margin of sampling irregularity. The

important case is that when the class of wavelet subspaces

is rich enough to include many interesting functions in

application.
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