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Abstract

We propose a new speech enhancement method based on the time adaption of wavelet

thresholds. The time dependence is introduced by approximating the Teager Energy of

the wavelets coefficients.

This technique does not require an explicit estimation of the noise level or of the a

priori knowledge of the SNR, which is usually needed in most of the popular enhancement

methods. Performance of the proposed method are evaluated on speech recorded in real

conditions and with artificial noise.
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1 Introduction

During the past decade, wavelet transforms have been applied to various research areas. Their

applications include signal and image denoising, compression, detection, and pattern recogni-

tion.

Wavelet shrinkage is a simple denoising technique based on the thresholding of the wavelet

coefficients. The estimated threshold is supposed to define the limit between the wavelet co-

efficients of the noise and those of the target signal. Unfortunately it is not always possible

to separate the components corresponding to the target signal from those of noise by a simple

thresholding. For noisy speech, energies of unvoiced segments are comparable to those of noise.

Applying thresholding uniformly to all wavelet coefficients not only suppresses additional noise

but also some speech components like unvoiced ones. Consequently, the perceptive quality of

the filtered speech will be greatly affected.

However, the wavelet transform combined with other signal processing tools has been pro-

posed for speech enhancement. They include the Wiener filtering in the wavelet domain [1],

wavelet filter bank for spectral subtraction [2] or coherence function [3, 4].

We propose a novel approach for wavelet speech enhancement. Unlike conventional denoising

wavelet methods, the discriminative threshold in various scales is time adapted in function

of speech components. The proposed technique is tested on noisy speech recorded in real

environments. Obtained results are closely similar to those from Ephraim and Malah Filter

(EMF) [5, 6]. Furthermore, the proposed method does not require a priori any knowledge of

the SNR.
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2 Theory

2.1 Wavelet denoising

Wavelet transform has recently emerged as a powerful tool for removing noise from signal and

image. Donoho and Johnston proposed their original method, which proceeds by thresholding

wavelet coefficients [7, 8]. They attempt to recover a signal s(t) from noisy data x(t)

xi = si + bi i = 1, . . . , N (1)

where bi represents a gaussian white noise.

This algorithm can be summarized in three steps

• Wavelet transform of the noisy signal,

• Thresholding the resulting wavelet coefficients,

• Inverse wavelet transform to obtain the denoised signal.

Donoho and Johnstone [8] proposed a universal threshold λ for removing added white noise

λ = σ
√

2 log(N) (2)

with σ = MAD/0.6745 (3)

where σ is the noise level. MAD is the Median Absolute Deviation, estimated in the first scale.

In the wavelet packets case, the threshold becomes

λ = σ
√

2 log(N log2 N) (4)
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The soft thresholding function is defined as

TS(λ, wk) =


sgn(wk)(|wk| − λ) if |wk| ≥ λ

0 if |wk| < λ
(5)

where wk represents the wavelet coefficients.

2.2 Teager energy operator

The Teager Energy Operator (TEO) is a powerful nonlinear operator proposed by Kaiser [9],

capable to extract the signal energy based on mechanical and physical considerations. It has

been successfully used in various speech applications [10, 11, 12, 13, 14]. For a bandlimited

digital signal x(n), this operator can be approximated by

Ψd[x(n)] = [x(n)]2 − x(n + 1)x(n− 1) (6)

3 New enhancement method

The proposed speech enhancement method is based on the time adaptation of the wavelet

threshold. Fig. 1 explains schematically this algorithm for a short noisy sentence (Fig. 1(a)).

3.1 Wavelet packet analysis

For a given level j, the wavelet packets transform WP decomposes the noisy signal x(n) into

2j subbands corresponding to wavelet coefficient sets wj
k,m. For this application, we fix j = 4.

wj
k,m = WP{x(n), j} n = 1, . . . , N (7)

In other words, w4
k,m defines the mth coefficient of the kth subband. Where m = 1, ..., N/24
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and k = 1, ..., 24. For example, Fig. 1(b) represents the wavelet coefficient set w4
5,m.

3.2 Teager energy approximation

The discrete–time TEO is applied to the resulting wavelet coefficients w4
k,m

t4k,m = Ψd[w
4
k,m] k = 1, . . . , 16 (8)

This operation enhances the discriminability of speech coefficients among those of noise (Fig. 1(c)).

3.3 Masks Construction

For each subband coefficients, an initial mask is obtained by smoothing the TEO coefficients

(Fig. 1(d))

M4
k,m = t4k,l ∗ hk(m) (9)

where hk is an IIR lowpass filter (2th order).

3.4 Threshold modulation criterion

Ideally, the standard threshold should be adapted only for speech frames and kept unchanged

for non speech ones. The speech presence is interpreted by a significant contrast between peaks

and valleys of M4
k , while its absence is observed with a weaker contrast (smoother masks). To

distinguish these frames, we define a parameter S4
k named offset, that estimates the valleys level.

It is given by the abscissa of the maximum of the amplitude distribution H of the corresponding

mask M4
k,m, and is estimated over the analyzed frame.

S4
k = abscissa[max(H(M4

k,m))] (10)

This parameter is close to 0 for speech frames and close to 1 for noise ones. If S4
k is below

5



the discriminatory value of 0.35max(M4
k,m) then, we modulate the threshold, else it remains

unchanged.

3.5 Mask processing for the time adapted threshold

The modulated threshold must be adapted to the speech waveform independently of its energy

evolution. In this case, the difference between local maxima must be reduced. We proceed by

suppressing the offset and normalization, before applying a root power function

M ′4
k,m = [

M4
k,m − S4

k

max(M4
k,m − S4

k)
]
1
8 (11)

M ′4
k,m is reported in Fig. 1(e) for k = 5.

3.6 Time adapted threshold

For a given subband k, we define the time adapted threshold as

λk,m = λ(1− αM ′4
k,m) (12)

where λ is the standard threshold (Equation 4) and α an ajustment parameter (α = 1).

Fig. 1(f) represents the standard threshold λ (dashed line) and the resulting time adapted

threshold λk,m (continuous line) for the subband k = 5.

3.7 Thresholding

The soft thresholding (Equation 5) is then applied to the wavelet packet coefficients (Fig. 1(g))

ŵ4
k,m = TS(λa, w

4
k,m) (13)
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where λa is the threshold corresponding to the analyzed frame.

λa =


λk,m if S4

k ≤ 0.35max(M4
k,m)

λ if S4
k > 0.35max(M4

k,m)
(14)

3.8 Inverse transformation

The enhanced signal (Fig. 1(h)) is synthetized with the inverse transformation WP−1 of the

resulting wavelet coefficients

ŝn = WP−1{ŵ4
k,m, j} (15)

4 Results and discussion

The proposed method is evaluated using natural speech corrupted by white noise and speech

recorded in real environments (in a sawmill, in aircraft cockpit, and street). The speech data

are sampled at 8 kHz.

A clean sentence from the TIMIT database is corrupted by white noise for various SNR

ranging from -10 to 20 dB. A sliding overlapping window of 32 ms is used in the Ephraim

and Malah Filter. While in our method the whole speech frame is filtered once by the WPF

(Wavelet Packets Filter). However, a minimum length of the frame is required for the WPF.

It must be sufficiently large to include simultaneously speech and silence.

Results of the enhancement obtained by the EMF and the proposed method WPF are

reported in Table 5.

Table 5 shows that the proposed method is well suited for very strong noise with a SNR

ranging from -10 to 10 dB and with better performance than the EMF.

Examples of enhancement for white noise corrupted speech and aircraft recorded speech

(real environment) are respectively reported in Fig. 2 and 3. We recall that the EMF algorithm

requires an explicit estimation of the noise level or the a priori knowledge of the SNR, which
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is not necessary for our system.

5 Conclusion

To our knowledge, the proposed method is one of the first successful applications of the wavelet

thresholding method for speech enhancement. The discriminatory threshold is time–adapted

to the speech waveform, unlike applying the time–constant standard threshold. For very strong

noise, the proposed method yields higher SNR than the Ephraim and Malah Filter.
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Table I. SNR tests for white noise corrupted speech

Fig. 1. Speech enhancement diagram using time–adapted thresholding in the wavelet packet

domain

Fig. 2. Speech enhancement results: a) clean signal, b) noisy version (SNR=-5dB), c) en-

hanced with EMF, and d) enhanced with WPF

Fig. 3. Speech enhancement results: a) noisy speech recorded in an aircraft cockpit, b)

enhanced speech with the EMF, and c) enhanced with the WPF
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Unprocessed (dB) EMF (dB) WPF (dB)
-10 1.68 2.41
-5 4.05 4.04
0 6.40 6.51
5 8.98 9.23
10 11.91 12.10
15 15.54 14.47
20 19.67 16.47
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