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Wavelet Theory Demystified
Michael Unser, Fellow, IEEE,and Thierry Blu, Member, IEEE

Abstract—In this paper, we revisit wavelet theory starting from
the representation of a scaling function as the convolution of a
B-spline (the regular part of it) and a distribution (the irregular
or residual part). This formulation leads to some new insights on
wavelets and makes it possible to rederive the main results of the
classical theory—including some new extensions for fractional
orders—in a self-contained, accessible fashion. In particular, we
prove that the B-spline component is entirely responsible for five
key wavelet properties: order of approximation, reproduction
of polynomials, vanishing moments, multiscale differentiation
property, and smoothness (regularity) of the basis functions.
We also investigate the interaction of wavelets with differential
operators giving explicit time domain formulas for the fractional
derivatives of the basis functions. This allows us to specify a
corresponding dual wavelet basis and helps us understand why
the wavelet transform provides a stable characterization of the
derivatives of a signal. Additional results include a new peeling
theory of smoothness, leading to the extended notion of wavelet
differentiability in the -sense and a sharper theorem stating
that smoothness implies order.

Index Terms—Approximation order, Besov spaces, Hölder
smoothness, multiscale differentiation, splines, vanishing mo-
ments, wavelets.

I. INTRODUCTION

T HE mechanics of the wavelet transform are usually well
understood by engineers working in signal processing. In

essence, the system boils down to a two channel filterbank as
shown in Fig. 1 [1], [2]. In the decomposition (or analysis) step,
the digital signal is split into two half-size sequences

and by filtering it with a conjugate pair of
lowpass and highpass filters ( and , respec-
tively) and down-sampling the results thereafter. The signal is
then reconstructed (synthesis step) by up-sampling, filtering,
and summation of the components, as shown on the right-hand
side of the block diagram; note that the analysis and synthesis
procedures are flow-graph transposes of each other. A standard
analysis shows that this kind of two channel decomposition
is one-to-one and reversible provided that the-transforms
of the filters satisfy the perfect reconstruction (PR) equations
also given in Fig. 1 [1], [3]. In the tree-structured wavelet
transform, the decomposition step is further iterated on the
lowpass component .

While the block diagram in Fig. 1 constitutes a valid descrip-
tion of the algorithm—different transforms simply correspond
to different sets of PR filters—it tells us little about wavelets

Manuscript received December 12, 2001; revised September 24, 2002. The
associate editor coordinating the review of this paper and approving it for pub-
lication was Dr. Helmut Boelcskei.

The authors are with the Biomedical Imaging Group, Swiss Fed-
eral Institute of Technology Lausanne (EPFL), Switzerland (e-mail:
Michael.Unser@epfl.ch).

Digital Object Identifier 10.1109/TSP.2002.807000

Fig. 1. Block diagram of the two-channel filterbank that forms the basis for
the wavelet transform algorithm. From a purely digital signal processing point
of view, the only constraints on the choice of the filters are the two perfect
reconstruction equations.

per se and their fundamental properties. To gain a deeper
understanding, one needs to consider the continuous-time in-
terpretation of the transform that is favored by mathematicians
[4]–[6]. This representation involves continuously-defined
basis functions (wavelets) that are rescaled and shifted versions
of each other; it also gives rise to a filterbank implementation
that is equivalent to the block diagram in Fig. 1—Mallat’s
fast wavelet algorithm [4], [7]. However, one of the important
points of the continuous-time formulation is that the filters
cannot be completely arbitrary. A key constraint is that the
lowpass filter —also called therefinement filter—must
be factorizable as 2 , which is an
expression that involves some number of “regularity” factors
( ) as well as a stable residual term satisfying
the lowpass constraint . A nontrivial factor is
generally necessary for obtaining orthogonal or biorthogonal
wavelets that can be implemented by means of FIR filters [8],
[9]. The presence of the regularity term is essential
for theoretical reasons. It is responsible for a number of key
wavelet properties such as order of approximation, vanishing
moments, reproduction of polynomials, and smoothness of the
basis functions. If one excepts the vanishing moments, these
are aspects of wavelets that are often not so well understood by
signal processing practitioneers, mainly because the connection
with the digital filterbank interpretation is not obvious. This
is rather unfortunate as many consider these properties as the
very core of wavelet theory (cf. [6, Ch. 7]); they are almost
unavoidable if one wants to give precise explanations as to why
wavelets work so well for approximating piecewise-smooth
signals and why they are such a nice tool for characterizing
singularites [10].

The purpose of this paper is to demystify some of these con-
cepts by linking them to a factorization theorem involving the
convolution between a B-spline (the regular part of the wavelet)
and a distribution (the irregular or residual part). Indeed, we will
show that it is the B-spline part—and nothing else—that brings
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in all the desired mathematical properties. Although the effect
of the regularity factors is well understood by mathematicians
working with wavelets, we are not aware of any deliberate effort
to explain these properties from the perspective of B-splines.
While it could be argued that this is essentially a matter of inter-
pretation (regularity factors are equivalent to B-splines), we be-
lieve that the present formulation makes the whole matter more
transparent and accessible. Our only prerequisite here is to have
a complete understanding of the properties of B-splines, which
is much easier than for other wavelets, since these are the only
ones that have explicit formulas. We then use relatively simple
manipulations to show that these properties carry over to all
scaling functions through the convolution relation.

A. Scope and Organization of the Paper

This paper is written for researchers in signal processing who
have a basic knowledge of wavelets and filterbanks and who
would like to improve their understanding of the more theoret-
ical aspects of wavelets that are usually confined to the math-
ematical literature. The paper is largely self-contained but as-
sumes some familiarity with Mallat’s multiresolution formula-
tion of the wavelet transform that rests on the fundamental no-
tion of scaling function [4]. From a theoretical point of view, the
scaling function is more important than the wavelet because it
provides the elementary building blocks for the decomposition;
it is responsible for the key properties of the transform—and this
is precisely what this paper is all about.

The presentation is organized as follows. In Section II, we
recall the main definitions and mathematical concepts that are
required for the formulation of the wavelet transform. We
also spend some time describing the fractional B-splines, which
play a central role in our formulation. In Section III, we red-
erive—and often extend—the key theorems of wavelet theory
starting from the B-spline factorization of the scaling function.
Finally, in Section IV, we investigate the smoothness issue and
the interaction of wavelets with fractional differential operators.
An important aspect of our formulation is that it allows for non-
integer orders , which are not covered by traditional wavelet
theory. This brings in two novelties:

1) the extension of the theory for fractional wavelets such as
those introduced in [11];

2) a new “peeling” theory of smoothness which general-
izes an interpretation of integer orders of differentiability
given by Strang [6].

The motivation here is to come up with a more intuitive—and
perhaps even more general—understanding of the concept of
wavelet smoothness. Another important goal of this paper is to
clarify the notion that the wavelet representation is stable with
respect to (fractional) differentiation.

II. SCALING FUNCTIONS AND WAVELETS IN

This section presents a brief review of theformulation and
interpretation of the wavelet transform. It also contains a short
primer on fractional B-splines.

A. Continuous Function Spaces and Notations

The continuous-time version of the wavelet transform applies
to functions , that are square integrable. The space
of those functions is denoted by ; it is the Hilbert space that
corresponds to the inner product

(1)

where the integral is taken in Lebesgue’s sense. The energy of
a function is given by its squared -norm:

; thus, the notation is equivalent to the state-
ment that is finite. More generally, one defines the
spaces for (where stands for Lebesgue) as the
set of functions whose -norm

(2)

is finite. These are Banach spaces; there is no corresponding
inner product, except, of course, for .

The Fourier transform of is denoted by . If ,
it is given by . This definition can be ex-
tended for functions , as well as for generalized func-
tions , where stands for Schwarz’ space of tempered
distributions on [12].

In wavelet theory, one usually considers some wavelet func-
tion that generates a basis of . What is meant here is
that every function can be represented in a unique and
stable fashion using the expansion

(3)

where the basis functions 2 2 are
obtained by dilation (index) and translation (index) of the
wavelet . The wavelet coefficients are obtained by
forming the (double infinite) sequence of inner products

(4)

where is the biorthogonal basis of

such that . The
biorthogonal basis is also generated by a single template

—the so-called biorthogonal wavelet [8]. In practice, the
inner products are never evaluated literally as in (4). They are
computed much more efficiently using Mallat’s algorithm,
which is based on a hierarchical application of the filterbank
decomposition in Fig. 1 [4]. The wavelet transform specifies
the choice of a particular set of perfect reconstruction filters,
and vice versa [cf. (6) and (8)].

B. Scaling Functions

The continuous-time interpretation of the wavelet decompo-
sition algorithm in Fig. 1 is based on the fundamental concept of
scaling function [4]. The scaling function is either given
explicitly—as is the case with the B-splines—or it is derived
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Fig. 2. Illustration of the key properties for the Haar case'(x) = � (x) (B-spline of degree zero). (a) Orthogonality. (b) Two-scale relation. (c) Wavelet
relation. (d) Partition of unity.

indirectly from therefinement filter as solution of the
two-scale relation [9]. The difficulty with the latter approach is
that not all filters do generate valid scaling functions [13], [14].
The mathematical requirements are the following.

Definition: is anadmissible scaling functionof if
and only if it satisfies the following three conditions:

i) Riesz basis criterion; there exist two constants and
such that

(5)

ii) Refinability

(6)

iii) Partition of unity

(7)

These three conditions are satisfied by the Haar function
—or B-spline of degree zero—as illustrated in Fig. 2.

Condition i) ensures that generates a stable basis for the basic
function space

In other words, there is an equivalence between the-norm of
the functions in and the -norm of their coefficients

where and are the Riesz bounds of. The basis is or-
thonormal if and only if , as is precisely the case
with the example in Fig. 2(a).

The two-scale relation (6), which is equivalent to
, is the key to the multiresolution structure of the transform.

It allows us to define the coarse-to-fine sequence of embedded
subspaces

such that 2 .
The last, more technical partition of unity condition is neces-

sary and sufficient (under mild conditions) for the approxima-
tion error to vanish as the wavelet size approaches zero [15]. It
ensures that the multiresolution decomposition is dense in.

We can prove that the above specification of a valid scaling
function is equivalent to the axiomatic definition of a multires-
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olution analysis of given by Mallat [7]. Hence, we have the
guarantee that there exists some corresponding wavelet
that generates a Riesz basis of. The wavelet is expressed as
a linear combination of shifted versions of the scaling function:

(8)

where the weights correspond to the impulse response of
the wavelet synthesis filter in Fig. 1. The dual scaling function

and wavelet are defined in a similar fashion using the dual
versions of (6) and (8), respectively; these involve the analysis
filters and in Fig. 1.

C. Fractional B-Splines

The simplest example of a scaling function is the B-spline of
degree 0 (cf. Fig. 2). This function can be constructed by taking
the difference of two step functions shifted by one. This yields
the following mathematical representation:

(9)

where denotes the one-sided power function
; is the causal1 finite difference (convolution)

operator whose impulse response is . By
convolving with itself times, one generates the classical
B-splines which are piecewise polynomials of degree[16].
These are also valid scaling functions simply because the con-
volution of two scaling functions is a scaling function as well. It
is still possible to go one step further by considering fractional
convolution products that yield the fractional B-splines [11]:

(10)

The right-hand side of this formula is easy to understand: It is
the ( )th power of the Fourier transform in (9). The corre-
sponding definition of the fractional power of a complex number

is with . The time-do-
main formula on the left-hand side can be obtained by inverse
Fourier transformation (cf. [11]). The key operator here is the
fractional causal finite difference , which is best defined
in the Fourier domain

(11)

To obtain its time domain representation, we expand
using Newton’s generalized binomial the-

orem and perform an inverse Fourier transform

with (12)

1the subscript “+” is used to signify that the corresponding function or con-
volution operator is causal; this is to distinguish them from the centered version
of these operators which are often used in spline theory.

Fig. 3. Fractional B-splines� (x) for � � 0. The polynomial ones (�
integer) are represented using thicker lines.

where ; is

Euler’s Gamma function, which interpolates the factorial, i.e.,
for integer. If we specialize these formulae

for the more standard integer case ( ), then (10) yields the
classical finite difference formula for the polynomial B-splines
(cf. [17]).

The fractional B-splines are shown in Fig. 3; they provide a
progressive transition between the polynomial ones (integer)
displayed in thicker lines. These functions have a number of in-
teresting properties that are briefly summarized here—for more
details, see [11].

• They generate valid Riesz bases for . In par-
ticular, this means that they are square integrable, i.e.,

, .
• They belong to for all whenever , and for

all if .
• They satisfy the convolution relation:

. This comes as a direct consequence of their
definition.

• They reproduce polynomials of degree , where
denotes the ceiling of. In particular, they satisfy the

partition of unity for .
• They satisfy the two-scale relation. Their refinement filter

is the generalized binomial. This is established easily by
expressing the two-scale relation in the Fourier domain
and evaluating the following ratio:

(13)

In fact, the fractional B-splines share all the properties of the
polynomial ones (cf. [18]) with two notable exceptions: They
are not strictly positive nor compactly supported unlessis in-
teger. For noninteger, they decay like when .
Their lack of compact support is also apparent if we look at their

refinement filter 2 , which is infin-

itely supported wheneveris noninteger, although it decays like
, .



474 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 2, FEBRUARY 2003

D. Differentiation and Smoothness

Our primary motivation for considering fractional splines in-
stead of conventional ones is that the enlarged family happens
to be closed under fractional differentiation. This will prove ex-
tremely useful for understanding and characterizing the smooth-
ness properties of scaling functions and wavelets.

Our fractional derivative operator is defined in the Fourier
domain

(14)

It coincides with the usual derivative operator whenis integer.
Applying the operator to the fractional B-splines yields the fol-
lowing explicit differentiation formula

(15)

where is the fractional finite difference operator defined
by (12). Thus, the fractional derivative of a B-splines happens
to be spline with a corresponding decrease of the degree. The
derivation of this result is rather straightforward if we work in
the Fourier domain

Again, this is an extension of the well-known differentiation
formula for the polynomial B-splines.

Thus, if we differentiate times, we end up with
a function that is piecewise constant and
bounded (because for ). The boundedness
of the derivative is an indication that is -Hölder continuous.
In fact, is infinitely differentiable everywhere except at
the knots (integers), where it has discontinuities of order(e.g.,

). Hölder smoothness is a pointwise measure of conti-
nuity that is often used to characterize wavelets [19]. In this con-
text, the Sobolev smoothness, which is a more global measure
of differentiability in the -sense, is also important [6], [14],
[20]. The critical Sobolev exponent for the fractional B-splines
is . In other words, has derivatives
in the -sense, i.e., for .

III. W AVELET THEORY REVISITED

Our goal in this section is to reformulate wavelet theory using
a nontraditional point of view. Our argumentation is entirely
based on a B-spline factorization theorem (Section III-B), which
is intimately related to the crucial notion of approximation order.
We will use this representation to derive the most important
wavelet properties using relatively straightforward manipula-
tions. In other words, we will show that the order of approxima-
tion of the transform (Section III-A), the reproduction of poly-
nomials property (Section III-C), the vanishing moments of the
wavelet (Section III-D), and the multiscale differentiation prop-
erty of the wavelet (Section III-E) can all be attributed to the
B-spline that lies hidden within.

A. Order of Approximation

A fundamental idea in wavelet theory is the concept of mul-
tiresolution analysis. There, one usually considers a sequence
of embedded subspaces with a dyadic scale progression, i.e.,

2 , . Specifically, the approximation space at scale
2 (or at resolution level) is defined as

(16)

Because of the two-scale relation, the subspaces have the fol-
lowing inclusion property: . Given some input func-
tion , one considers its approximation in . The best
approximation in the least-squares sense (minimum-norm)
is given by the orthogonal projection into

(17)

Because of the Riesz basis property, the approximationof
in is always well-defined and unique (Projection theorem).

A necessary condition for being able to construct wavelet bases
of is that the approximation improves as the scalegets
closer to zero. In other words, we want to be able to approxi-
mate any -function as closely as desired by selecting a scale
(or sampling step) that is sufficiently small. It is therefore crucial
to understand and characterize the rate of decay of the approxi-
mation error as a function of the scale. This leads to the notion
of order of approximation, which plays a fundamental role in
wavelet theory [6], [21], [22].

Definition: A scaling function has order of approximation
if and only if

(18)

where is a constant that may depend onbut not on ; the
condition (Sobolev space of order) ensures that

, which is the -norm of the th derivative of , is
finite so that the bound is well defined.

This definition means that for smooth signals, the-approx-
imation error should decay like theth power of the scale. All
popular families (Daubechies, Battle-Lemarié, etc.) satisfy the
order constraint (29) and are indexed by their order, which is
always a positive integer. The least sophisticated transform—
Haar with —has a first order of approximation
( ), which is enough for the approximation error to vanish
as . However, one usually prefers to work with higher
order approximations which result in much faster convergence;
typically, (e.g., the 9/7 Daubechies and cubic spline
wavelets). While traditional wavelet theory requiresto be in-
teger, our definition is also valid for noninteger orders
and applicable to the recent fractional extensions of wavelets
[11].

The way in which the order of approximation translates into
filter design constraints is made explicit by the following the-
orem.
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Fig. 4. Plot of k� (x� k) for various values of�. (a)� = 0 (piecewise constant). (b)� = 0:5 (fractional spline). (c)� = 1 (linear spline). (d)
� = 3 (cubic spline). This illustrates the property that the B-splines are able to reproduce a first order polynomial as soon as� > 0 (i.e., cases b, c, and d, but not
a).

Theorem 1: A valid scaling function has a th-order of
approximation if and only if its refinement filter can be
factorized as

(19)

where is stable, i.e., .
The restricted version of this theorem forcompactly sup-

ported—or equivalently FIR—with integer is a standard
result in wavelet theory (cf. [6]). The important point here is that
the present version holds for any real with minimal re-
striction on (Riesz basis). The proof is technical and will be
published elsewhere [23].

B. B-Spline Factorization Theorem

The idea here is to interpret Theorem 1 in terms of B-splines.
If we were to consider the first term of the factorization alone,
then the refinement filter would generate a fractional B-spline
of degree [cf. (13)]. The filter alone, on the
other hand, would generate some distribution , which
is typically not a true function (in fact, we will see later on that
it cannot have any Sobolev regularity at all). The only thing we
can say about is that it is lowpass (because ). Thus,
because of the convolutional nature of the two-scale relation, we
obtain the following corollary, which constitutes the main result
on which we will build our wavelet theory.

Theorem 2 (B-Spline Factorization): is a valid scaling
function of order if and only if its Fourier transform can
be factorized as

where is the Fourier transform of a fractional B-spline
as given by (10), and is a true function of bounded
on every closed interval. Because of our assumptions on, this
corresponds to a well-defined convolution product in the time
domain

with and

(20)
It is therefore always possible to express a scaling function as the
convolution between a B-spline and a distribution. What The-
orem 2 also tells us is that the B-spline part is entirely respon-
sible for the approximation order of the transform. We will now
use the convolution relation (20) to show that the B-spline part
brings in three other very useful properties.

C. Reproduction of Polynomials

We have already mentioned that the B-splines of degree
have the ability to reproduce polynomials of degree lesser or
equal to . Practically, this means that we can gen-
erate all polynomials by taking suitable linear combination of
B-splines. In particular, one can construct the following series
of polynomials for :

with (21)

which form a basis of the polynomials of degreebecause
. The ability of B-splines to reproduce a straight line

( ) is illustrated in Fig. 4.
The fact that (21) holds for the conventional case ,

with integer, is not too surprising because the B-splines are
themselves piecewise polynomial of degree. The noninteger
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case [cf. Fig. 4(b)] is less intuitive but is only truly relevant for
fractional wavelets, which exhibit a few exotic properties [11].

The main point of this section is that the polynomial repro-
duction property is preserved through the convolution relation
(20).

Proposition 3: Let be any distribution such that
and , . Then,

reproduces the polynomials of degree
lesser or equal to .

When is integer, Proposition 3 is a B-spline reformulation
of a standard result in wavelet theory [5], [6]. What is novel here
is the extension for noninteger, which is nontrivial.

Proof: We assume that the residual filterhas sufficient
(inverse polynomial) decay for the moments of to be
bounded up to order. In other words, we want to be
times differentiable at the origin. This mild technical require-
ment—which is much weaker than compact support—ensures
that the convolutions and manipulations below are well-defined
in the distributional sense.

We start by showing that the convolution betweenand the
monomial produces a polynomial of degree

with

The leading coefficient is one because
. We then use this result to evaluate the

sum

using (20) and (21)

In addition, here, the leading coefficient is one implying that the
sequence of these polynomials for is a basis for
the polynomials of degree.

This polynomial reproduction property is illustrated in Fig. 5
for the Daubechies scaling function of order 2. Although no one
will question the fact that the linear B-splines reproduce the con-
stant and the ramp, it is much less obvious that the fractal-like
Daubechies functions are endowed with the same property.

For sake of completeness, we mention the existence of a con-
verse implication which goes back to the Strang–Fix theory of
approximation.

Theorem 4: If a function reproduces the polynomials of
degree and is compactly supported, then .

This result was first conjectured by Strang in [24] and was
later proven by Ron in a more abstract framework [25]. A recent

Fig. 5. Illustration of the reproduction of polynomials of degree 0 and 1 using
Daubechies scaling functions of order� = 2.

proof that is more accessible to an engineering audience is avail-
able in [26]. Note that Theorem 4—the converse part of Propo-
sition 3—is only applicable in the conventional framework:
compactly supported, and . We have already encoun-
tered some counter examples with the fractional B-splines (i.e.,

), which are not compactly supported.
In addition, note that the results in this section do not require

the two-scale relation. As such, they are also applicable outside
the wavelet framework—for instance, in the context of interpo-
lation [27].

D. Vanishing Moments

A wavelet transform is said to have vanishing mo-
ments if the analysis wavelet is such that ,

. These vanishing moments are undoubtedly one of
the better known and most useful properties of wavelets [10]. In
particular, they give the transform the ability to kill all polyno-
mials of degree [5], [21]. This property translates into a sparse
representation of piecewise smooth signals because the wavelet
coefficients will be essentially zero over all regions where the
signal is well approximated by a polynomial, e.g., the first few
terms of its Taylor series. This will produce streams of zero co-
efficients that can be coded with very few bits [28], [29]. The
vanishing moments also allow the characterization of singular-
ities based on the decay of the coefficients across scale—the
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so-called persistence across scale property of the wavelet trans-
form [10], [30], [31]. The study of this decay plays an important
role in the analysis of fractal and multifractal signals [32].

The vanishing moments are nothing but an indirect manifes-
tation of the ability of the scaling function to reproduce polyno-
mials.

Proposition 5: If the scaling function reproduces the
polynomials of degree, then the analysis wavelethas
vanishing moments.

This is a standard result in wavelet theory (cf. [5], [6]) that is
rederived here for sake of completeness.

Proof: The polynomial reproduction property is equiv-
alent to saying that the polynomials are in the linear span
of . Since the wavelet is perpendicular to

by construction (cf. the general biorthogonal
wavelet formulation of Cohen-Feauveau-Daubechies [8]), it is
therefore perpendicular to the polynomials; in particular, the
monomials with .

Thus, by combining Propositions 3 and 5, we can claim that
it is the B-spline component once again that is entirely respon-
sible for the vanishing moments of. The above argument can
also be applied to the synthesis side of the transform. In other
words, if the dual scaling function can be factorized as

—meaning that is of order —then the synthesis
wavelet will have exactly vanishing moments
(general biorthogonal case). When the analysis and synthesis
spaces are identical (orthogonal and semi-orthogonal cases), the
number of vanishing moments are the same on both sides.

E. Multiscale Differentiator

We will now show that another consequence of the B-spline
factor is that the analysis wavelet essentially behaves like
a th-order differentiator. The proof of this property rests al-
most entirely on the perfect reconstruction property of the fil-
terbank in Fig. 1. In the sequel, we will assume that the four
filters , , , and are stable in the sense
that their Fourier transforms are bounded. We also recall that the
perfect reconstruction property has an equivalent-formulation
that is expressed by four biorthogonality relations between the
various filters pairs, which can be written in matrix form, cf.
[33]

(22)

These are strong constraints that have a direct implication on the
form of the wavelet filter .

Proposition 6: Under the constraint of a stable perfect recon-
struction filterbank, the order condition (19) is equivalent to the
following factorization of the wavelet analysis filter:

(23)

where the filter is stable, i.e., . Another
equivalent formulation is .

Proof: Let us denote by and the determinant
of the matrices and in (22), respectively. Then,
clearly, . By inverting , we get

(24)

As a result, imposing (19) yields (23), with
2 , which is bounded on the unit circle by the
stability hypothesis. Conversely, since ,
imposing (24) with the assumption that is stable implies
(19) with 2 , which is stable as well.
Finally, because for ,
we note that the factorization (23) with stable is equivalent
to the condition .

To get a better feel for this result, we consider (23) and take
the limit to obtain the asymptotic form of the filter as .
Using the fact that and assuming that

is continuous, we obtain

as (25)

where 2 because
(stability) and ( is of maximum

order ).
The transfer function of the analysis wavelet is obtained by

taking the Fourier transform of (8) with and :

(26)

Its low-frequency response obviously depends on the behavior
of near the origin.

Theorem 7: Let and be two valid biorthogonal scaling
functions with and continuous at . Then, is
of order (i.e., ) if and only if

The proof is given in the Appendix. If we now assume that
is continuous as well, we can easily obtain the asymp-

totic version of the result by plugging (25) into (26) and making
use of the property . This yields

as

with (27)

The practical implication of Theorem 7 is that the wavelet
transform acts as a multiscale differentiator. Specifically, the
wavelet coefficients will correspond to the samples of theth
derivative of a smoothed version of the input signal :

where the smoothing kernel is defined by its frequency response

; it is necessarily lowpass and bounded
because of (27) and Theorem 7. This kernel essentially limits the
bandwidth of the signal being analyzed with two practical ben-
efits. First, it regularizes the differentiation process by reducing
its noise amplification effect, and second, it attenuates the signal
components above the Nyquist frequency so that the differenti-
ated signal is well represented by its samples (or wavelet coef-
ficients).
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In the classical case where is an integer, there is an
equivalence between (27) and the vanishing moment property.

This can be shown by determining the Taylor series of

around : , where
is proportional to the magnitude of the first

nonvanishing moment.
In the fractional case, there is no Taylor series of orderand,

therefore, no direct equivalence with the vanishing moments
property. The unique property of this kind of wavelets is that
they give access to fractional orders of differentiation, which
can be very useful in some applications [34], in particular, when
dealing with fractal-like signals.

IV. WAVELET DIFFERENTIABILITY AND INTEGRABILITY

One of the primary reasons for the mathematical successes
of wavelets is their stability with respect to differentiation and
integration. In the conclusion of his classical monograph, Meyer
writes: “everything takes place as if the wavelets were
eigenvectors of the differential operator, with corresponding
eigenvalue ” [35]. We will now use our B-spline formalism
to shed some light on this important aspect of wavelet theory.

As starting point, we use the B-spline factorization
(20) together with the B-spline convolution property
( ) to manipulate the basic scaling
function biorthogonality relation as follows:

(28)

where denotes the anticausal B-spline of de-
gree . This formula suggests that the new pair of functions
( , ) should also generate a valid biorthogonal basis. In
the sequel, we will show that these scaling functions play a cru-
cial theoretical role for they provide the building blocks for the
fractional integrals and fractional derivatives of the analysis and
synthesis wavelets, respectively. For this purpose, we will first
investigate the extent to which (or equivalently ) is differ-
entiable and propose a peeling formulation of smoothness that
provides some new insights on the various notions of wavelet
regularity. We will also prove that the B-spline component is en-
tirely responsible for the smoothness of the basis functions. Fi-
nally, in Section IV-C, we will specify the biorthogonal wavelet
basis that is associated with the fractional differentiation oper-
ator.

A. Smoothness: Peeling Theory

In this subsection, we characterize the fractional derivatives
of the scaling function and show that the presence of the
B-spline component is absolutely necessary for these to be
well-defined. The argument is entirely based on the convolu-
tion property of B-splines (cf. Section II-C). Specifically, we
rewrite the B-spline factorization (20) in terms of the function

that are already encountered in (28):

where
(29)

with a new subscript notation that makes the order of the func-
tions explicit, e.g., . We then use this relation to compute
the th derivative of for :

Using (15) with and and noting that
, which is consistent with (10), we get

(30)

This explicit time-domain differentiation formula is known for
integer, but its extension for arbitrary is new to the best

of our knowledge. This result indicates that the function
generates a basis for representing the fractional derivatives of
the scaling function and of the wavelet; indeed, by linearity, we
have that . The question
that then arises is the following: How far can we differentiate,
or equivalently, how much B-spline can we “peel off” before
the so-called residue in (29) really blows up? What we
mean by “blowing up” can be made mathematically precise by
requiring that some -norm of the residue remains finite.
This particular interpretation turns out to be intimately related
to the concept of smoothness in a general-sense and leads to
the following smoothness characterization theorem.

Theorem 8: If with ,
then , i.e., has derivatives in the sense.

Proof: First, we rewrite (30) as

where the coefficients of the finite difference operator are given
by (12). We also recall that , which implies
that the sequence is absolutely summable (i. e.,
for ). We then use the above formula in conjunction with
Minkowsky’s inequality to obtain the following bound for the

-norm of the derivative

which proves the desired results.
Theorem 8 provides an explicit link between the smoothness

properties of wavelets and the B-spline factorization. It is also
interesting because it yields a general and coherent approach
to the concept of smoothness, i.e., fractional differentiability in
the -sense. For , the present definition of smoothness is
equivalent to the widely used Sobolev regularity [36]. Another
interesting case is because it penalizes the worst case
(max norm); this is very close to Hölder regularity, even though
the latter is a measure of continuity rather than of differentia-
bility [19], [37].

Our peeling theory of smoothness is illustrated in Fig. 6 for
the case of Daubechies’ scaling function of order 2. It is clear
from the graph that the residue becomes rougher as a
higher order B-spline component gets pulled out. These various
plots were obtained by running a Fourier version [38] of the cas-
cade algorithm with ten levels of iteration on the residual factor
of the refinement filter corresponding to in (29). Past the
limiting case ( ) [37], is no longer bounded, and it
does not make much sense to attempt to represent it graphically.
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Fig. 6. Residual factor' (x) in (29) as a function ofr for Daubechies’ scaling function of order = 2. The critical valuer = 0:55 corresponds to the
limiting case where' (x) is bounded (r derivatives inL -sense). It also yields the Hölder exponent.

Note that there are computational techniques for determining
this critical Hölder exponent (cf. Section IV-B).

To get some further insight on our notion of smoothness,
we now consider the example of the fractional B-splines. The
borderline cases here are the B-splines of negative degree; these
can be shown to belong to the following functional spaces:

for and

For the fractional splines, we have , so that we can
write (29) as , where is the
corresponding residue. Applying Theorem 8, we conclude that

has up to derivatives in the -sense with
the strict equality only being reached for . Indeed, we
have already mentioned that is bounded ( derivatives
in ), which is consistent with the fact that is -Hölder
continuous.

There is also a converse part to Theorem 8, albeit only within
the restricted framework of wavelets.

Theorem 9: If is a valid scaling function such that
, then with .
The proof is more technical and is given in the Appendix .

Since the order of the B-spline factor in Theorem 9 is
, the above statement is equivalent to saying that the order

of a valid scaling function is necessarily greater or equal to
its critical Sobolev exponent . In other words, we have
that , . This is a new re-
sult that extends a classical theorem in wavelet theory stating
that -continuity ( integer) implies some minimum approx-
imation order: [5]. Note that our re-
sult is slightly more generous (i.e., it yields more order); this

follows from the Sobolev inequality (for compactly supported
functions) , where is the Hölder
exponent of . In fact, our bound is sharp, as demonstrated by
the example below.

The B-splines of order are very regular, but they fall short of
the maximum possible Sobolev smoothness by 1/2. Yet we can
perturb the B-splines to achieve the maximum possible smooth-
ness by taking in (19), where

is small but nonzero. Since we are dealing with a
two-tap residual, the Hölder (alias ) and Sobolev (alias )
exponents can be computed explicitly using the technique out-
lined in [19] and [37]. Specifically, we find that

for

as

Thus, by letting tend to 0 , we are able to saturate the above
inequalities such that , which proves that the
bound in Theorem 9 is sharp. If we now push it a little further
by letting , we increase the B-spline factor by one which
makes us jump to , while the Hölder continuity
remains at , but at the same time, the order is also
increased by one when compared with the previous degenerate
case.

The functions that saturate the inequality (i.e., ) are
the only ones for which the residual in (29) can be in. Indeed,
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if would have some residual Sobolev smoothness, it would be
possible, by Theorem 9, to factor out a larger order B-spline that
would contradict the assumption thatis of maximum order

. For all other cases, is not in and is typically only a
distribution; for instance, in the case of
the B-splines. We can therefore safely state thatin (20) has
no Sobolev regularity at all, which also means that there is no
smoothness possible without the B-spline part of the wavelet.

While smoothness implies approximation order, there is gen-
erally no such implication in the reverse direction [39]. In other
words, the presence of the B-spline factor is not enough to guar-
antee that the scaling function is in , not to mention its differ-
entiability. Indeed, one can conceive of very irregular wavelets
where the distributional part is so rough that it counterbal-
ances the inherent smoothness of the B-spline factor. This is the
reason why smoothness is relatively difficult to control when
applying conventional filter design procedures; it is a property
that is usually checkeda posteriori.

B. Determining Wavelet Smoothness

The peeling theory provides an interpretation of wavelet
smoothness that is appealing intuitively. However, we should
not be fooled by the apparent simplicity of the argument.
Wavelet smoothness is and remains one of the most difficult
theoretical aspects of wavelet theory. While Theorem 8 pro-
vides a mathematical criterion for testing differentiability in the

-sense, it does not give a numerical method for determining
the critical exponents for a given filter . As far as we
know, an exact computation is only possible for determining the
Sobolev index (i.e., -smoothness) of compactly supported
basis functions. The preferred method is based on the determi-
nation of the spectral radius of the so-called transition operator;
in practice, this amounts to computing the maximum eigenvalue
of a reduced transition matrix associated with the residual filter

[6], [20]. Various techniques have also been proposed
to estimate the Hölder exponent (alias -smoothness) [37],
[19]. These methods are not exact anymore (except whenis
symmetrical) but can provide tight upper and lower bounds.

Determining fractional orders of smoothness in norms
other than is more challenging mathematically, especially
since there is no single universal definition of fractional
differentiation in the time domain. Mathematicians have turned
the difficulty by testing the appartenance of the function to
some “smoothness” spaces. Villemoes [20] proposed to study
wavelet smoothness using Besov spaces, which leads to the
determination of a critical Besov exponent that is qualitatively
similar to the notion of -smoothness that we have considered
here. His approach is based on the fact that wavelets provide
unconditional bases for Besov spaces [35]. More recently,
Micchelli and Sauer have proposed to extend the Hölder
notion of continuity to -space by introducing what they
call generalized Lipschitz spaces [40]. Their formulation is
general but also rather involved—about 90 pages of dense
mathematics. By contrast, our approach to measuring wavelet
smoothness is much closer to a classical-Sobolev analysis,
except that the traditional method for is restricted to
integer orders of differentiation. What makes the Sobolev
technique applicable here is our explicit time-domain formula

(30) for fractional differentiation, which is specific to scaling
(or refinable) functions.

C. Biorthogonal Wavelet Basis for Fractional Differentiation

The stability of wavelets with respect to differentiation is a
prerequisite for using them to characterize smoothness spaces,
in particular, for proving that they provide unconditional bases
for Sobolev, Hölder, and Besov spaces [35]. Although these
functional aspects of wavelet theory are beyond the scope of
this paper, we want to make an interesting connection by iden-
tifying and characterizing the biorthogonal wavelet basis asso-
ciated with the fractional differentiation operator.

The idea is simple and is based on the following manipulation
of the wavelet biorthogonality relation:

(31)

where denotes the anticausal fractional in-
tegration operator; it is the adjoint of , which
is the inverse of the fractional differentiation operator. Based
on the results in Section IV-A, we obtain the explicit form of the
“derivative” wavelet

where is defined by (28), and 2 .
We now close the loop by showing that the biorthogonal partner2

of in (29), that is, the scaling function

provides the complementary basis for expanding , which
is the -order fractional integral of the analysis wavelet. This
manipulation is performed in the Fourier domain starting from
(26)

The key here is the result of Proposition 6, which allows us
to extract the relevant B-spline factor as long as . After
inverse Fourier transformation, we end up with a stable, explicit
representation

where 2 . Indeed, we can invoke
Young’s convolution inequality (cf. [42])

which proves that (since
, ). Hence, we have established that the new wavelet

2This is a suggestive denomination that we are happy to borrow from
Vaidyanathan [41].
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Fig. 7. Summary of wavelet theory: main properties and equivalences.

pair ( , ) generates a biorthogonal basis that is in
provided that and . Note that it is essential
here to work with wavelets because the fractional integral of a
scaling function is generally not in (since ).

Finally, by using the rescaling property
, we obtain the differentiation formulas for

the basis functions:

and (32)

which are the “eigen-relations” to which Meyer was alluding,
even though he did not write them down explicitly. Of course,
the qualifying statement is not rigorously correct—the im-
portant point is that there are basis functions with the same
wavelet structure on both sides of the identity. The practical
relevance of these “differential” wavelets is that they give us a
direct way of gauging the fractional derivative of a signal based
on its wavelet coefficients in the original basis. Specifically,
we have that 2 ,
which implies that the original wavelet coefficients divided by
2 are the coefficients of in the modified wavelet basis
{ }. This provides a strong hint as to why the Sobolev
norm of a signal can be measured from the-norm of its
rescaled wavelet coefficients. The Besov case is analogous
with -norms being used instead; the argument there is more
involved and relies on some Riesz-type-norm equivalences
[35]. In addition, note that the wavelets that have just been
specified are fractional ones, which, in themseves, may serve
as ana posteriorijustification for our extended formulation.

V. CONCLUSION

In this paper, we proposed a new spline-based interpretation
and derivation of some fundamental wavelet properties. Our
argumentation entirely rests on the representation of a scaling
function as the convolution between a B-spline and a distribu-
tion: . The B-spline constitutes the regular part
of the wavelet, and its presence is necessary (and sufficient) for
the transform to have approximation order (cf. Theorem
2). In particular, this implies that one cannot build a multireso-
lution wavelet basis of without any B-spline factor. We have
also shown that the key properties of B-splines (smoothness,
differentiability, reproduction of polynomial, etc.) get carried
over to the scaling function in an essentially mechanical fashion
through the convolution relation. These results and the various
equivalences that have been established are summarized in
Fig. 7. The advantage of approaching the problem from this end
is that these basic properties are relatively easy to understand
for the B-splines because of their simple analytical form in
both the time and frequency domain. This particular point of
view leads to the conclusion that the primary mathematical
wavelet properties—order of approximation, reproduction
of polynomials, vanishing moments, and smoothness of the
basis function—are entirely due to the B-spline component.
Another interesting property that has been explained from the
B-spline perspective is the stability of the wavelet basis with
respect to fractional differentiation. Our key observation is
that there is a direct correspondence between the process of
moving a B-spline factor from one side to another in a pair of
biorthogonal scaling functions and the exchange of fractional
integrals/derivatives on their wavelet counterparts.
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If these fundamental properties are to be attributed to the
B-spline part exclusively, then what is the purpose of the
distribution corresponding to the residual filter ? This
part is essential for imposing additional properties—such as
orthonormality—and, more important, to balance the local-
ization properties (size) of the analysis and synthesis filters in
Fig. 1. B-splines are optimal in terms of size and smoothness,
but they are not orthogonal. To construct a pure spline wavelet
transform, one needs to orthogonalize the B-splines [43],
[44] or to specify a dual pair of spline functions [45]–[47];
in both cases, this is equivalent to selecting a distributional
part of the form , where is
an appropriate digital filter. However, the implementation of
these (semi-orthogonal) spline transforms requires IIR filters,
which is often considered a handicap. Early on, Daubechies
and others [8], [9] have shown that the only way to construct
wavelets and basis functions that are compactly supported
on both sides (analysis and synthesis) is by careful selection
of the factor , eventually moving it to the analysis side,
which yields biorthogonal spline wavelets [8]. This explains
why all popular wavelet families (Daubechies, Coiflets,
Cohen-Daubechies-Feauveau, 9/7, etc.) include nontrivial
distributional factors and/or , which we like to
view as the price to pay for the additional but more classical
filter design constraints (e.g., FIR filterbank and orthogonality).

APPENDIX

PROOFS

A. Proof of Theorem 7

If is of order , then by Proposition 6.
This, together with the wavelet scaling (26) and the bounded-
ness of (consequence of the Riesz condition), implies that

.

Conversely, if , then
. Now, using the assumption that in a

neighborhood of (consequence of the continuity of
at since ) and the stability of the filter ,
we can claim that . This is also equivalent to
(23), where is stable, as seen in the proof of Proposition
6. Thus, from Proposition 6, this is equivalent to the-order
property of .

B. Proof of Theorem 9

We require one (very mild) technical assumption, namely,
that the refinement filter be continuous at . To
prove Theorem 9, we define

(33)

This is a true function (possibly taking the value for some
) because it is a sum of positive functions. We observe that

because of (6), satisfies the scaling relation

(34)

where we have defined 2 . In par-
ticular, this implies that

We now prove that is integrable over [ ].
First, we observe that is integrable over any closed

subset of [ ] that does not include 0. This is because
is bounded over , which implies that is

bounded by up to a multi-
plicative constant. Now, because is in

is in and, thus, is in .
Second, the continuity of —and of —at 0

implies that for any —here, we choose —we can
find such that for all , 2 .
Consequently

Then, we define , where 2
. are bounded quantities because the

’s are closed subsets of . We thus have
2 , i.e., 2 or, by summing up all the contri-
butions

which is bounded, independently of. Letting tend to infinity,
we conclude that is integrable in [ ] (Fatou’s the-
orem), in particular, in the neighborhood of 0. Thus, is
fully integrable in [ ].

It is now a simple matter to state that the function
is in . This is because

where is the same as defined by (33) and has just been
shown to be integrable in [ ].

REFERENCES

[1] P. P. Vaidyanathan, “Quadrature mirror filter banks, M-band extensions
and perfect-reconstruction technique,”IEEE Acoust., Speech, Siganl
Process. Mag., vol. 4, pp. 4–20, July 1987.

[2] O. Rioul and M. Vetterli, “Wavelets and signal processing,”IEEE Signal
Processing Mag., vol. 8, pp. 11–38, Oct. 1991.

[3] M. Vetterli, “A theory of multirate filter banks,”IEEE Trans. Acoust.
Speech Signal Processing, vol. ASSP-35, pp. 356–372, Mar. 1987.

[4] S. G. Mallat, “A theory of multiresolution signal decomposition: The
wavelet representation,”IEEE Trans. Pattern Anal. Machine Intell., vol.
11, pp. 674–693, July 1989.

[5] I. Daubechies,Ten Lectures on Wavelets. Philadelphia, PA: SIAM,
1992.

[6] G. Strang and T. Nguyen,Wavelets and Filter Banks. Wellesley, MA:
Wellesley-Cambridge, 1996.

[7] S. G. Mallat, “Multiresolution approximations and wavelet orthogonal
bases ofL (R),” Trans. Amer. Math. Soc., vol. 315, no. 1, pp. 69–87,
1989.

[8] A. Cohen, I. Daubechies, and J. C. Feauveau, “Bi-orthogonal bases of
compactly supported wavelets,”Commun. Pure Appl. Math., vol. 45, pp.
485–560, 1992.

[9] I. Daubechies, “Orthogonal bases of compactly supported wavelets,”
Commun. Pure Appl. Math., vol. 41, pp. 909–996, 1988.



UNSER AND BLU: WAVELET THEORY DEMYSTIFIED 483

[10] S. Mallat,A Wavelet Tour of Signal Processing. San Diego, CA: Aca-
demic, 1998.

[11] M. Unser and T. Blu, “Fractional splines and wavelets,”SIAM Rev., vol.
42, no. 1, pp. 43–67, Mar. 2000.

[12] Y. Katznelson,An Introduction to Harmonic Analysis. New York:
Dover, 1976.

[13] I. Daubechies and J. C. Lagarias, “Two-scale difference-equations .1.
Existence and global regularity of solutions,”SIAM J. Math. Anal., vol.
22, no. 5, pp. 1388–1410, 1991.

[14] G. Strang, “Eigenvalues of(# 2)H and convergence of the cascade algo-
rithm,” IEEE Trans. Signal Processing, vol. 44, pp. 233–238, Feb. 1996.

[15] M. Unser, “Sampling—50 years after Shannon,”Proc. IEEE, vol. 88,
pp. 569–587, Apr. 2000.

[16] I. J. Schoenberg, “Contribution to the problem of approximation of
equidistant data by analytic functions,”Quart. Appl. Math., vol. 4, pp.
45–99, 1946.

[17] M. Unser, “Splines: A perfect fit for signal and image processing,”IEEE
Signal Processing Mag., vol. 16, pp. 22–38, Nov. 1999.

[18] C. de Boor,A Practical Guide to Splines. New York: Springer-Verlag,
1978.

[19] O. Rioul, “Simple regularity criteria for subdivision schemes,”SIAM J.
Math. Anal., vol. 23, pp. 1544–1576, Nov. 1992.

[20] L. F. Villemoes, “Wavelet analysis of refinement equations,”SIAM J.
Math. Anal., vol. 25, no. 5, pp. 1433–1460, 1994.

[21] G. Strang, “Wavelets and dilation equations: A brief introduction,”SIAM
Rev., vol. 31, pp. 614–627, 1989.

[22] M. Unser, “Approximation power of biorthogonal wavelet expansions,”
IEEE Trans. Signal Processing, vol. 44, pp. 519–527, Mar. 1996.

[23] T. Blu and M. Unser, “Wavelet regularity and fractional orders of ap-
proximation,”SIAM J. Math. Anal., submitted for publication.

[24] G. Strang and G. Fix, “A fourier analysis of the finite element variational
method,” inConstructive Aspects of Functional Analysis. Rome, Italy:
Edizioni Cremonese, 1971, pp. 793–840.

[25] A. Ron, “Factorization theorems for univariate splines on regular grids,”
Israel J. Math., vol. 70, no. 1, pp. 48–68, 1990.

[26] T. Blu, P. Thévenaz, and M. Unser, “Complete parametrization of piece-
wise-polynomial interpolation kernels,”IEEE Trans. Image Processing,
submitted for publication.

[27] P. Thévenaz, T. Blu, and M. Unser, “Interpolation revisited,”IEEE
Trans. Med. Imag., vol. 19, pp. 739–758, July 2000.

[28] J. Shapiro, “Embedded image coding using zerotrees of wavelet coef-
ficients,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 41, pp.
3445–3462, Dec. 1993.

[29] A. Said and W. A. Pearlman, “A new fast and efficient image codec
based on set partitioning in hierarchical trees,”IEEE Trans. Circuits
Syst. Video Technol., vol. 6, pp. 243–250, June 1996.

[30] S. Jaffard, “Pointwise smoothness, two-microlocalization and wavelet
coefficients,”Publicacions Matemàtiques, vol. 35, pp. 155–168, 1991.

[31] S. Mallat and W. L. Hwang, “Singularity detection and processing with
wavelets,”IEEE Trans. Inform. Theory, vol. 38, pp. 617–643, Mar. 1992.

[32] A. Arneodo, F. Argoul, E. Bacry, J. Elezgaray, and M. J. F.,Ondelettes,
Multifractales et Turbulence. Paris, France: Diderot, 1995.

[33] M. Vetterli and C. Herley, “Wavelets and filter banks: Theory and de-
sign,” IEEE Trans. Signal Processing, vol. 40, pp. 2207–2232, Sept.
1992.

[34] F. J. Herrmann, “Singularity characterization by monoscale analysis:
Application to seismic imaging,”Appl. Comput. Harmon. Anal., vol. 11,
no. 1, pp. 64–88, July 2001.

[35] Y. Meyer,Ondelettes et Opérateurs I : Ondelettes. Paris, France: Her-
mann, 1990.

[36] T. Eirola, “Sobolev characterization of solutions of dilation equations,”
SIAM J. Math. Anal., vol. 23, pp. 1015–1030, 1992.

[37] I. Daubechies and J. C. Lagarias, “Two-scale difference-equations .2.
Local regularity, infinite products of matrices and fractals,”SIAM J.
Math. Anal., vol. 23, no. 4, pp. 1031–1079, 1992.

[38] T. Blu and M. Unser, “The fractional spline wavelet transform: Defi-
nition and implementation,” inProc. Int. Conf. Acoust., Speech, Signal
Process., Istanbul, Turkey, 2000, pp. 512–515.

[39] A. Cohen, I. Daubechies, and A. Ron, “How smooth is the smoothest
function in a given refinable space?,”Appl. Comput. Harmon. Anal.,
vol. 3, no. 1, pp. 87–90, 1996.

[40] C. A. Micchelli and T. Sauer, “Regularity of multiwaveletes,”Adv.
Comput. Math., vol. 7, pp. 455–545, 1997.

[41] P. P. Vaidyanathan and B. Vrcelj, “Biorthogonal partners and applica-
tions,” IEEE Trans. Signal Processing, vol. 49, pp. 1013–1027, May
2001.

[42] E. M. Stein and G. Weiss,Fourier Analysis on Euclidean
Spaces. Princeton, NJ: Princeton Univ. Press, 1971.

[43] G. Battle, “A block spin construction of ondelettes. Part I: Lemarié func-
tions,” Commun. Math. Phys., vol. 110, pp. 601–615, 1987.

[44] P.-G. Lemarié, “Ondelettes à localization exponentielle,”J. Math. Pures
et Appl., vol. 67, no. 3, pp. 227–236, 1988.

[45] C. K. Chui and J. Z. Wang, “On compactly supported spline wavelets
and a duality principle,”Trans. Amer. Math. Soc., vol. 330, no. 2, pp.
903–915, 1992.

[46] M. Unser, A. Aldroubi, and M. Eden, “On the asymptotic convergence
of B-spline wavelets to Gabor functions,”IEEE Trans. Inform. Theory,
vol. 38, pp. 864–872, Mar. 1992.

[47] , “A family of polynomial spline wavelet transforms,”Signal
Process., vol. 30, no. 2, pp. 141–162, Jan. 1993.

Michael Unser (M’89–SM’94–F’99) received the
M.S. (summa cum laude) and Ph.D. degrees in elec-
trical engineering in 1981 and 1984, respectively,
from the Swiss Federal Institute of Technology
(EPFL), Lausanne, Switzerland.

From 1985 to 1997, he was with the Biomedical
Engineering and Instrumentation Program, National
Institutes of Health, Bethesda, MD. He is now Pro-
fessor and Head of the Biomedical Imaging Group at
EPFL. His main research area is biomedical image
processing. He has a strong interest in sampling the-

ories, multiresolution algorithms, wavelets, and the use of splines for image
processing. He is the author of 100 published journal papers in these areas.

Dr. Unser is Associate Editor-in-Chief for the IEEE TRANSACTIONS ON

MEDICAL IMAGING. He is on the editorial boards of several other journals,
including IEEE SIGNAL PROCESSING MAGAZINE, Signal Processing, IEEE
TRANSACTIONS ONIMAGE PROCESSING(from 1992 to 1995), and IEEE SIGNAL

PROCESSINGLETTERS(from 1994 to 1998). He serves as regular chair for the
SPIE Conference on Wavelets, which has been held annually since 1993. He
was general co-chair of the first IEEE International Symposium on Biomedical
Imaging, Washington, DC, 2002. He received the 1995 Best Paper Award and
the 2000 Magazine Award from the IEEE Signal Processing Society.

Thierry Blu (M’96) was born in Orléans, France, in 1964. He received the
“Diplôme d’ingénieur” from École Polytechnique, Paris, France, in 1986 and
from Télécom Paris (ENST), in 1988. In 1996, he received the Ph.D degree in
electrical engineering from ENST for a study on iterated rational filterbanks ap-
plied to wideband audio coding.

He is currently with the Biomedical Imaging Group, Swiss Federal
Institute of Technology (EPFL), Lausanne, Switzerland, on leave from
France Télécom National Center for Telecommunications Studies (CNET),
Issy-les-Moulineaux, France. His research interests include (multi)wavelets,
multiresolution analysis, multirate filterbanks, approximation and sampling
theory, mathematical imaging, etc.


