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Wavelet Transform in 

Vibration Analysis for 

Mechanical Fault Diagnosis 

The wavelet transform is introduced to indicate short-time fault effects in associated 
vibration signals. The time-frequency and time-scale representations are unified in a 
general form of a three-dimensional wavelet transform, from which two-dimensional 
transforms with different advantages are treated as special cases derived by fixing 
either the scale or frequency variable. The Gaussian enveloped oscillating wavelet is 
recommended to extract different sizes offeaturesfrom the signal. It is shown that the 
time-frequency and time-scale distributions generated by the wavelet transform are 
effective in identifying mechanical faults. © 1996 John Wiley & Sons, Inc. 

INTRODUCTION 

In mechanical signal analysis, an ordinary power 

spectrum provides a description of the frequency 

distribution for the signal. Each frequency com

ponent is a collective contribution from all sec

tions of the analysis duration; therefore it does 

not convey any information about when a fre

quency component appears or how it varies with 

time. Instead, decomposing a time signal into a 

time-frequency domain or time-scale domain 

gives information about the time development of 

frequency components. This property of time

frequency localization is particularly useful in 

representing short-duration signal components. 

Many mechanical faults, such as cracks, produce 

abnormal transients in the associated vibration 

signal due to shock or impact when the damaged 

surface of faulty mechanical elements is en

gaged. To provide this time information, the 

time-frequency synchronous representation 

(Classen and Mecklenbrauker, 1980) has been in-
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troduced to the analysis of signals. Wang and 
McFadden (1993a,b) introduced the Gabor spec

trogram for gear tooth damage detection and the 

method has been demonstrated as being very ef

fective. All the features corresponding to a whole 

gear revolution can be represented by a single 

display on a time-frequency plane; gear faults 

can be sensitively detected by abnormal high in
tensity patterns. 

In a time-frequency representation based on a 

windowed transform, such as the Gabor spectro

gram, once the size of the window function is 
defined, the resolution will be fixed both in the 

time and frequency domains. This fixation may 

not be a disadvantage when all the features of 

interest have approximately the same time dura

tion, or size, because a suitable window width 

can be chosen to match. However, a problem 

will occur if the features of a signal have differing 

sizes, because a single fixed resolution is incapa

ble of satisfying the representation of different 

signal features. A recently developed wavelet 
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transform uses a window function with a chang

ing size so that not only one, but a series of reso

lutions can be applied to the windowed transform 

(Chui, 1992; Daubechies, 1992; Mallat, 1989). In 

the last 10 years, the applications of the wavelet 

transform have rapidly entered many areas of 

science and engineering. It has been demon

strated that if the wavelet transform is applied to 

the signals with local features, such as gear vibra

tion signals from faulty gearboxes, it is capable of 

displaying different time sizes of features by a 

series of decomposed components or in a single 

distribution on a two-dimensional plane 

(Newland, 1993; Wang and McFadden 1993c, 

1994). This provides a more powerful tool for 

describing all types of features of a mechanical 

signal. 

Unlike the Fourier transform, in which only 

the trigonometric functions are the basis for de

composing a signal so that the result is unique, 

possible selections of wavelets for the decompo

sition basis are numerous. The criterion for 

choosing wavelets has brought about intensive 

discussions in the wavelet research community. 

It is believed that, in principle, the choice de

pends on the requirements of the particular appli

cations. For example, for achieving maximum 

data compression and reconstruction, the or

thogonal wavelet basis is used for image process

ing. But in detecting transients and displaying 

their intensity of energy in a time-frequency do

main, the purpose of using wavelets is to com

pare the shape of the wavelet with transients of 

interest. In such a case, the main consideration is 

the level of similarity between the wavelet and 

the transients rather than any special relation

ships between each pair of wavelets, such as the 

orthogonality in the orthogonal wavelet basis. 

In this article a unified description for the 

time-frequency and time-scale distributions will 

be given to show links among these transforms in 

different dimensional spaces. The wavelet family 

suggested by the author for detecting short -dura

tion mechanical faults will also be presented with 

the results of using two distributions for gearbox 

fault diagnosis. 

A TIME-SCAlE-FREQUENCY 
REPRESENTATION 

Letting T be the time, jthe frequency, and s the 

scale, signal X(T) is a time function and window 

W(T, f), which in general is a complex function 

and with a finite width of envelope, is assumed to 

be a function of time and frequency. The follow

ing equation defines a type of general form of the 

continuous wavelet transform (WT): 

WT(t, j, s) = IX X(T)C(S)W(S(T - t), f)dT 
-x (1) 

-00 < t, j < 00 

where t is the analysis time indicating the central 

location of the window, j the frequency in the 

ordinary sense related to a sinusoidal oscillation 

inside the window envelope, and S the time

scale parameter (s 2: 0) that magnifies and 

shrinks the window function along the time axis 

thus providing a changing width for the window. 

c(s) is a normalizing factor, a function of s. W(T, 

f) is then called a wavelet. Thus the transform 

WT(t, j, s) is a four-dimensional function or a 

distribution in the time-scale-frequency space. 

The corresponding wavelet family is generated 

by translation and dilation as 

C(S)W(S(T - t), f). (2) 

Unlike an ordinary image in a two-dimensional 

plane, the distribution given by Eq. (1) generally 

does not give a clear visual effect because a four

dimensional pattern is not easily interpreted by 

human eyes. Several degenerated forms of Eq. 

(1) are used in practice. 

Grossmann and Morlet Wavelet Transform 

In the general form described by Eq. (1), letting 

c(s) = vS and W(T, f) = W(T), Grossmann and 

Morlet (1984) defined the wavelet transform as 

WT(t, s) = rx X(T) vS W(S(T - t»dT. (3) 

A signal x( T ), can be characterized by its decom

position onto the wavelet family, i.e., the trans

form decomposes the signal X(T) into a family of 

wavelets that are the translation and dilation of a 

unique-valued function W(T). Because the inte

gration acts as a filter and the wavelets with dif

ferent scale S have different passbands in the fre

quency domain, a wavelet transform can also be 

interpreted as a decomposition of a signal into a 

set of frequency channels with different band

widths. Figure 1 illustrates a process of dilation 

in a Gaussian enveloped oscillating wavelet fam-
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FIGURE 1 Time width of wavelets narrows as scale 

increases. 

ily. As the scale s increases, from the bottom to 
the top, the width of the wavelet becomes nar

rower. Figure 2 shows, from left to right, the 

corresponding Fourier spectra for the wavelets. 
As the scale s increases, the central frequency 

gets higher and the frequency band becomes 

wider. Choosing a series of scales, the decompo

sition will then be able to cover a full frequency 

range of interest. 
An important particular case of the wavelet 

transform is that some wavelets WeT) exist such 

that the family is an orthogonal basis (Chui, 1992; 
Daubechies, 1992): VfJ W(2 j (T - 2-j n» (wherej, 

n are integers). Orthogonal wavelets, such as the 
well-known Daubechies wavelet series, offer fast 
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algorithms and no redundancy in the decomposi

tion (Daubechies, 1992; Newland, 1993). 

Gaussian Enveloped Oscillating 
Wavelet Transform 

A Gaussian shaped function is adopted as an en

velope 
(4) 

where the constant (T ?: o. The Gaussian envel

oped oscillating (GEO) wavelet is defined as 

The wavelet family is now C(S)W(T, f) = c(s) 

e-u2s'(T-t)'-j27r!S(T-t), and it consists of an envelope 

and an oscillation. The width of the envelope is 

adjusted by the scale parameter s and the basic 

frequency of oscillation is controlled by j in the 

complex function factor. This arrangement is 

rather simple, avoiding the difficult mixture of 
frequency and scale variables. In Eq. (1), letting 

c(s) = s and using the above wavelet, the wavelet 

transform is specified as 

WT(t, j, s) = fx X(T )se-u 's'(T-tJ'-j27T!I(T-t)dT. 

(6) 

The normalizing factor s before the wavelet en

sures an equal area is encircled, by the envelope 

and time axis, so that the intensity in both small 

and large sizes of the wavelet transform can be 

normalized. Unfortunately, this resulting four-di

mensional function of the wavelet transform is 

hard to display and interpret in practical applica

tions. 

Windowed Fourier Transform 

If the scale is fixed to unity, i.e., s = 1, implying 

that there is no dilation along the time axis and 

the window is fixed, Eq. (6) will be equivalent to 

a windowed Fourier transform: 

where the window is e-U'(T-tJ' located at analysis 

time t. The extra factor e j27r!t causes no change in 

the modules of WT(t, f), but only in the phase. 
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By adjusting 0-, the window width can be chosen 
to match the relatively short size of features in 

the analyses signal and to meet a compromised 

resolution in the time and frequency domain. The 

major advantage of using the windowed Fourier 

transform is that it gives a local enhancement for 

the signal section within the window. If by letting 

0- = 0 and t = 0, corresponding to the case where 

the width of the Gaussian window is infinitely 

wide, the windowed Fourier transform degener

ates to the ordinary Fourier transform: 

where all sections of the signal are possible con

tributors for each spectral component and there 
is no indication when a specific spectral compo

nent takes place. 

Gabor Spectrogram 

The windowed Fourier transform described in 

Eq. (7) is also called the Gabor transform, in 

which a signal in the time domain has been trans

formed into an analysis time-frequency domain. 
The analysis time t indicates the time position of 

the window. The result ofthe transform becomes 

a distribution on a time-frequency plane. From 
Eq. (7), the Gabor spectrogram (GS) is defined as 

GS(t, f) = IWT(t, f)12 

(9) 

The Gabor spectrogram gives a simultaneous 

representation of signal components at all fre

quencies of interest and the sequence of their 

occurrence. Because the Gabor spectrogram em

phasizes locally appearing components due to 

windowing, it is sensitive to local small changes, 

and thus is suitable for detecting those transients 

associated with early damage. 

Time-Scale Distribution 

In the general form of the GEO wavelet in Eq. 

(5), if the frequency is fixed, i.e., f = to = con

stant, the wavelet transform becomes a three

dimensional function or a distribution on the 
time-scale plane: 

This time-frequency distribution is generally 

complex, but the module or the square of the 

module is usually taken for ease of display. This 

distribution reflects the level of similarities be

tween the wavelet and signal resulting from the 

comparison over all time instants and scales, 

given by 

WS(t, s) = IWT(t, S)12 

1 f:x x( T )se-<T'·I'(T- tf- j 2,,-/o.,fT- tJdT 12 

(11) 

The time-frequency distribution (9) and time

scale distribution (11) are two fundamental repre

sentations used for illustrating local features in 

mechanical signals. For obtaining higher resolu

tions, in the case of having different sizes of 

faults, the time-scale distribution is preferable 

because it possesses multiple resolutions. As the 
scale s takes different values, the wavelet 

changes, in both its width and oscillating fre

quency inside the envelope, to match all possible 

sizes of components in the signal. However, in 
the case where the local components to be de

tected have approximately the same size with a 

fixed window width, the time-frequency distri

bution can be applied with the advantage of an 

easy understanding of the frequency spectra. 

Both the time-frequency (9) and time-scale 

distribution (11) provide an intensity distribution 

of the similarity over a two-dimensional plane. 

The magnitude of the intensity quantifies the sim
ilarity between the wavelet function e-<T'T' e-j2"-/T 

and each part of the signal via the comparison 

with a single scale, and between the wavelet 
function e-<T'(ST)' e-J1T/osT and each part of the sig-

nal via the comparison with multiple scales, re

spectively. 

IMPLEMENTATION OF TRANSFORMS 

Time-Frequency Distribution 

Using the Gabor transform, a signal in the time 

domain is transformed into the time-frequency 

domain. The whole distribution of the Gabor 

spectrogram represents components at all fre

quencies of interest and the sequence of their 

occurrence. Because the windowing has empha

sized the local components, the closer the size of 
the window to the transient, the higher the sensi

tivity. In early gear damage detection, it is sug-



gested that the width of the window be equal to 

the time length covering one tooth pitch. In prac

tical implementation of Eq. (9), the distribution 

takes a discrete form. The frequency i takes a 

finite number of values, i.e., 

(12) 

Jk = kib (k = 0, I, 2, ... , M - I) 

where Jk is the discrete frequency, ib the half

power frequency bandwidth of the window, and 

M an integer. The intervalfb is determined by a. 

Obviously, ib and M must be suitably selected to 

cover a complete frequency range of interest 

with a cutoff frequency t· = (M - t)ib with

out excessive overlap redundancy. Considering 

Eq. (12) 

the convolution theorem, and the property of the 
symmetry e-a-2(T-t)2 = e-a- 2(t-T)2, the Gabor spec-

trogram becomes 

GS(t, Jk) = 1~-I[X(f + Jk)H(f)J/2 (l3) 

where ~ represents the Fourier transform and 

~-I the inverse Fourier transform. H(f) is the 

Fourier transform of the envelope, given by 

(14) 

In the time domain, the half-power width of the 

above window is tb = 1. ISla, and in the fre

quency domain the half-power width is ib = 
0.375a. Therefore, to cover the full frequency 

band of interest, the discrete frequency points 

are ik = kib(k = 0, 1, 2, ... , M - O. The 

corresponding discrete form of Eq. (l3) is 

/
N-I I' GS(n, Jk) = ~ X(r + J,JH(r)e}(27rrnINl -

n = 0, 1, ... , N -
(15) 

Wavelet Transform 21 

where N normally adopts a power of 2 for the 

convenience of carrying out the Fast Fourier 

Transform (FFT) calculations and M takes an in

teger of ifclfb + 1/2). 

Time-Scale Distribution 

The GEO wavelet in Eq. (5) has a concentrated 

band in the frequency domain. This gives a con

tinuous and simple pattern in the time-scale do

main. It can be seen that the oscillating fre

quency io appears at the center of the frequency 

band of the wavelet. From Eq. (10), the time

scale distribution at a series of scale values is 

given by 

where Sk is the discrete scale value. Suitable se

lection of Sk andio can allow the wavelet series to 

cover all frequencies of interest. It is easy to 

know that the half-power wavelet width is tY:) = 

1. IS/(ska), and in the frequency domain, JY:) = 
0.375 Ska (k = 1,2, ... , M; M may be chosen to 

satisfy 2M = N). It is suggested that Sk andio are 

chosen to let the central frequencies ofthe wave

lets have octave band intervals (for example, A = 

1/3). Let the scale s, = 2'\ - I, then Sk = 2(k-I)'\ 

(2,\ - l)(k = I, 2, ... , M). The central fre

quency of wavelets isibk) = s,JO. 1ft is the cutoff 

frequency, using the condition of half-power 
point overlap ibk) + VY:) = ibk+ I) - VY:+ I), and 

the cutoff frequency t. = ibM) + tihM), it can be 
found that the parameter a = 2.667 . 2-MAt· and 

the base frequency io = 0.1874a . (2,\ + 1)/ 

(2,\ - I). 

Because the GEO wavelet satisfies 11'( -T) = 

W(T), we have 

Using the convolution theorem of the Fourier 

transform, Eq. (16) can be written as 
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Because 2F(w(r)) = W(j) = (V;/u-)e-(7T/rr)'(f+fo)', 

the wavelet transform (17) can be written as 

(18) 

This has brought about the important result that 

using the GEO wavelet, the calculation of the 

wavelet transform can also be implemented by a 
series of Fourier transforms, taking advantage 

again of the efficiency of the FFT algorithm. The 

corresponding discrete form of Eq. (17) is 

(19) 
n = 0, 1, . . . , N - 1. 

The wavelet family se-rr 's'(T-t)'-j2rrfos(T-t) is illus

trated in Fig. 1, which simulates the transients 

with all oscillating frequencies by changing the 

scale factor. Figure 2 shows that the Fourier 

spectra of all scales of wavelets sequentially 

cover all the frequencies of interest. When a sig

nal is decomposed onto one of these wavelets, a 

large value will be obtained if there is a transient 

with a similar shape of the wavelet. Therefore, 

the wavelet family can be used to detect all sizes 
of transients in the signal, such as all types of 

faults on a whole gear profile. 

Computing 

Computing the time-frequency or time-scale 

distribution only takes one FFT for the vibration 

signal with N samples and M inverse FFTs with a 

length of N. The wavelet transforms described in 
Eqs. (15) and (19) have been implemented by 

computer programs written in MATLAB and C 
language running on an IBM PC-AT compatible 

computer and a SUN SPARC station. The func

tion (}s(n, fk) of Eq. (15) and Wen, Sk) of Eq. 

(19) are calculated for typical M = 10 discrete 

frequencies or scales, corresponding to N = 1024 

time samples. The resulting distributions may be 

displayed as contours on a two-dimensional 

chart with N x M pixels. More details may be 

obtained from the distribution patterns if a 

smaller increment in the central frequency and a 

larger M are chosen to produce a transform at 

more frequencies or scales, but at a cost of more 

FFT calculation time. 

GEARBOX DIAGNOSIS 

The information about the gear condition is ex

pected to be carried by the time domain synchro

nous average (McFadden, 1986) of the casing vi

bration signal. However, clear symptoms may 

not be observed, particularly in the early stages, 

and little other further information about the na

ture of the fault can be seen directly from the 

average. Early damage to a gear tooth causes 
only a short-duration variation in the vibration 

signal, which lasts less than one tooth meshing 

period and normally takes the form of modulated 

or unmodulated oscillation. In later stages, with 

the duration of the abnormal variation becoming 
longer, two or more tooth meshing periods may 

be affected. Other distributed faults like eccen

tricity and wear normally cover a large part or 

even the whole revolution of the gear. Therefore, 
possible faults may appear in many different size 

components in the vibration signal. 

Damage on a gear tooth normally starts with a 

small crack or spalling, which produces a short

duration disturbance in the time history of the 
associated vibration signal. In the time-fre

quency and time-scale distribution, an abnormal 

peak will appear in the distribution correspond

ing to the damage. The time signal, when dis

played on a two-dimensional plane, will be able 

to give comprehensive information about the na

ture of the fault. A typical form of the pattern is a 

high peak or strip across a band of frequencies 

around the meshing frequency and its harmonics 

or across a range of scales. Sometimes several 

such peaks may be caused by the same fault, and 

this can be identified by its same time appear

ance. The features of the pattern in the distribu

tion quantify the nature of the fault. Wang and 

McFadden (1993b) introduced image processing 

techniques to segment and identify the feature of 
these patterns from high-intensity zones. 

Ideally, the general form of the wavelet trans

form (6) would give an intensity distribution of 

the similarity in the time-scale-frequency space, 

including all possible choices for the width of the 

window (adjusted by the scale parameter s) and 

the oscillating frequencies (j). But the difficulty 

lies in the display of such a four-dimensional 

function as mentioned before; a compromise in 

resolution must be made. The alternative is to 

use either the time-frequency distribution with a 

fixed window or the time-scale distribution with 
a fixed basic frequency that provides the inten

sity distribution on an easily displayed two-di-



mensional plane. For diagnosing all possible dif

ferent types of gear gaults, the time-scale 

distribution should be adopted because it has a 

changing width window. On the other hand, if 

only one type of fault is of particular interest, 

such as small cracks, only one level of resolution 

is required and a fixed width window matching 

the size of the fault can be adopted, so that the 

time-frequency distribution can be applied, 

which keeps the ordinary frequency meanings 

easily interpreted. 

RESUL IS OF DIAGNOSIS 

There are four gears in the experimental gearbox. 

An accelerometer is mounted on the gearbox cas

ing, and a synchronous impulse generator is used 

to record the position of the input shaft. After 

passing through an antialiasing filter, the acceler
ation and the synchronous signal are connected 

to a multiple channel analogue to digital con

verter inserted in an IBM 486DX compatible PC. 

Software is used for synchronous averaging and 
further analysis. The upper curve in Fig. 3 shows 

the average of the casing vibration synchronized 

to a gear of 20 teeth on the input shaft in normal 

condition; 1024 samples are obtained by interpo

lation to cover exactly one revolution of the gear. 

By removing the fundamental and harmonics 
of the tooth meshing frequency (20 orders), the 

residual signal shown by the lower curve in Fig. 3 

is obtained, representing the difference between 

the actual tooth shape and that of the average 

tooth shape. There is no obvious indication of 
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FIGURE 3 Synchronous averaged vibration and its 
residual. 
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Time Samples 

FIGURE 4 Time-frequency distribution (normal 

condition). 

any tooth damage at this stage. Figure 4 is the 
Gabor spectrogram for the residual signal. The 10 

levels along the vertical axis linearly represents 

the central frequencies of the bands ranging from 

o to 240 orders. They are 0, 24, 48, 72, 96, 120, 

144, 168, 192, and 216 orders, respectively. At 

the locations around time samples 230 and 310, 

there are two relatively strong peaks at low fre

quencies, indicating possible unsatisfactory man

ufacturing or assembly faults of the gear. Figure 
5 is the time-scale distribution for the residual 

signal. These 10 scales give 10 central frequency 

locations of one-third octave bands. These cen
tral frequencies are 27, 34, 43, 54, 68, 85, 108, 

136, 171, and 215 orders, respectively. Each pair 

of adjacent bands are overlapped at their com-

Time Samples 

FIGURE 5 Time-scale distribution (normal condi

tion). 
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mon half-power points, and these 10 bands have 

fully covered the frequencies ranging from 22 to 

240 orders. Due to the variations among the teeth 

caused by normal manufacturing errors and other 

synchronous noise resources (such as noise from 

the belt drive wheel on the input shaft), vast pat

terns appear at all scales; but there is no domi

nant peak in the whole distribution, showing that 

no damage has occurred. The patterns appearing 

at higher levels present a lot of fine details. Com
paring with the Gabor spectrogram where only 

one resolution is used for describing the small 

and large size of the features, the time-scale dis

tribution gives multiple resolutions so that differ
ent sizes of details in the analysed signal have 

been described effectively from low to high 

scales. Small variations can be found in the 

higher scale area. Nevertheless the distribution is 

rather uniform and fiat, confirming that the gear 

is in normal condition. At low values of s, where 

large sizes of variations in the signal should be 

apparent, the distribution is also relatively uni
form during the whole revolution. 

A cut 2.5 mm long and 0.2 mm depth and 

width on one side of a tooth surface is made on a 
spare identical gear to simulate damage. The up

per curve in Fig. 6 shows the time domain aver

age for the vibration. A burst can be easily seen 

around the time sample 930. After removal of the 

fundamental and harmonics, the residual signal is 

shown by the lower curve of Fig. 6. Because the 

fundamental and harmonics are relatively low 

and the background noise is relatively high, the 

two curves are not very different in appearance. 

Figure 7 is the Gabor spectrogram for the resid-
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FIGURE 6 Synchronous averaged vibration and its 

residual. 
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FIGURE 7 Time-frequency distribution (faulty con

dition). 

ual signal. A strong peak appears at the sample 

930, covering frequency levels 1-5, indicating 

the existence of a sharp impulse. Figure 8 repre

sents the square ofthe absolute values, providing 

a higher contrast for showing the damage at the 

same location. Figure 9 is the time-scale distri

bution for the corresponding signal. Using abso

lute values, clear peaks near the sample 930 

show the details of the damage. At large values 

of the scale (6-10), some short-duration varia

tions appeared that describe the tiny size defects 

on the tooth meshing faces. In particular, at sam

ples 850 and 980, two narrow high-frequency pat

terns appear, indicating there are two significant 

small defects. Figure 10 represents the square of 

the absolute values, providing again a higher con-

Time Samples 

FIGURE 8 Square of time-frequency distribution 

(faulty condition). 
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FIGURE 9 Time-scale distribution (faulty condi

tion). 

trast for showing the damage at the same loca

tion. 

DISCUSSION 

The style in which the scale is changed can be 
linear or nonlinear in the time-scale representa

tion to cover the desired frequency range. Oc
tave bands cover wider frequency and possess 

reasonable frequency increments. However, this 

may not be as straightforward as in the time

frequency distribution of the Gabor spectrogram, 
where image processing techniques can be easily 

applied for pattern interpretation (Wang and Mc

Fadden, 1993a,b). 
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FIGURE 10 Square of time-scale distribution 

(faulty condition). 
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For detecting the transients, if orthogonal 

wavelets are applied, due to their restricted and 

special shapes and limited number of scales, it 

may be hard to find any significant similarities 

between the wavelet and the transients. In addi

tion, the frequency contents of the orthogonal 

wavelet are separately distributed over the fre

quency axis. The intensity distribution of the 

transform does not have enough suitable scales 

for matching and describing the details about the 

transient nature, either large or small size. The 

jump of orthogonal wavelet locations makes the 

transform pattern time variant, i.e., the same 

transient at different locations on the time axis 

could have different patterns in the transform 
distribution. In local feature detection, a small 

change in the vibration signal may remove the 

chance of matching the wavelet of the same size 
at the closet time during the transform and so be 

weak or unable to be seen in the time-scale dis

tribution chart. However, orthogonal wavelets 

give a smart inverse transform to reconstruct the 
original time signal without redundancy. The 

non orthogonal wavelets suggested in this article 

look efficient in decomposition rather than re

construction. 

Because the selection of wavelet type depends 

on the task of signal analysis, if more types of 

wavelets are required for disclosing different 
shapes of local features, in implementing auto

mated diagnosis the time-scale distribution gen

erated from the wavelet transform may need to 

be inspected and interpreted by a sophisticated 

system because a different wavelet family may 

give a completely different distribution in the 

time-scale domain. 

In implementing the wavelet transform, the 

FFT is used as a short cut for the algorithm. In 

more general cases, such an advantage will not 

be naturally provided. 

CONCLUSION 

A general form of time-frequency-scale distri

bution of the wavelet transform and the relation

ship with other distributions were discussed. The 
Gaussian enveloped oscillating wavelet is sug

gested to analyze local features in the vibration 

signals produced by faults. It was shown by ex

amples that the time-frequency and time-scale 

distributions generated by the wavelet transform 

are effective in presenting and analyzing the local 
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features of vibration signals so that the mechani

cal systems can be diagnosed. 

The essence of selecting the wavelet family to 

calculate the time-scale distribution is to find a 

suitable function to simulate the short-duration 

components of interest. Therefore, the transform 

gives a high absolute value, if at a certain scale 

and time there is a similarity between the wavelet 

and the analysed signal; otherwise it gives a low 
absolute value. 

The time-frequency distribution is easily in

terpreted and is suitable for detecting single size 

faults. The time-scale distribution is preferable 

when detecting different sizes offaults because it 
has multiple resolutions and simultaneously dis

plays the large and small size features of a signal, 

enabling a simultaneous detection of both large 

and small size faults, or distributed and localized 

faults. In the implementation of the time-scale 
distribution, one-third octave bandwidths of the 

wavelets and the half-power points of overlap

ping are adopted to ensure that the frequencies in 

the band of interest are not missed by a limited 

number of scales; and meanwhile excessive re

dundancy of computation for the transforms IS 

avoided. 

The author wishes to thank Mr. Christof Spies for his 

work in the experiment. 
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