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Abstmct- Multiresolution analysis via decomposition on 
wavelet bases has emerged as an important tool in the analysis of 
signals and images when these objects are viewed as sequences of 
complex or real numbers. An important class of multiresolution 
decompositions are the so-called Laplacian pyramid schemes, in 
which the resolution is successively halved by recursively low- 
pass filtering the signal under analysis and decimating it by a 
factor of two. Generally speakhg, the principal framework within 
which multiresolution techniques have been studied and applied 
is the same as that used in the discrete-time Fourier analysis 
of sequences of complex numbers. An analogous framework 
is developed for the multiresolution analysis of finite-length 
sequences of elements €mm arbitrary fields. Attention is restricted 
to sequences of length 2" for n a positive iuteger, so that the 
resolution may be recursively halved to completion. As in finite- 
length Fourier analysis, a cyclic group structure of the index set 
of such sequences is exploited to characterize the transforms of 
interest for the particular cases of complex and finite fields. This 
development is motivated by potential applications in areas such 
as digital signal processing and algebraic coding, in which cyclic 
Fourier analysis has found widespread applications. 

Index Terms- Multiresolution analysis, wavelet transforms, 
Laplacian pyramid, finite fields, cyclic group, quadrature mimr 
filters. 

I. INTRODUCTION 

ULTIRESOLUTION analysis via decomposition on M wavelet bases has emerged as an important tool in 
the analysis of signals and images when these objects are 
viewed as sequences over the real or complex field [1]-[7]. In 
particular, these techniques have proven to be superior to tra- 
ditional Fourier analysis for many applications including, for 
example, acoustic signal detection [8], seismic signal analysis 
[9], edge detection in images [lo], pattern recognition Ill], 
and image coding [12]. An important class of multiresolution 
decompositions are the so-called Laplacian pyramid schemes 
[3], [6], [12], in which the resolution is successively halved 
by recursively low-pass filtering the signal under analysis and 
decimating it by a factor of two. The residual (i.e., the error 
incurred) at each stage of this process is referred to as the 
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detail at that stage; and the sequence of details formed by this 
decomposition is the transform of interest. Suitable choice of 
the filters used in this process renders this transform invertible; 
and such suitable filters can be characterized through their 
discrete-time Fourier properties [3], [6]. 

Generally speaking, the principal framework within which 
multiresolution techniques have been studied and applied is 
the same as that used in the discrete-time Fourier analysis 
of sequences of complex numbers; that is, the sequence to be 
transformed is viewed as a mapping from the set of integers 2, 
to the set of complex numbers C. Of course, Fourier analysis 
can also be performed on finite-length sequences of complex 
numbers by viewing them as mappings from a finite cyclic 
group to C using the discrete Fourier transform (DFT). The 
DFT and its extension to the situation in which the complex 
field is replaced with a finite field (which we will refer to 
collectively as the cyclic Fourier transform) are of widespread 
utility in digital signal processing applications and algebraic 
coding [13], [14]. The purpose of this paper is to develop 
an analogous framework for the multiresolution analysis of 
finite-length sequences of elements from arbitrary fields. In 
order to preserve the Laplacian pyramid sttucture described 
above, we will primarily consider sequences of length 2n for 
n a positive integer, so that the resolution may be recursively 
halved to completion. As in finite-length Fourier analysis, we 
will exploit a cyclic group structure of the index set of such 
sequences to characterize the wavelet transforms in the cases 
of most interest: the complex field and the finite fields. The 
development of cyclic wavelet transforms for these particular 
cases is of fundamental interest in view of the central roles 
played by cyclic Fourier analysis over these fields in the 
aforementioned applications of digital signal processing and 
algebraic coding. 

This paper is organized as follows. In Section 11, we give 
a brief overview of classical finite-length Fourier analysis. In 
Section 111, we discuss the conventional structure of wavelet 
bases for multiresolution analysis via a Laplacian pyramid 
scheme of discrete-time series of numbers from the complex 
field, and we describe a finite-length version of this structure. 
Section IV treats the extension of the discrete-time wavelet 
transform to a cyclic wavelet transform for finite-length se- 
quences of complex numbers. In this extension, it is assumed 
that the data length is a power of two, and multiresolution 
analysis is based on successive application of filtering and 
decimation in time by two, as noted above. In Section V, 
the cyclic wavelet transform is extended to finite fields, again 
for data lengths that are powers of two. Such transforms 
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are completely characterized in terms of simple conditions 
on the cyclic Fourier coefficients of a “mother” wavelet that 
determines the transform. In Section VI, we discuss briefly 
several further items of interest in this context, including the 
extension to such analysis at successive resolutions other than 
two. 

11. FOURIER W S F O R M S  ASSOCIATED WITH CYCLIC GROUPS 

In this section, we give a brief review of Fourier transforms 
associated with finite cyclic groups, and we give several 
illustrative examples. 

Suppose F is a field, and CN is a finite cyclic group of 
order N. Suppose further that 4 is a homomorphism 

4: C N  3, 

and let a denote the image under 4 of a generator of C N .  
Then aN = 1. In general, we will identify a function 

‘U: C N  + 3, 

with the vector (vo, V I ,  . - , UN-1)’  of elements from 3. 

to be the function 
The cyclic Fourier transform of the function v is defined 

where 
N - 1  

6 k  = ~ C V . k l V 1 .  (2.1) 
1=0 

The inverse of the transform (2.1) is given by 

N - 1  

v k  = N’ a-lc161r (2.2) 
1=0 

for a suitably chosen constant N’ E F. 
We illustrate the cyclic Fourier transform with its most 

commonly used examples. 
Example 2.1: Suppose 3 = C and N is a positive integer. 

Take CN to be the cyclic group of rotations of the unit circle 
by 27rlN. Then, with the natural homomorphism, we have 
a = exp (i27rlN) and (2.1) defines the finite-length Fourier 
transform. Here, (2.2) with N’ = 1/N defines the inverse 
transform. This transform is often called the discrete Fourier 
transform or DIT. When the transform length N is chosen to 
be a power of two, the fast Fourier transform (FFTJ can be 
used to calculate the DIT efficiently. (See, e.g., [15].) 

Example 2.2: Suppose p and T are positive integers with p 
prime; and let 3 = GF(pT), the Galois field with p‘ elements. 
Suppose further that N is a divisor of pT-1. Then (2.1) defines 
the finite-field Fourier transform; and (2.2) with N’ satisfying 
NN’ = pT - 1 is the inverse. This transform is often termed 
the number-theoretic Fourier transform, or the Galois field 
Fourier transform. For more details, see [16] or [17]. 

Example 2.3: In this example, we generalize the definition 
slightly. Suppose 3 and CN are a field and cyclic group 
as above. For any divisor NO of N there is an a satisfying 
cyNo = 1, and (2.1) and (2.2) again define a transform. 

Example2.4: An important special case of Example 2.3 
occurs when N = 2n for some positive integer n and NO = 2. 
In this case, N’ = 1/N, and the transform (2.1H2.2) is known 
as the Hadamard transform. 

111. THE FINITELENGTH WAVELET TRANSFORM 

The finite-length Fourier transform of Example 2.1, is 
of central importance in linear processing of finite-length 
signals. In this section, we describe an alternative transform, 
the finite-length wavelet transform, that is related to this 
finite-length Fourier transform. This transform is based on a 
form for the discrete-time wavelet transform, which we now 
describe briefly before defining its finite-length counterpart. 
This discrete-time wavelet transform is based on the Laplacian 
pyramid scheme for image compression proposed by Burt and 
Adelson [12]. Its general use in multiresolution analysis has 
been explored by Mallat, Meyer, and others. The reader is 
referred to [3] or [6] for a more detailed treatment of this 
scheme. 

Note that the finite-length Fourier transform is a finite-length 
analog of the discrete-time Fourier transform, defined for a 
sequence v E Z2(2), by 

00 

V ( W )  = VkeiPTwk,  -T 5 w 5 T .  (3.1) 
k=-W 

Here, and throughout the paper, Z2(2) denotes square- 
summable sequences of complex numbers. The discrete-time 
wavelet transform is an alternative tool for analyzing real or 
complex discrete-time sequences, which is closely related to 
the multiresolution analysis of such sequences. This transform 
is based on a successive decomposition and reconstruction 
algorithm described as follows. 

Consider two bounded linear operators E and ‘H on Z2(2) 
defined by 

00 

( E x ) k  = Q1-2k92, x E Z2(2), (3.2a) 
l=-oO 

and 

where g and h are sequences in Z1 (2). Note that E and ‘H as 
described can be thought of as filtering operations followed by 
decimation in time by a factor of two. A single decomposition 
step of this scheme consists of the computation from v E 
Z2(2) of c = ‘Flu and d = Ov. The succeeding iteration 
of this decomposition consists of applying these same two 
computations to the sequence c obtained from the preceding 
iteration. A reconstruction step consists of the computation of 
v from c and d via v = ‘H*c + E*d, where G* and ‘H* denote 
the adjoints of the operators B and ‘H, respectively.’ 

‘Note that an alternative discrete wavelet transform has recently been 
proposed in [18] in which this iteration is applied to both c and d, resulting 
in a binary tree of filtered sequences. 
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In order for this decompositiodreconstruction pair to de- 
scribe an invertible transform, the operators Q and H must be 
restricted so that 

G*G + X*H = z, (3.3a) 

where Z denotes the identity operator in 12(2). Moreover, it is 
desirable for the two components of U, namely H*c and Q*d, 
to be orthogonal, a condition that is assured if 

HG* = 0, (3.3b) 

where 0 denotes the zero operator on l 2  (2). Note that a pair of 
filters having these properties required of the transformations 
?t and 9 are known as quadrature mirror filters having the 
perfect reconstruction property (also known as perfect recon- 
struction filters). Such filters have been studied extensively in 
the digital signal processing literature (see, e.g., [ 191-[21]). 

The conditions (3.3) can be rewritten in terms of the 
discrete-time Fourier transforms of the decimated sequences 

m = 0, 1. In particular, on denoting the transforms (3.1) of 
g(") and h(") by P" and S", respectively, the conditions 
(3.3) can be rewritten as (see, e.g., [3, (3.12) and (3.13)]: 

g(") = { 9 2 k + m } T = - ,  and h(") = { h 2 k + m } T = - ,  for 

and 

-T 5 w 5 T ,  m = 0, 1, (3.4b) 

where X is any real valued function such that X ( W + ~ T )  -X(w)  
is integer valued. (Here, and elsewhere, an overbar denotes 
complex conjugation.) 

Thus, g can be chosen to satisfy (3.4a), and then h is 
prescribed by (3.4b) for a convenient choice of A. For example, 
with X(w) = 0 (3.4b) yields the relationship 

h k  = k E 2. (3.5) 

In praFtjce, the sequences h and g used in the above scheme 
will be chosen to have only a few nonzero elements so that 
the transform can provide good resolution of the sequence 
characteristics at different time shifts. Moreover, it is usually 
desirable to require further that h satisfy the so-called lowpass 
condition, 

x h k  = a, (3.6a) 
k c 2  

and that g satisfy the complementary bandpuss condition, 

(3.6b) 

Within these latter conditions, the decomposition step can be 
viewed as a low-pass filtering and decimation to produce the 
lower resolution signal c, and a bandpass filtering and decima- 
tion to produce the detail or residual signal d.  Thus, successive 
applications of the transform will provide information about 
the original sequence at successively lower resolutions. Such 
successive application of this type of decomposition is referred 
to as a Laplacian pyramid scheme; and the version with g taken 

to be a unit impulse sequence (i.e., g k  = 6 k )  was first proposed 
by Burt and Adelson [12] as a technique for representing 
images. 

The Laplacian pyramid decompositiodreconstruction steps 
can be adapted to define an exact multiresolution wavelet 
transform for sequences of finite length N = 2,, from an arbi- 
trary field 3, where n > 1 is an integer. In order to construct 
such a transform, we first define a general formulation of the 
multiresolution analysis of the vector space 3N and then give 
a practical scheme for the decomposition and reconstruction 
of a sequence in FN.  

Consider a ladder of nested vector spaces Vn C Vn-1 C 
. -avo = 3N where dim(&) = 2,-j. For each j = 
1, 2 , . . . , n ,  define the subspace Wj to be the orthogonal 
complement of V, in 4-1 so that 

Here, the notation @ indicates the direct sum; i.e., (3.7) means 
that every element of 6-1 can be written in a unique way 
as the sum of an element of Wj and an element of V,. From 
(3.7), it follows that VO can be written as 

This means that any sequence v E FN can be decomposed 
in a unique way as the sum of sequences w3 E Wj, j = 
1, 2 , + .  , n ,  and U" E V,. We define the multiresolution 
analysis mapping (MA) to be the linear map that perform this 
decomposition; i.e., 

MA: v -+ { W l ,  w2, * * , wn, U,}. (3.9) 

Since MA is bijective it has an inverse MA-l, which we define 
to be the multiresolution synthesis mapping (MS): 

MS: {wl, w 2 , . - * , w n ,  U*} 4 v 
= w1 + w2 + . * * + wn + vn. (3.10) 

We now define an algorithm that implements an MA-MS 
, n consider matrices Hj and Gj  over pair. For j = 1, 2, 

F of dimension 2,-j x 2,-j+l, satisfying the conditions 

( ~ i ) * ~ j  + (@)*@ = "-1 I2n-3+1, (3.11) 

where I k  denotes the k x k identity matrix, and where N' E 3 
is a constant whose choice will be discussed next. 

Within this framework, consider the following algorithm. 
Decomposition: Given CO = v and an integer n > 0, the 

algorithm computes a sequence dl  , . , d", cn as follows. 
Step 1) 

Step 2) In general, for j = 1, 2,e.e ,n - 1, compute 
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Reconstruction: Given a decomposition { d l ,  . , d", c"}, 

Step 1) Compute cn-' = N'[(G")*d" + (H")*c"], where 
the superscript asterisk denotes the dual of the 
superscripted operator. 

Step 2) In general, for j = n - 2, n - 3, 

the algorithm reconstructs the original signal v = CO. 

, 0, compute 

2 = N'[(Gj+l)*dj+l  + (Hj+l>*,+l] .  

With respect to this algorithm, we have the following. 
Proposition I: The algorithm defined by Decomposi- 

tiodReconstruction with matrices chosen to satisfy (3.11) is 
an MA-MS pair. 

Proof: First, we note that (3.11) holds only if for each 
j the matrices H j  and Gj have full rank (i.e., the row rank 
2"-j) and if the rows of H j  span the kernel of Gj .  Thus the 
2n-j+l x 2n-j+1 matrix 

[ :;I 
[ (H')*(Gj)*]  [ H j  .j] = N'-l12n-3+1, 

is of full rank. On writing (3.11) as 

and multiplying it from the right by [ ( H j ) * ( G j ) * ] ,  we obtain 

= O p - J + l ,  (3.12) 

where Ok denotes the k x k matrix with all zero entries. Since 
the columns of [ (Hj)*(Gj)*]  are linearly independent, (3.12) 
holds, if and only if 

~ j ( ~ j ) *  = "-1 127-3, (3.13a) 

~ j ( ~ j ) *  = ~ ' - '12n-3 ,  (3.13b) 

and 

~ j ( ~ j ) *  = (3.13~) 

By using DecompositionBeconstruction iteratively, we get: 

v = N'(G1)*dl + N'(H1)*cl = w1 + vl, 
where w1 E W1 and v1 E VI. Then, we get 

d = N ' ~ ( H ~ ) * ( G ~ ) * ~ ~  + N ' ~ ( H ~ ) * ( H ~ ) * c ~  = w 2  + v2, 
where w2 E W2 and v2 E V2, and so forth. 

From this construction we get an explicit form for the 
subspaces V, and Wj, and we can check that they match the 
construction of the multiresolution analysis. In particular, on 
neglecting the factor N' we have 

V, = ( H 1 ) * ( H 2 ) * .  . . ( H j - 1 ) * ( H j ) * 3 2 n - '  

and 

wj ( ~ 1 ) * ( ~ 2 ) * .  . . ( ~ j - l ) * ( @ ) * f 2 n - j .  

It is easy to see that the condition V, C 5-1 is always 
satisfied since ( H J ) * P " - '  is always a subspace of Pn-,+'. 
Moreover, Vj and W, are orthogonal cotnplements of the same 
dimension in V, - 1 because of (3.13~). Thus we will get a valid 
MA-MS pair every time we consider matrices H j  and Gj that 

Remark 3.1: Note that the decomposition of any sequeny 
v E 3N into the sum of sequences w3 E W, and U" E V, 
is uniquely defined by the "coefficients" { d1 , d2 ,  . , d" , c"} 
once the matrices H j  and GJ at each step of the Decompo- 
sition/Reconstruction algorithm are fixed. These coefficients 
comprise a finite-length wavelet transform of the sequence U. 
In other words, for the case of a finite-dimensional vector 
space 3N, for each multiresolution analysis defmed by De- 
compositionBeconstruction and (3. l l), there is an associated 
finite-length wavelet transform (FLWT): 

FLWT: v { d l ,  d2,...,d", c"}. (3.14) 

Remark 3.2: Note that (3.11) defines a quadratic relation- 
ship among the elements of the matrices defining the finite- 
length wavelet transform. It may also be useful to specify 
lowpass and bandpass conditions analogous to (3.6). These 
conditions, and the structure imposed by (3.11), will be 
discussed in the following sections. 

satisfy (3.11). 0 

IV. THE CYCLIC WAVELET TRANSFORM 
In the preceding section, we defined the finite-length wavelet 

transform in terms of the matrices G1, G 2 , . . - , G n  and 
H 1 ,  H 2 ,  , H" appearing in Decompositionmeconstruction. 
As in the case of Fourier analysis, it is of interest to constrain 
this transform to define a cyclic multiresolution analysis of 
the space of the periodic sequences of period 2" over 3 .  

In this and the following section, we explore the constraints 
leading to such transforms, and we give a general construction 
of appropriate matrix sequences that satisfy the additional 
constraints. 

Consider the situation in which the matrices H J  and GJ are 
constrained to be 2-circulants [22] for each j; i.e., sbppose 
these matrices are of the form: 

&,-5 7 (4.14 G3 = &,-4 &,-3 9L3-2 ... I i :  : : * .  : 

9'0 9: 9; . . *  g N ,  -1 

9h3-2 gh,-1 9; ' * '  -dN,-3 

and 

A where Nj = 2"-j+l. Note that a 2-circulant matrix is de- 
fined completely by its first row; and thus we can write 
Gj = 2-cir{gj} and H j  = 2-cir{hj} where gj and hi 
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denote the first rows of Gj and Hf, respectively. Within 
this constraint, an interesting interpretation of the algorithm 
DecompositiodReconstruction is possible if we consider the 
sequences & and dj  to be periodic sequences of period equal 
to their lengths (Nj+l ) .  

In particular, for matrices satisfying (4.1), the jth step of 
Decomposition defines a finite-impulse-response (FIR) filter- 
ing of the periodic sequence &-' with the two FIR filters 
having impulse response hJ and gf, followed by a decimation 
by 2. The periods of the input sequence d-' is while 
the period of the two ouQut sequences d and df is 2'+f. 
Similarly, Reconstruction can be considered to be interpolation 
by 2 followed by FIR filtering. Note that this filtering and 
decimation by 2 (or interpolation by 2 and filtering on the 
reconstruction side) is completely analogous to the sub-band 
decomposition scheme for infinite-length sequences described 
by the Laplacian pyramid of Section 111. 

Thus, we conclude that Decomposition/Reconstruction with 
the 2-circulant constraint (4.1) defines a cyclic multiresolution 
analysis and its associated cyclic wavelet transform (CWT) for 
the space of periodic sequences of period 2n over 3 (which is 
isomorphic to 3N since it is a vector space of the same finite 
dimension). Moreover this algorithm is specified by a family 
of FIR filters and can be implemented in an efficient way by 
the known techniques for cyclic convolution (for example by 
using the FFT). 

In order to design such transforms, we want to construct 
families of sequences {gj, hJ E I j = 1, 2 , - . . , n }  
such that (3.11) is satisfied for all j with Gj  = 2-cir{gj} and 
H i  = P-cir{hj}. Each such family defines an MA-MS pair 
and the relative CWT for the space of periodic sequences of 
period 2n over the field 3. In this section, we consider the 
design of such transforms for the case in which 3 = C, the 
field of complex numbers. Finite fields will be considered in 
the following section. To construct the sequences of interest, 
we will first give a result characterizing 2-circulant matrices 
satisfying (3.11) for the case j = 1, and then we will give a 
method to derive a family of sequences { g j ,  hf }, j = 2,. , n, 
from any two sequences g' and h' that satisfy the theorem. In 
following we will suppress the superscripts 1 on G', H',  g', 
and h1 for notational convenience. 

For the case in which the field is C, the set of possible pairs 
of sequences go, 91, - , gN- 1 and ho, hl  , - - , h ~ -  1 such that 
2-cir{g} and 2-cir{h} satisfy (3.11) is characterized by the 
following proposition, which is stated in terms of the following 
finite-length Fourier transforms: 

n - J + 1  

and 

N 
2 

N/2-1 
q;t" = k = 0, 1, * * , - - 1, m = 0, I, 

k 0  
(4.2b) 

where a is the relevant Nth primitive root of unity: a = 

___ 

1161 

Theorem 1 : Consider the cyclic wavelet transform of length 
N = 2n over the complex field and let N' be any nonzero 
element. The matrices G = 2-cir{go, 91, a - .  ,gN-l} and 
H = 2-cir{ho, h l , - . . ,hN- l}  satisfy (3.11), if and only if 
for each k = 0, 1,. a ,  N/2 - 1, we have 

(4.3a) 
0 2  1 2 -  1 

lYkl + IYkl - N" 
and - 

q;t" = (-l)mvkyk-m, m = 0, 1, (4.3b) 

, N/2 - 

Proofi We note first that the dual of an operator rep- 
resented by a matrix of complex numbers is the operator 
represented by the transpose of the matrix with each element 
replaced by its complex conjugate. As shown in the proof of 
Proposition 1, the condition (3.11) is equivalent to the three 
conditions given in (3.13). By conformal rearrangement of the 
columns of G and H, i.e., by rearranging the columns of G and 
H in the same way, the conditions (3.13) can be rewritten as 

for some v E CNl2 satisfying lvkI2 = 1, k = 0, 1,. 
1. 

(A0 Al)(Ao Ai)* = (N')-'IN-~, (4.4a) 

and 

(A0 Al)(BO B1)* = ON127 (4.44 

where, for m = 0, 1, A,, and B,  denote the N/2 x 
N/2 1-circulant matrices with first rows g,, gm+2, gm+4, . , 
gN-2+m and hm, hm+2, hm+4, * * * , h ~ - ~ + m ,  respectively. 

Denote by F the N/2 x N/2 (Fourier) matrix with (A - 1)th 
element a2&' for k, 1 = 0, 1 , .  .., N/2 - 1. Note that F*F = 
N/21~/2 ,  and that the matrices A, and B, are diagonal- 
ized by F since they are 1-circulants [22]. Noting further 
that A, and B,  have eigenvalues yr ,  7y, - . , 7gI2-', and 
qr, qy, . . . , q;E;/2-1, respectively, we can thus write 

(4.5a) 2 
N 

A, = -F*I',F, m = 0 , l  

and 

(4.5b) 

with I?, = diag($, 7y - - . ~ z / ~ - ~ } ,  and Am = 

Substituting (4.5) into (4.4), yields the equivalent conditions 

(4.6a) 

2 
N 

B,  = -F*AmF, m = 0 , l  

diag {Vr, 771n . v;/2-1}. 

ror; + rlr; = (iv')-'IN/2, 

and 

In the form (4.6), the conditions imposed by (3.11) on 

terms of the Fourier coefficients defined in (4.2) in decoupled 
90, 91,. . . , Q N - ~  and ho, h i ,  * * e ,  hN-1 Can be written in 

exp {27ri/N}. . I  
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form. In particular, we have the following three conditions for 
each k = 0, 1,. . , N/2 - 1: 

and 

(4.7a) 

(4.7b) 

(4.7c) 

The sufficiency of the conditions (4.3) is seen quite easily 
from (4.7). In particular, we note that (4.7a) is identical to 
(4.3a); (4.7b) follows immediately from the substitution of 
(4.3b) into (4.3a); anLfinally (4.7~) follows by multiply@ 
(4.3b) with j = 1 by yi, multiplying (4.3b) with j = 1 by y:, 
and then adding the two results. 

The necessity of the conditions (4.3) is also seen straight- 
forwardly from (4.7). In particular, we need only show that 
(4.7) implies (4.3b). To do so, we first consider the case in 
which yp = 0 for either m = 0 or m = 1. Then, (4.7a) 
implies that -yi-m # 0, which together with (4.7~) implies 
that Q L - ~  = 0. Equation (4.3b) thus follows by choosing 
Uk = ( - ~ ) ~ q ~ / y i - ~ ,  which satisfies (VkI2 = 1 via (4.7a) 
and (4.7b). Now, if both y$ and 7; are nonzero, then (4.3b) 
follows if E -~$/y;(= vk). But this is simply the 
orthogonality condition (4.7~). So, the necessity of (4.3b), and 
thus (4.3), is proven. 

0 

Remark4.1: It is evident that the conditions (4.3) are 
the cyclic versions of the conditions (3.4) characterizing the 
discrete-time wavelet transform. 

Theorem 1 allows us to construct sequences whose corre- 
sponding 2-circulant matrices satisfy (3.11) for the case j = 1. 
Given two such sequences, we now wish to construct a family 
of sequences {gj, h j  I j = 1, 2, ... ,n }  that specifies an 
MA-MS scheme as previously described. Such a construction 
is given by the following result, which is a straightforward 
corollary to Theorem 1. (See also [23].) 

Corollary I: Suppose G = 2-cir{g} and H = 2-cir{h} 
are 2T-l x 2n matrices of complex numbers satisfying (3.11). 
For each j = 1, 2, . . . , n, define two length3”-j sequences 
g j  and h j  by 

- 

- 

This completes the proof of Theorem 1. 

gil+m = DFT-l{{yZ-ik I k = 0, 1, * * , 2n-i - 1}}1, (4.8) 

and 

for I = 0, 1, . . ,2*-j - 1 and m = 0, 1, where the sequences 
yo, yl, qo, and vl, are defined from g and h as in (4.2), 
and where the operation DFT indicates the discrete Fourier 
transform of appropriate length. Then, Gj  = 2-cir{gj} and 
H j  = 2-cir{hi} satisfy (3.11) for each j = 1, 2,a.a ,n. 

Remark4.2: It is evident from their construction that the 
sequences g j  and h j  satisfy condition (4.3) of Theorem 1 for 
each j. In particular, the conditions of Theorem 1 are given on 
the Fourier transform of the even and odd coefficients of g and 
h, therefore any sequence obtained by “frequency sampling” 
those transforms will obviously satisfy the same conditions. 

Remark4.3: Corollary 1 defines g j  and hJ to be the se- 
quences obtained by frequency sampling the original se- 
quences g and h with a sampling factor 2j-l. If we look at 
Decomposition as an FIR filtering followed by a decimation by 
2 of a periodic sequence, we see that at each step j the filters 
constructed in this way have the same frequency characteristics 
as the two original filters g and h. In this case the frequency 
sampling procedure does not give any degradation in the 
filters’ frequency responses since for periodic sequences (and 
thus for cyclic convolution) the Fourier transform coincides 
with the DFT and the frequency response matters only for 
specific frequency values. 

Remark 4.4: It should be noted that the bandpass condition, zfs1 gk = 0, is equivalent to the condition that 7; = -7;. 
The construction of Corollary 1 assures that this condition 
holds for all j if it holds for j = 1. If the bandpass condition 
is imposed, then Theorem 1 shows that we also must have 
77; = T$, and further fhat 

(4.10) 
1 

lr00l = Iril = 177001 = I % l  = “ 
Thus, from (4.10) we see that a corresponding low-pass 
condition, 

IN-1 I 
(4.11) 

is also enforced for each j .  (See also [24].) 
Remark4.5: We see from Theorem 1 that, in this F = C 

case, the field element N’ must be real and positive. Otherwise, 
the role of N’ is not critical in this case, since varying it 
essentially results in a simple renormalization of the matrices 
G and H. In particular, there is no lost generality if we simply 
choose N’ to be unity or some other convenient value. As 
we shall see in the following section, the choice of N’ is 
not arbitrary in the case in which F is a finite field. This is 
essentially because the square-root arising in (4.1 1) will not 
be defined for all field elements in a finite field. This point 
will be discussed further. 

Remark4.6: From the necessary and sufficient conditions 
(4.3), we see that a cyclic wavelet transform can be designed 
by first selecting a sequence go, 91, . . , gN-1 to satisfy (4.3a) 
(this sequence plays the role of the so-called “mother” wavelet 
[3]), and then choosing ho, h l , . . . ,  hN-1 from (4.3b). The 
choice of go, 91, , QN-1 is further reduced to choosing, say, 
the even-indexed subset go, 92, 

N’lr$I2 51, (4.12) 

. , gN-1 compatibly via the inverse 

, gN-2, to satisfy 

and then choosing 91, g3, 
of the relationship (4.2a): 

Nl2-1 
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Example 4. I :  From a practical viewpoint, the sequence 9 3  = (1, -1) h3 = (-1, -1). 
go, 9 1 ,  - . . , g ~ - l  should be chosen to have only a few nonzero 
elements. As an example, take N' = 1/2, and consider the 
choice 

Note that, in this case, the lower-order filter impulse responses 
are found by simply taking the first half of that of the preceding 
filter. In this particular case, this property will hold for any 
transform length. However, this property will not hold in 
general. 

Example 4.3: The next level of transform complexity (aside 
from other choices of the sequence V k )  arises from setting 
g k  = 0, for k > 3. Assuming that the coefficients of the 
mother wavelet are real, they are related through Theorem 1 
by the equations: 

(4.20a) 

g k  = 6 k ,  k = 0, 2, - . . , N - 2. (4.14) 

This choice is equivalent to 7: E 1, which, through (4.3a), 
imposes the condition I, or equivalently, 7: = atk, 
with (0, & ,  , h / 2 - 1 ,  taken from the realS. Thus, any 
sequence of the form 

2 N / 2 - 1  
g k  = - Cy-"'", k = 1, 3 , .  . * , N - 1, (4.15) 

9 0 9 2  = - 9 l g 3 ,  
k 0  

N 

is compatible with the choice (4.14). Imposition of the band- 
pass condition restricts only Q (to be N/2) .  The simplest such 
sequence results from the choice & = N / 2  + k ,  which leads to 

(4.16) g k  = -6k-1, k = 1, 3 , . . * ,  N - 1; 

i.e., the mother wavelet in this case is 1, -1, 0, 0,  
Example 4.2: In this example, we define a transform similar 

to the Hadamard transform, described in Example 2.4. To do 
this, we continue with the example above. In order to choose 
the sequence ho, h l ,  - , h ~ - l ,  it is interesting to rewrite 
the condition (4.3b) directly as a relationship between the 
cyclic Fourier transforms of the sequences go ,  9 1 ,  . , Q N - I  
and ho, h l , .  e ,  hlv-1, which we denote by 70, 71,. - e ,  T N - ~  
and qo, 771, , Q N - ~ ,  respectively. In particular, by using the 
fact that aNl2 = -1, (4.3b) can be rewritten straightforwardly 

. , 0. 

as 
k- 

Qk = - v k f f  7 k - N / 2 ,  k = 0, 1, .  . e ,  N - 1, (4.17) 

where we have used the extension Vk = V k - N / 2 1  k = 
N / 2 , . . . , N  - 1. The corresponding relationship between 
go,  91, . . , g ~ -  1 and ho, hl,  . , h ~ - l ,  is thus determined by 
the choice of the sequence VO, V I ,  - . , V N / 2 - 1 .  For example, 
with Vk = 1, (4.17) is equivalent to 

and 

and 
1 + (d2 + ( g 2 ) 2  + ( g 3 ) 2  = 7. N (4.20b) 

Note from (4.20a) that a mother wavelet consisting of exactly 
three consecutive nonzero elements is not allowed in this 
formulation. Also note that the roles of 90 and 9 2  [resp. 9 1  

and 931 are interchangeable. If we assume a normalization 
such that go = 1, and further impose the bandpass condition, 

9 0  + g2  = -91 - 931 (4.20~) 

then, modulo the above noted symmetry, the mother wavelet 
is given for N' < (3 + 2&)/8, by 

go = 1, (4.21a) 

i-Jzr7" 
2 - < - J z - - - 3 z 7  

91 = 

91 + 1 
91 - 1' 

9 3  = - 

(4.21b) 

(4.21~) 

(4.21d). 

h k  = (-l)kg(l_klN, = ', * * * ' - ', (4*18) where i 2 1 - 2 m .  Note that this gives a family of mother 

from the choice go = 1. Alternatively, we could of course fix 
N' and consider 90 to parametrize the family.) 

9 1  = -1, and 9 2  = 9 3  = 0. For other choices of N' the mother 
wavelet from (4.21) will differ nontrivially from (4.14), (4.16). 

g = ( 1  -1 0 0 01, (4.19a) For example, the choice N' = 1/8 yields the mother wavelet 

where [ x ] N  denotes x reduced modulo N .  (Note the similarity parametrized by " *  (This parameterization 
of (4.18) to the discrete-time example of (3.5).) 

n u s ,  an example of a pair of sequences generating a cyclic 
wavelet transform are those given by (4.1), (4.16), and (4.18); 
namely, 

with N' = 1 / 2 ,  (4-21) reduces to the previous 

g 2 =  1; 9 3 = d - 1 .  
1 

go = 1; 91 = - and 

' (4.22) 
l - &  

h = ( - l  -1 0 ... 0 0). (4.19b) 

A complete transform is thus specified by (4.19) and Corollary 
1. For example, for the case N = 8, we obtain the filters 

Thus, on choosing h from (4.18), Corollary 1 gives the 
following N = 8 transform: 

1 
1,  d - 1, 0, 0, 0, 0 g1 = (1, -1,o, o ,o ,  0, 0 , O )  

hl = (-1, -1, o ,o ,  0, 0, 0, 0) 

g2  = ( I ,  -1, 0, 0) h2 = (-1, -1, 0, 0) 1 h l =  (X'  -1, 0, 0, 0, 0, d -  1, -1 
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1, Jz- 1) ( l-dF 
1 

9 2  = 1, - 

-1, Jz- 1, -1) 

V. FINITE-FIELD WAVELET TRANSFORMS 
We now consider the cyclic wavelet transform described by 

DecompositiodReconstruction with transform matrices as in 
(4.1) for the case in which F is a finite field: 3 = GF(pr). 
As before, we restrict the data length N to be a power of two, 
N = 2". We assume that the characteristic p of the field is an 
odd prime, and further that there is an element a, E F x  of 
order 2"-l. Note that this latter restriction is equivalent to the 
condition that 2"-' must divide pr - 1. 

Again we require the matrices Gj and H j  to be 2-circulants, 
and they are therefore defined by their first rows g j  and 
hj, respectively. We wish to construct a family of sequences 
{gj, h j  E 3 Z n - ' + '  1 j = 1, 2 , - . - , n }  such that (3.11) is 
satisfied for all j. Such a family defines an MA-MS pair and 
the relative CWT for the space of periodic sequences of period 
2" over the field 3. 

Within this model, we state a result analogous to Theorem 
1. To do so, we first define polynomials in F[z]:  

N/2-1 
y m ( z )  = 921+mz1, m = 0 ,  1, (5.la) 

k 0  

and 
N/2-1 

Q"(z) = h2i+m21, m = 0, 1. (5.lb) 

Theorem 2: Consider the cyclic wavelet transform of length 
N = 2" over the field 3 = GF(pr). The sequences 
go, 91, - . . , gjv-1 and ho, h l ,  - , hN-1 satisfy (3.11), if and 
only if, for each k = 0, 1 , e . e  ,N/2 - 1, we have 

1 

1=0 

(5.2a) k O k  yO(a, 1-Y (ao> + T1(a;k)71(at) = "7 

and 

qm(a!,k) = ( -1>"~(at)y~-"(a;~) ,  m = 0, 1, (5.2b) 

for some rational function U(.) of order N/2 over 3 satisfying 

P r m -  The analogy between Theorems 1 and 2 is clear. 
The only differences of substance between the two cases 
are the connections between complex conjugation, Fourier 
inversion, and duality that are present in the complex case 
but not in the finite-field case. In particular, in the case of a 
finite field, the dual operator a linear operator represented by 
a matrix T is represented by the transpose of T. Nevertheless, 
the key properties used from these relationships are still valid 
here, and thus the proof follows very similarly to that of 
Theorem 1. In particular, if we replace F* with the matrix 

v ( ~ , ~ ) v ( c x $ )  = 1, k = 0, 1, * * , N/2 - 1. 

whose elements - are aik i ,  k, 1 = 0, 1, , N/2- 1, and we re- 
place -IT, vr, YT, and with r"(a$), s"(a,k), rm(aik), 
and qm(aZk), respectively, then the proof of Theorem 2 is 
identical to that of Theorem 1 after we make use of the 
following simple result. 

Lemma 1: Suppose f, g, and h are polynomials of order 
N / 2  - 1 over F. Then, 

N k = 0, 1, * * , - - 1, 
2 f(a,k) = g(a,k)h(a!), 

implies 

N 
2 f ( a i k )  = g(a,k)h(a;'), k = 0, l , . . . ,  - - 1. 

Remark 5.1: Note that we exclude fields of characteristic 2 
in the above formulation because the equation FF* = (N/2)1 
is not particularly useful unless n = 1, since we otherwise 
have N/2 = 0. 

Given two sequences g and h that satisfy Theorem 2, 
we wish to construct a family of sequences {gj, hj I j = 
1, 2, , n}  that specifies an MA-MS scheme as previously 
described. Analogously to Corollary 1 in the preceding section, 
such sequences are specified by the following result. 

Corollary2: Suppose G = 2-cir{g} and H = 2-cir{h} 
are 2"-l x 2" matrices of elements of 3 satisfying (3.11). 
For each j = 1, 2,. . . , n, define two length-2"-j sequences 
g3 and h3 by 

gil+m = DFT-l[{ym(a:'-'') I k = 0, 1 , -**,2"- '  - l}]i, 

(5.3) 
and 

hil+" =DFT-l[{~m(a:'-'k) I k = O ,  1, . . - ,2" - j -  1}11, 

(5 *4) 
for I = 0, 1,. . , 2"-3 - 1 and m = 0, 1, where the sequences 
yo, y', qo, and vl, are defined from g and h as in (5.1), 
and where the operation DFT indicates the number theoretic 
discrete Fourier transform of appropriate length. Then G3 = 
2-cir{gj} and H j  = 2-cir{hJ} satisfy (3.11) for each 

In view of Theorem 2, we see that a procedure for specifying 
a finite-field cyclic wavelet transform is to choose a mother 
wavelet g to satisfy (5.2a), to choose h according to (5.2b), 
and then to choose the lower-order filters from Corollary 2. 

Example 5.1: Analogously with the complex case (4.18), it 
is interesting to consider the choice ~ ( z )  1, in which case 
we have 

j = 1 , 2 , * * . , n .  

hk = (-l)kg[l-k]N, k = 0, 1 , * - * , N  - 1. (5.5) 

Example 5.2: A situation often used in finite field Fourier 
analysis is that in which F = GF(29 + 1) for an integer q such 
that 24 + 1 is prime. Cyclic wavelet transforms can be defined 
for such fields for all n 5 q+ 1. Except in the case n = q+ 1, 
the element a, will simply be a power of the primitive element 
a of order 29 in F[']. In particular, we have a, = a2(q-"+l). 
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ExampZe5.3: The sequence (4.21) is a finite-field mother 
wavelet for any choice of n > 1, and for any choice of 
NI such that and 41 + 4 m  + 8N’ exist in 3. In 
the case T = GF(2q + l),  with 29 + 1 prime, exactly half 
of the nonzero elements of 3-in particular, those elements 
that are even powers of the primitive element LY of order 
2q-have square roots in GF(2q + 1) (see, e.g., [13]). Thus, 
these conditions imply that N’ must be of the form a2‘/2 for 
some integer k in order to to exist, and it must also 
be of the form (1 f L Y ’ ) ~ / ~  for some integer 1 in order for 
J1 + 4 m  + 8N‘ to exist. Note that the second condition 
is identical to the first, since all elements of GF(2Q + 1) can 
be generated in the form 1 f d. 

Example 5.4: As a specific example of the form described 
in Example 5.3, consider GF(17) (i.e., q = 4). Here, we 
have LY = 6 and cy2 = 2, so the possible choices of NI are 
1, 2, 4, 8, 9(= i), 13(= i), 15 E i, and 16. So, for example, 
the choice N’ = 9 yields the mother wavelet 

g =  (1 16 0 * e *  0 0), (5.6) 

which is the GF(17) equivalent of (4.19a). In this case, cyclic 
transforms can be specified for any length up to 32. Thus, 
for example, together with the choices (5.3)-(5.5), we have a 
complete length-16 transform: 

g1 = (1, 16, 0, 0 , .  * ,0, 0); 
h1 = (16, 16, 0, * * , 0, 0, 0) 
g2 = (1, 16, 0, 0, 0, 0, 0, 0); 
h2 = (16, 16, O , O ,  0, O , O , O )  

g3 = (1, 16, 0, 0); 
g4 = (1, 16); 

h3 = (16, 16, 0, 0) 
h4 = (16, 16). 

Example 5.5: As another example in GF(17), the choice 
NI = 15 in Example 5.3 gives the GF(17) equivalent of the 
mother wavelet of (4.22); namely, 

g = ( 1  10 1 5 0 * * a  0 0). (5.7) 

So, for example, on using the choice (5.3)-(5.5), another 
complete length-16 transform over GF(17) is thus specified by 

g1 = (1, 10, 1, 5 ,  0 , .  . a ,  0); 

g2 = (1, 10, 1, 5, 0, 0, 0, 0); 
h1 = (10, 15, 0, * * * ,0, 5, 16) 

h2 = (10, 15,0, O , O ,  0,5, 16) 

g3 = (1, 10, 1, 5); 
g4 = (2, 15); 

h3 = (10, 15, 5, 16) 
h4 = (15, 15). 

Remark5.2: As a final remark, we note that the choice 
of N’ is generally constrained as before if we impose the 
bandpass condition (3.6b). In particular, in the finite-field 
context, this condition together with (5.2a) implies that 

+( l )  = -yO(1) = f I  ( 5 4  m* 
Thus, N’ is constrained in this case to be such that 2N’ has 

condition is 

~ 
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(5.9) 

VI. CONCLUSION 
In this paper, we have defined a wavelet transform as- 

sociated with finite cyclic groups over arbitrary fields. For 
each cyclic group and field, there are a variety of transforms, 
parameterized by finite sequences of field elements satisfying 
the quadratic constraints (3.11). We have characterized such 
transforms in terms of the Fourier transforms of the corre- 
sponding sequences for the cases in which the field is the 
complex field or a finite field. The similarities between these 
two cases suggests a generalization of this characterization 
to arbitrary fields. Moreover, in the finite-field case, the rich 
structure of finite fields may yield further interesting properties 
of the finite-field wavelet transform. These are topics of 
interest for further study. 

Potential applications areas for these transforms are similar 
to those for the cyclic Fourier transform, or for the dis- 
crete wavelet transform. For example, the finite-field wavelet 
transform might be applicable to the development of useful 
families of linear communication codes based on the use of 
Decomposition/Reconstruction as the coding/decoding algo- 
rithm. Alternatively, the multiscale/multilocation aspects of 
the cyclic wavelet transform might be useful in searching for 
transient structures in streams of data, analogously to what 
is done in searching for transient sonar signals With ordinary 
discrete-time wavelets. For example, this aspect of the wavelet 
transform might be useful in constructing communication 
codes with that allow efficient detection of error bursts. 

Note that an important advantage of the cyclic wavelet 
transforms over cyclic Fourier analysis is lower computational 
complexity. If the rows of the matrices G j  and Hj each have 
at most M nonzero elements, then the jth stage of Decomposi- 
tiordReconstruction requires at most MN2l- j  multiplications, 
and (M - l )N2l- j  additions. So, the full decomposition 
requires at most (2M-l )N 2-j = 2(2M-l)(N-l) N 

O ( N )  operations. By comparison, the FFT has O ( N  log2 (N)) 
complexity. 

In this paper, we have focused on decomposition algorithms 
that involve successive halvings of resolution. However, it is 
also possible to define analogous decompositions in which the 
resolution is decimated by some other integral amount, say q, 
at each stage. In this context, it would be of interest to consider 
data lengths that are powers of q. Note, however, that certain 
symmetries are lost when q # 2, since the two elements of the 
decomposition (i.e., c and d) would necessarily be of different 
lengths in this case. Nevertheless, the characterizations for 
the q = 2 transforms should generalize straightforwardly to 
this case. For example, the 2-circulant structure exploited in 
Theorem 1 would become a q-circulant structure; and the 
decomposition (4.2) of the mother wavelet on “even” and 
“odd” cuts would be replaced with a set of cuts at q distinct 
phases. Some recent results along these lines in the context of 
the conventional discrete-time wavelet transform are reported 

a square root in 3. Note that the corresponding low-pass in [24]. 
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