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ABSTRACT 

Clusters of fine, granular microcalcifications in mammograms may be an early sign 

of disease. A three-stage method based on wavelet transforms for detecting and seg­

menting calcifications is developed. The first stage consists of preprocessing which is 

realized by subtracting from the original image a Gaussian low-pass filtered version, 

followed by a full resolution wavelet transform. Four octaves are computed with three 

inter-octave voices for finer scale resolution. With a Laplacian of Gaussian wavelet 

basis the detection of micro calcifications in the relevant size range can be nearly op­

timized in the details sub-bands. In fact, the separable two-dimensional filters which 

transform the input image into HH details sub-bands are closely related to prewhiten­

ing matched filters for detecting Gaussian objects (idealized microcalcifications) in 

separable first-order Markov (background) noise. Meanwhile, the addition of LH 

and HL details sub-bands approximates the prewhitening matched filtered output in 

nonseparable first-order Markov noise. 

Two methods have been proposed to detect candidate microcalcifications. In the 

first method, the outputs HH and LH + HL from each octave are thresholded at some 

fixed percentile of the histogram of each component. Then, the detected images from 

all octaves are logically ORed to yield the binary map of detected pixels. The second 

method employs a Hotelling observer. The Hotelling discriminant is computed and 

then thresholded to obtain the binary map. 
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The second stage is needed to reduce false alarms created by edges and other linear 

structures of normal breast tissue. False alarms are reduced by analyzing the shapes 

of the detected pixel regions. The third stage is designed to overcome the limita­

tions of the simplistic Gaussian assumption and provides an accurate segmentation 

of calcification boundaries. Individual micro calcifications are often greatly enhanced 

in the output image. 

FROe curves are computed from tests using a well-known (and freely distributed) 

database of digitized mammograms .. The algorithm using the Hotelling observer 

shows the best overall performance in which a true positive fraction of 73% is achieved 

at 0.7 false positives per image. 



15 

CHAPTER 1 

Introduction 

Breast cancer is one of the most common types of cancers in middle-aged women. 

Although it can be treated in its early stages, the mortality rate is not decreasing. 

Breast cancer can be controlled by prevention, early diagnosis, and effective treat­

ment. Unfortunately, primary prevention is very difficult because the cause of this 

disease is still unknown. However, it can be effectively treated by current methods if 

detected early. Therefore, treatment of the cancer while it is still in its early stages 

is the most promising way to reduce the mortality rate. Mammography is known to 

be the only breast screening technique currently capable of detecting breast cancer 

at the earliest possible stage. 

There are two primary signatures used by the radiologist to discriminate between 

normal and cancerous tissue [1]. One is related to the mass, density and shape of 

breast tumors. A benign neoplasm is smoothly marginated whereas a malignancy is 

characterized by an indistinct border which becomes more spiculated with time. The 

classic example of malignancy is the stellate lesion which consists of a dense center 

surrounded by spicules radiating into surrounding tissue. The other is a microcalcifi­

cation (jlCa++) which occurs in intramammary and intradermal ducts. According to 

the imaging properties of breast lesions in mammography, the morphology of jlCa++s 
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has been classified using five categories by one group [7], with descriptions such as 

dustlike, wormlike, crushed stone, and so on. In this research, the focus is only on 

JLCa++s. 

The early detection of small, non-palpable breast cancers is the aim of screening 

mammography, which is known to be the best method currently available for early 

detection of breast cancer. It has been reported that there are currently more than 

50 million women over the age of 40 at risk of contracting breast cancer in the United 

States. If 50% of the women at risk are screened by mammographic examination each 

year, about 30,000 cases of breast cancer per year would be expected to be found 

by the presence of JLCa++s (considering about 20 - 21 % of all cancers are found by 

the presence of JLCa++s). An early sign of disease in 30 - 50% of mammographically 

detected cases is the appearance of clusters of fine, granular JLCa++s whose individual 

grains typically range in size from 0.05 - 1mm in diameter [49]. Individual JLCa++s 

are difficult to detect because of variations in their shape and size and because they are 

embedded in and camouflaged by varying densities of parenchymal tissue structures. 

Indeed, recent estimates indicate that between 10 and 30% of breast lesions (of all 

types) are missed by radiologists during routine screening [56]-[60]. 

If, as stated earlier, 25 million women are screened each year, the number of 

mammograms to be processed will be 

25,000,000 patients x 4 views/patient = 100,000,000 views/year, (1.1) 
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since 4 views are usually needed for mammographic examination. In addition, if we 

assume 100llm resolution on film, the storage requirement will be 

2,048 x 2,048 pixels/view x 12 bits/pixel x 100,000,000 views 

= 5,033,165 Gbits/year. 

So, more than 625 thousand 1 Gbyte-disks will be needed each year. 

(1.2) 

Since at present, mammogram readings are performed by experts who look for 

the presence of abnormalities that may be interpretated as cancerous changes, the 

interpretation of a large volume of images will be a major problem. In addition, it is 

difficult for radiologists to maintain interest in interpreting large numbers of images 

in which only a small number show abnormalities. Hence, computer aided diagnosis 

(CAD) systems are needed to use mammography in mass screening programs. CAD 

can partially alleviate some of the problems mentioned above. 

CAD schemes using digital image processing techniques have the goal of improving 

the detection performance and throughput of screening mammography. In screening 

programs, where more than 99% of the images are normal, automated detection of 

IlCa++s can improve the radiologist's performance to detect abnormalities. Typ­

ically, CAD systems are designed to provide a second opinion to aid rather than 

replace the radiologists. 
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1.1 Previous Work 

Many researchers have tried to detect /LCa++s using image processing techniques 

developed for image enhancement, object location, and pattern recognition. Chan et 

al. [5] use a differencing technique in which a signal-suppressed image is subtracted 

from a signal-enhanced image to suppress unwanted background texture. Signal en­

hancement is achieved using an approximation to a matched filter for the /LCa++s. 

Contrast, size, and clustering criteria are used to reduce the false positive rate. Sev­

eral authors have proposed a number of variants of the matched filter [2]-[4]. In later 

work, Chan et al. [6] include a power spectrum feature for improved discrimination. 

This work is important in that ROC (receiver operating characteristic) tests showed 

that CAD can improve the performance of radiologists. The image processing al­

gorithms still produce false positives, although in CAD these are overruled by the 

radiologist. Fam et al. [8] describe a two-part algorithm for detecting clustered cal­

cifications. The first stage identifies individual calcifications using a region-growing 

procedure which groups neighboring pixels according to similarity in average gray 

level and the variance of pixels contained in connected structure. Size, gray level, 

contrast and gradient criteria are applied to the segmented regions and only those 

falling within selected ranges are positively identified as calcifications. A second stage 

passes only those potential calcifications which occur in clusters of three or more. One 

drawback of the first stage is the number of free parameters which must be selected 
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in order to compensate for the intensity and contrast of the original film. A method 

based on the same philosophy is proposed by Davies and Dance [9]. Here, local area 

thresholding is used for segmentation of small, bright, suspicious regions followed by 

feature analysis and cluster identification. Once again the feature analysis (classi­

fication) stage employs specific gray level and contrast values, which are inherently 

sensitive to imaging conditions. This method tries to emphasize the suspicious re­

gions rather than the individual jlCa++s. Strickland [28]-[31] employs a Student's 

t-test in a curvature feature space and compares its performance with that of pre­

whitening matched filter. Karssemeijer [10] also employs local thresholding but uses a 

Bayesian setting to distinguish elongated positives from faint calcifications. Dhawan 

[50] has developed an adaptive neighborhood image processing technique to enhance 

the low contrast of specific features. Nishikawa et al. [51] employ an image differ­

encing technique to increase the signal-to-noise ratio of jlCa++s. Signal extraction 

is acomplished by applying a global gray-level thresholding, morphological erosion, 

and local adaptive gray-level thresholding. Texture analysis, comparison of the size 

of a jlCa++ with its radiation contrast, and spatial distribution of signals within the 

clusters are included to reduce the false-positive rate. However, small calcifications 

whose diameter is less than 0.2mm can not be detected because the spatial resolution 

used is O.4mm. Dengler et al. [52] use a two-stage algorithm for spot detection and 

shape extraction. After high-pass filtering which is realized by subtracting from the 

original image a Gausian low-pass filtered image, a weighted difference of Gaussians 
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filter is applied. Then they try to reproduce the shape of the spots using morpholog­

ical filtering. The weighted difference of Gaussians can be thought of as a variant of 

the prewhitening matched filter. The preprocessing operation is basically the same 

as the weighted difference of Gaussians filtering at different scales. In this respect, 

the first stage can be modeled as a repeated application of the filter. 

Surprisingly few authors address the problem of detecting jlCa++s of varying size. 

An important branch of CAD methods in mammography employs wavelet transforms 

for feature enhancement. The general approach is: (1) Compute the forward wavelet 

transform of the image; (2) Nonlinearly transform or adaptively weight the wavelet 

coefficients; (3) Compute the inverse wavelet transform. 

Richardson [14] showed that the details components of the lowest octaves (i.e. 

those containing the finest structure), which are the difference between successive 

levels in the decomposition, can be useful in enhancing the visibility of jlCa++s in 

mammograms. Laine and Song [15] also use wavelet transforms to enhance jlCa++s. 

The wavelet in this case is the first derivative of Gaussian, whose relative is the well 

known Canny edge operator [23]. Mammograms are enhanced scale-dependently by 

selectively weighting and scaling the details images. In later work [61], a dyadic 

wavelet transform method is shown to be equivalent to unsharp masking at multiple 

scales. Seaton and Abbott [17] compare multiscale morphological decompositions 

with Gaussian and Laplacian pyramids. Structuring elements are repeatedly applied 
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to remove high frequency details in the image. A useful scale-dependent segmenta­

tion can be obtained by carefully matching the structuring element to the type of 

objects being sought. Strickland and Hahn [31] apply an adaptive matched filter to 

the images formed in a Laplacian pyramid, each of which contains a narrower range of 

pCa++ scales. Barman et al. [32] represent multiresolution images using a Gaussian 

pyramid created by quadrature filters to produce estimates of orientation, Fourier 

phase and energy. The outputs from multiscale quadrature filters are processed by 

specialized object extraction algorithms employing size, orientation, relative bright­

ness and shape features. Clusters of pCa++s are tagged by examining and detecting 

likely combinations of features in the object list. Qian et al. [53] enhance pCa++s 

by cascading adaptive spatial filtering with multiresolution decomposition and re­

construction. They try to enhance details subimages using tree structured nonlinear 

filters with fixed parameters and adaptive order statistic filters. Yoshida et al. [54] 

improve the visibility of pCa++s by reconstructing mammograms from selected sub­

bands. Post-detection using morphological operators and thresholding achieves a 

sensitivity of 85% true clusters detected at 5 false positive clusters per image when 

tested on a 100pm resolution database of 39 mammograms. The authors conclude 

that wavelet techniques are especially useful for detecting subtle pCa++s when used 

to augment existing CAD algorithms. 
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1.2 Proposed Approach 

In mammograms, the jlCa++s we want to recognize come in various sizes. The 

size of the neighborhood where analysis is performed should be adapted to the size 

of the jlCa++s. Hence, it is not possible to define a priori an optimal resolution for 

analyzing images. We can solve this problem by processing the image at different 

resolutions. Until now, many multiresolution signal analysis techniques have been 

developed. Among these, the wavelet transform is known to be the best method which 

represents a signal at multiple scales. We can interpret the wavelet transform as a 

signal decomposition onto a set of basis functions called wavelets, which are obtained 

from a single prototype wavelet by dilation and translation. If we select wavelets 

which are close to the impulse response of a matched filter for detecting jlCa++s, then 

the wavelet transform can be considered to be a hank of multisca.le matched filters 

for detecting pCa++s. A wavelet-based algorithm detecting jlCa++s of varying size 

is proposed. This has evolved from our earlier work on multiscale tumor detection in 

gamma-ray images [28]-[31]. The idea is to use the wavelet transform to decompose 

a mammogram into a series of band-pass-filtered images of increasingly coarse detail. 

The filters which transform the mammogram into the HH and (summed) LH + HL 

sub-bands are in fact matched filters for detecting idealized jlCa++s in separable and 

nonseparable background noise. Since actual mammogram texture is well modeled 

by a combination of these noise types the combination of HH and LH + HL is nearly 
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optimum. Detecting objects in a particular size range is accomplished by processing 

these sub-bands or details images at the appropriate scale. The details images contain 

jlCa++s and other high frequency structures. 

Two methods have been proposed to detect the candidate jlCa++s. In the first 

method, the outputs HH and LH + HL from each octave are thresholded at some 

fixed percentile of the histogram of each component. Then, the detected images from 

all octaves are logically ORed to yield the binary map of detected pixels. The second 

method employs a HoteIIing observer. Pixels from HH, LH + HL in 7 sub-bands com­

prise a 7-dimensional feature vectors. Several hundreds of feature vectors extracted 

from the background and manually segmented jlCa++s enable us to compute the 

HoteIIing observer. The HoteIling discriminant is computed and then thresholded to 

obtain a binary map. In practice, the binary map from either method contains many 

false alarms as well as real jlCa++s because of the inhomogeneous mammogram tex­

ture. Object shape is used to reduce the number of false alarms. For the wavelet 

basis used, the LH + HL sub-band filters are very close to Laplacian of Gaussian, 

enabling us to extract edges derived from the zero-crossings in those sub-bands. To 

discriminate betwen jlCa++s and false alarms, we first search for a precise closed 

boundary at each candidate jlCa++ site. The resultant objects are referred to as 

true positives. Although the boundaries of some readily visible jlCa++s are closed, 

many of them have broken or disconnected boundaries. These can be detected by 

computing a circularity measure such as a Hough transform and a phase distribution. 
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Thus, highly elongated regions are penalized, and many of the false alarms caused 

by long strands of connective tissue can be eliminated. Segmentation of pCa++s is 

realized by weighting the sub-bands at these final detected sites before computing 

the inverse wavelet transform. Depending on which sub-bands of the forward wavelet 

transform are included in the inverse operation, the reconstructed image may con­

sist of detected pixels (i.e., pCa++s) only, or detected pixels superimposed on the 

original mammogram. The basic wavelet transform is implemented at full resolu­

tion in each octave level, with additional voices inserted between octaves to provide 

improved scale resolution. 

Chapter 2 describes the mammogram images used in this research. The charac­

teristics of pCa++s are investigated and it is shown the texture of mammograms can 

be modeled as a combination of separable and nonseparable Markov processes. The 

criteria used for detection of clustered pCa++s are explained although there are no 

universally accepted criteria. The subject of Chapter 3 is matched filters for detect­

ing pCa++s. First, the power spectra of separable and nonseparable Markov noise 

are computed. Then, the prewhitening matched filters for detecting pCa++s buried 

in such backgrounds are derived. Chapter 4 provides an introduction to the wavelet 

theory. It is shown in Chapter 5 that the matched filter for detecting pCa++s can 

be implemented using the wavelet transform if the Laplacian of Gaussian wavelet is 

selected. The detection performance of the wavelet transform is compared with that 

of the matched filter by computing ROC curves using simulated Gaussian objects 
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embedded in both separable and nonseparable Markov noise. Chapter 6 describes 

a nonlinear algorithm for detecting IlCa++s. Two methods proposed to detect the 

candidate IlCa++s are explained in detail. Given the candidate IlCa++ sites, their 

shapes are analyzed to reduce false alarms. The intermediate results at each step of 

the algorithm are also shown. Experimental results from the nonlinear algorithm are 

described in Chapter 7. Performance resulting from tests on a set of 40 digital mam­

mograms is presented in the form of a free-response receiver operating characteristic 

(FROC) curve. The FROC curve derived from matched filters is compared with that 

of the Hotelling observer and the performance gain obtained by applying the shape 

analysis is depicted. Examples of reconstructed calcifications are also shown. 
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CHAPTER 2 

Data 

2.1 Mammogram Database 

Our flCa++ detection algorithms are tested on a well known and widely published 

database of 40 digitized mammograms created by N. Karssemeijer of University Hos­

pital Nijmegen, The Netherlands [10][35]. The mammograms were recorded with 

a Kodak MIN-R/SOl77 screen/film combination. Each image was digitized from 

film using an Eikonix 1412 CCD camera operating at a spatial resolution of 2048 x 

2048 pixels per image with 12 bits per pixel, using a sampling aperture of 50 flm in 

diameter and a 100 flm sample spacing. Figure 2.1 shows a typical 2048 x 2048 mam­

mogram. The 40 images represent 21 different patients. Each image contains one 

or more flCa++ clusters verified by expert radiologists and histology. The database 

contains a total of 104 clusters, many of which proved to be malignant. One pair of 

images, numbered 120 (oblique) and 12c (craniocaudal), contains a total of 28 clus­

ters, which is approximately 27% of the total. The remaining images each contain an 

average of two clusters. Ground truth for each image consists of the x, y coordinates 

and the radius of a "truth circle" for each verified cluster. The locations of individual 

JtCa++s are not marked. The visibility of the clusters is highly variable, which is 

rather typical of clinical cases. 
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In a preprocessing step, each image was gray-scale transformed using a noise­

equalizing look-up table. Noise characteristics of digitized films are complex and 

depend strongly on the gray level itself. This problem can be solved by mapping the 

pixel values onto an iso-presion scale on which the absolute error of the pixel values 

due to film noise and digitization noise is equal over the whole range of pixel values 

[35]. A constant sensitivity over the whole range of pixel values can be obtained with 

a parameter setting which is independent of the grey level. The look-up tables are 

distributed with the database. A representative look-up table is provided in Figure 

2.2. Figure 2.3 shows the mammogram after application of the noise-equalizing look­

up table to the example in Figure 2.1. 

In the original mammogram the breast occupies a relatively small portion of the 

image area. Hence, we crop the image to a sub-region of 1024 x 1024 pixels, still at 

full pixel resolution. Figure 2.4 shows a sub-region of Figure 2.3. All images in the 

database are likewise cropped. 

2.2 Cluster Detection Criteria 

At present no universally accepted criteria for the detection of clustered pCa++s 

have been agreed upon, although various research groups are currently attempting to 

assemble a common database of mammograms with ground truth and a set of stan­

dardized detection metrics. We adopt the detection criteria proposed by Karssemeijer 

[35]; namely that for counting true positives (TPs) a cluster is considered detected if 
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Figure 2.1: A typical 2048 x 2048 mammogram, identified as c05c. The breast 
occupies a relatively small portion of the image area. 
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Figure 2.3: This is Figure 2.1 after application of the noise-equalizing look-up table. 

two or more pCa++s are found in the region of film (truth circle) identified by the 

radiologist. A false positive (FP) is counted if two or more erroneous detections are 

made within an empty, closed region of 0.5 em in width. One weakness of this metric 

is that at high sensitivity thresholds the number of false positives may actually drop 

due to merging of previously separated false clusters. However, in practice this occurs 

at false positive rates which are too high to be of any clinical value. The useful part 

of the performance curve lies below one or two false clusters per image. 
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Figure 2.4: 1024 x 1024 Sub-region of Figure 2.2. 
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Figure 2.5: (a) Cross section of a prominent j.tCa++ cluster. (b) Average profile of 
80 j.tCa++s, after normalizing for variations in height and width. The solid line and 
the dotted line represent the row and column profiles, respectively. 

2.3 Characteristics of Microcalcifications 

In mammograms, individual j.tCa++s usually appear ab small (typically 0.05 - 1 

mm), particulate objects of variable shape (from granular to rod-shaped), and fairly 

uniform optical density, which look like dusts or crushed stones. Although j.tCa++s 

vary in outline and degree of elongation, the average form is roughly circular, with a 

tapered cross-sectional profile. Figure 2.5( a) shows the cross section of a typical clus-

ter with four prominent j.tCa++s. Figure 2.5(b) shows the average profile computed 

from 80 j.tCa++s selected at random from the test images. For a given size, it is 

not unreasonable to model a j.tCa++ using a circularly-symmetric Gaussian function 

(See Figure 2.5(b)). Another merit of the Gaussian model is that leads to separable 
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detection filters which are implementable via the wavelet transform. Since the Gaus­

sian model represents an average profile, individual jlCa++s may be modeled as 

two-dimensional Gaussians with noise. The wavelet transform can smooth high fre­

quency noise to some degree, because it involves a low-pass filtering at each octave. 

In other words, in the original mammograms, real jlCa++s may be very different 

from two-dimensional Gaussians, but at the higher octaves, the image is convolved 

with a low-pass filter which resembles a Gaussian and the high frequency components 

of the image are removed. Thus, jlCa++s become smoothed to the two-dimensional 

Gaussian at higher octaves. For this reason, this model fits even better when the 

image is smoothed, which occurs when applying the wavelet transform. 

Gaussian signals have few features and we have difficulties in detecting them 

because the mammogram background contains numerous Gaussian shaped features. 

Because of their simple shape, it is very difficult to find features which distinguish 

jlCa++s from other structures and to discriminate jlCa++s from such backgrounds. 

But, if we differentiate the image (equivalent to high-pass filtering), this has the effect 

of decorrelating the image and thus backgrounds with low frequency components are 

suppressed and jlCa++s are enhanced. Although jlCa++s may not be visible in the 

original mammogram, they may be apparent in the higher frequency bands when the 

image is decomposed into sub-bands. Gaussians with small variances have a broad 

spectrum and will appear in high frequency bands, whereas Gaussians with large 

variances will appear in low frequency ba'lds. Thus, if the image is decomposed into 
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many sub-bands, Gaussians of varying size can be detected by examining several 

sub-bands. 

2.4 Model of Mammogram Texture 

The visibility of IlCa++s is often degraded by the high frequency texture of breast 

tissue. For designing detectors, a statistical model of this background noise texture 

is required. A widely used stochastic model of images [47] consists of a nonstationary 

mean plus a stationary residual component modeled as either a separable Markov pro­

cess with autocorrelation rnn(k, I) = u~e-a(lkl+llI), or a nonseparable Markov process 

with autocorrelation rnn(k,l) = u;e-aVP"+P [12]. The residual component is typi­

cally created by subtracting a low-pass filtered version of the image from the original 

image. The residual image, since it contains the high frequency details of the image, 

is a logical choice for representing mammogram texture. Figure 2.6 compares simu­

lated textures with the residual texture computed from a sample mammogram. The 

nonseparable Markov texture is isotropic, which would appear to be better suited 

for breast texture, with its structures oriented in all directions. Nevertheless, the 

horizontal and vertical streaking generated by the separable model may be useful 

for representing the fine vasculature of the breast. In fact, as Figure 2.6 suggests, a 

combination of separable and nonseparable models may be closest to the truth. This 

will be explained in more detail in Chapter 3. 
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After subtracting the spatial mean from each mammogram, the Markov correla­

tion parameter a of the residual process is estimated using [48] & = -In(~::{~:~p, 

where Tnn(k, I) is the estimated autocorrelation of background texture. Values of & 

computed from images in the Nijmegen database fall in the range 0.01 -+ 0.2. 

In the next chapter the power spectra of the first-order separable and nonseparable 

Markov noise images are derived explicitly by Fourier transforming their autocorrela­

tion functions. The estimat.ed power spectrum computed from the 40 mammograms 

is modeled by combining the power spectrum of the first-order separable Markov 

noise with that of the first-order nonseparable Markov noise. Then, the matched 

filters for detecting /lCa++s are computed, using the power spectra derived and by 

modeling /lCa++s as two-dimensional Gaussian functions. 
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Figure 2.6: Markov model of high frequency mammogram texture. Upper left Sam­
ple mammogram with spatial mean removed, which we call the "residual" component; 

Upper right Separable Markov model texture with a = 0.009. Lower left Nonsep­
arable Markov model texture with a = 0.004. Lower right Weighted average of the 
two texture types with spatial mean removed. This synthetic texture closely matches 

the residual mammogram. 
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CHAPTER 3 

Matched Filter for Detecting Microcalcifications 

A central problem in stochastic processes is the estimation of a signal in the 

presence of noise. If the signal to be detected is deterministic and the noise is a wide­

sense stationary process with known power spectrum, then a matched filter is known 

to be the optimum detector in the sense that it maximizes the signal to noise ratio 

at the detection point or instant. In the following, we estimate the power spectrum 

of mammograms, discuss the prewhitening matched filter and derive it for detecting 

J.lCa++s in mammograms by using the estimated power spectrum. 

3.1 Modeling the Power Spectrum of Mammograms 

A random process generating an image is said to be stationary in the strict sense 

if its moments are unaffected by shifts in space. The process is said to be stationary 

in the wide sense if its mean is constant and its correlation is dependent on the 

differences in the image coordinates, not on their individual values. In other words for 

stationary processes, the mean of the image is constant and the image autocorrelation 

is not a function of position, but a function of difference in image coordinates. 

For scenes of man-made objects there is often a large amount of horizontal and 

vertical image structure, and the spatial separation approximation is quite good. 
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The autocorrelation function of a random field is called separable when it can be 

expressed as a product of autocorrelation functions of one-dimensional sequences. A 

separable stationary autocorrelation function often used in image processing is 

(3.1) 

which is often expressed in the form 

(3.2) 

Here u
n
2 represents the variance of the random field and PI = e-O

", = rSEP(1.0) P 
u~ , 2 

= e-Ol/ = rSEPJO.I) are the one-step correlations in the m and n directions, respec-
Un 

tively. We can thus compute the power spectrum of noise SSEP( W:r;, wy) by Fourier 

transforming rSEP( m, n) in (3.1) as follows: 

F[rSEP(m, n)] 

u2 (l-pn (l-p~) (3 3) 
- n(I-PleJW"')(I-Ple-JW"') (I-P2eJWI/)(I-P2e-JWI/) • 

u; (1-pncl-p~) 

In the case of (3.2), SSEP(w:r;, wy) can be computed by replacing PI and P2 with e-o
"" 

e-Ol/, respectively. i.e. 

u~(1- 2-20"')(1 - 2-201/) 
SSEP(W:r;, wy) = (1 _ e-(0.r+jwz»)(1 _ e-(0",-jw"'»)(1 _ e-(01/+jwl/»)(1 _ e-(ol/-jwl/») (3.4) 

When a is small, according to the Taylor series, e-(o+jw) and e-(o-jw) can be approx-

imated as 1 - a - jw, 1 - a + jw, respectively. Thus, SSEP( W:r;, wy) for a separable 

process can be simplified as 

( ) 
4a:r;ayu~ 

SSEP W:r;,Wy = -( ~ + 2)( 2 + 2)' ax w:r; a y Wy 
(3.5) 
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Figure 3.1: (a) Logarithmic power spectrum of a separable Markov process. (b) Its 
profiles in three directions (row, column and diagonal). 

Figure 3.1 shows the power spectrum for a separable Markov process and its 

profiles in three directions, when ax = a y = 0.009. Meanwhile, in natural scenes, 

there usually is no preferential direction of correlation; the spatial autocorrelation 

function tends to be circularly symmetric, and not separable. An image field is 

often modeled as a sample of a first-order Markov process for which the correlation 

between points on the image field is proportional to their geometric separation. The 

nonseparable autocorrelation function for the two-dimensional Markov process is 

(3.6) 

and the corresponding power spectrum is 

(3.7) 
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Figure 3.2: (a) Logarithmic power spectrum of a nonseparable Markov process. (b) 
Its profiles in three directions (row, column and diagonal). 

Figure 3.2 shows the power spectrum for a nonseparable Markov process and its 

profiles in three directions, when ax = a y = 0.004. 

In order to justify the modeling of mammograms as a Markov process, we estimate 

the autocorrelation function from the preprocessed mammograms. The estimated 

autocorrelation coefficients are displayed in normalized form, as shown in Figure 

3.3. Figure 3.4 shows the estimated power spectrum which is computed by Fourier 

transforming the estimated autocorrelation coefficients. We assume here that the 

estimated power spectrum can be modeled as a weighted combination of separable 

and nonseparable power spectra, 

(3.8) 
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Figure 3.3: (a) Rescaled autocorrelation values computed from 40 mammograms. (b) 
Its profiles in three directions (row, column and diagonal). 

The optimum parameters p, q and ax, a y for separable and nonseparable power 

spectra such that the synthetic power spectrum S(wx, wy) bust matches the estimated 

power spectrum are obtained in the following way. 

First, S(wx, wy) is computed using (3.5) and (3.7) for each parameter set (p, q, ax 

and ay) according to (3.8). The similarity between S(wx, wy) and the estimated power 

spectrum given in Figure 3.4 is investigated by applying a least-squares curve fitting 

technique to their row, column and diagonal profiles. Curve fitting is performed in 

the spatial frequency region of 0.1 :5 W x , Wy :5 0.5, since we are only interested in the 

residual mammograms whose low frequency components are subtracted by applying 

a high-pass filter. 
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Secondly, a synthetic texture corresponding to the parameter set is generated, 

which will be explained in detail in section 5.2. One sample mammogram and the 

synthetic texture are passed through the same high-pass filter to subtract the local 

mean. The textural edgeness is computed from the above images. An edge passing 

through a pixel can be detected using a gradient, which is the sum of the absolute 

value of the differences between opposite neighboring pixels. Thus a measure of 

texture for any image can be obtained by computing the gradient image and from it 

determining the average value of the gradient in the image [66]. The gradient g(d) 

for every distance d over neighborhood N is defined as 

g(d) = E(i,j)EN{ll(i,j) - l(i + d,j)1 + Il(i,j) - l(i - d,j)1 

+II(i,j) - I(i,j + d)1 + II(i,j) - I(i,j - d)l}. 

(3.9) 

This textural edgeness measure g( d) is a feature that characterizes the texture in the 

spatial domain, while the power spectrum or autocorrelatioil function basically both 

relate texture to spatial frequency. Using this measure, the textural edgeness of both 

the sample mammogram and the synthetic texture are measured and then compared 

using a least-squares curve fitting technique. 

Finally the mammogram texture and the synthetic texture, as shown in Figure 2.6, 

are visually inspected to ensure that the two images remain close in appearance. The 

above steps are repeated by changing the parameter set. The optimum parameters 

are such that their row, column and diagonal profiles are close to each other and the 

difference between their texture edgeness measures is minimum in the sense of least 
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Figure 3.4: (a) Logarithmic power spectrum computed from the 40 mammograms. 
(b) Its profiles in three directions (row, column and diagonal). 

mean square error. The optimal p and q so obtained are 0.375 and 0.625, respectively, 

and the corresponding ax ( = a y ) for separable and nonseparable power spectra are 

0.009 and 0.004, respectively. 

Figure 3.5 shows the curves of g( d) for the mammogram texture and the texture 

synthesized by using the above parameters. This figure explains that both textures 

have the same scales of micro edges because their gradients are very large for distances 

greater than 3. Thus, from the above analyses it can be asserted that the first order 

Markov process is a reasonable model for mammograms. Figure 3.6 shows S(wx,Wy) 

using the above parameters. 
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Figure 3.5: Comparison of textural edgeness of a residue of mammogram (solid) 

and synthesized texture (broken), shown in upper left and lower left of Figure 2.6, 
respecti vely. 

From Figure 3.4 and Figure 3.5, we see that the estimated power spectrum can 

be modeled by combining separable and nonseparable first order Markov processes. 

This fact is also supported in the spatial domain by Figure 2.6. 

3.2 Prewhitening Matched Filter Principle 

Suppose a deterministic object f(x,y) (i.e. a /LCa++) located at (xo, Yo) is imaged 

in the presence of some anatomical background noise field n( x, y), giving the observed 

image 

i(x,y) = f(x - Xo,y - Yo) + n(x,y). (3.10) 
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Figure 3.6: (a) Logarithmic power spectrum computed from the addition of separable 
and nonseparable power spectra. (b) Its profiles in three directions (row, column and 

diagonal). 

If we assume that the noise is stationary with power spectral density Snn(W:1;, w y ), 

then the optimum detector for finding the known f(x,y) is the matched filter with 

transfer function 

(3.11) 

and impulse response 

hm/(x, y) = rnn(x, y) * f( -x - Xo, -y - yo), (3.12) 

where * denotes convolution and rnn(x, y) == ;:-1 s (1 w)' When the noise is white, 
nn Wz, II 

Snn(W:1;,Wy ) is a constant, rnn(x,y) is an impulse, and hm/(x,y) is a coordinate-

reversed template of the signal to be detected. Hence, the matched filter performs a 
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correlation between the input signal and the template. Detection is accomplished by 

sampling the output at the point of peak correlation. If the output exceeds a threshold 

the signal is deemed present, or absent if below the threshold. In imaging applications, 

the location of an object to be detected is unknown, in which case any above-threshold 

correlation peaks are counted as positive detections. The matched filter is optimum 

in the sense that the signal-to-noise ratio of the output signal is maximized at the 

detection instant. Although the matched filter originally assumes knowledge of the 

shape and location of the signal to be detected, the shape of the signal is more likely 

to coincide with correlated features in the noise when the background noise is colored. 

Simply correlating the input data with a template of the desired signal therefore leads 

to an increase in the false positive rate. In fact, the solution is built into (3.11). It 

can be seen that Snn(w:c, wy) acts as a prewhitening term by expressing the result 

of applying the filter to i(x,y) in the form (adopting Xo = Yo = 0 for simplicity): 

(3.13) 
FO(w.r,w,,) l(w.r,Wy) 

- VSnn(W.r,WI/) VSnn(W.r,WI/) ' 

or, equivalently, in the image domain, and invoking (3.10) 

g(x, y) = [P(x, y) * f( -x, -y)] * [P(x, y) * {f(x, y) + n(x, y)}], (3.14) 

where p(x, y) == :F-1.J 1 is the impulse response of a whitening filter. The 
Snn(W.r,WI/) 

convolution between p(x,y) and n(x,y) in (3.14) acts to whiten the noise. A side 

effect of this whitening is object distortion, seen in the convolution between p(x, y) 
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and f(x, y). To compensate, the reversed object template f( -x, -y) is also distorted 

by p(x,y) in the first convolution term in (3.14). The nature of the matched filter is 

thereby preserved. 

3.3 Derivation of Prewhitening Matched Filter 

The matched filter can never be optimum for detecting pCa++s in mammograms 

since: (a) pCa++s vary in size and shape, thus f(x,y) is not known precisely, and 

(b) the background texture n(x,y) is nonstationary, meaning that Snn(w,x,wy ) is 

indeterminate and hence true pre-whitening is unrealizable. Nevertheless a practical 

algorithm can be implemented with an acceptable drop in performance [30] because 

of the following two reasons. First, the profile of many pCa++s is approximately 

Gaussian, and may be modeled as such. Secondly, the nonstationary background can 

be modeled as a nonstationary mean plus a residual stationary component modeled 

as a Markov process [47]. Thus, Snn(w,x, wy ) of the residual process [48] can be easily 

estimated after subtracting the spatial mean from each mammogram. Under these 

assumptions it is feasible to derive the matched filter in (3.11) for application to the 

residual component. Hence if we assume that the spatial mean of the background 

noise is zero and the signal to be detected is the two-dimensional Gaussian of variance 

2 . 
0' , z.e., 

-~ f(X,YjO')=e 217 , (3.15) 



48 

the prewhitening matched filter for separable Markov process HSEP(wx, wy ) is 

FO(w""wy;u) 

SSEP(W""WII) 

0'2(w~+W~) 
211"u2e- 2 

4o,rQyaa 

0'2(w~+w~) 
11"u2(a~+w~)(a~+w~)e- 2 

-- 2QzQuu~ 

Since HSEP(Wx, wy ) is separable, HSEP(wx, wy ) can be expressed as 

where for ax = a y = a, 

and for a ~ 1, 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

Figure 3.7 shows the impulse response of the separable PWMF given in (3.16) and 

its profiles. Figure 3.8 shows the shapes of hm(x) = :F-1 Hm(w) as p changes. 

From this figure, we see that hm (x) changes from a Gaussian to a Laplacian of 

Gaussian as p increases from 0 to 1. This means that when p is 0, i.e., noise is white, 

the impulse response of the matched filter hm(x) is just a Gaussian of the same 

variance, whereas it approaches a LaplacIan of Gaussian as p increases to 1, i.e., in 
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Figure 3.7: (a) Matched filter for detecting Gaussian objects in separable Markov 

noise. (b) its profiles in the spatial domain. Solid line represents row and column 
profile and the broken line represents diagonal profile. 
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Figure 3.9: (a) Matched filter for detecting Gaussian objects in nonseparable Markov 
noise. (b) its profiles in the spatial domain. 

highly correlated noise. Likewise, for the nonseparable autocorrelation function often 

considered as more realistic, the prewhitening matched filter HNONSEP(Wx , w y ) is 

= (3.20) 

where for ax = a y = a ~ 1, 

(3.21) 
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Figure 3.9 shows the impulse response of the nonseparable PWMF given in (3.21) 

and its profiles. Figure 3.10 shows the profiles of the impulse response of the PWMF 

computed from the estimated power spectrum. As expected, the nonseparable PWMF 

is more similar to the estimated one. When a -+ 00 the residual component is already 

white, and the point spread functions hSEP(x, y) and hNONSEP(X, y) are Gaussian. 

(Note, however, that this condition is not apparent here due to the restriction that 

a ~ 1.) When a ~ 1 the increasing inter-pixel correlation of the residual causes 

both point spread functions to develop increasingly negative side lobes on either side 

of the positive main lobe, as shown in Figure 3.8. The remaining variable - the size 

of the j.tCa++ - may be accommodated by implementing a bank of both forms of 

matched filter in the form of a wavelet transform. 

In the next chapter, wavelet theory is reviewed and the transfer functions of the 

details images are derived in terms of a scaling function and a wavelet. Finer sampling 

of scale is also presented. 
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CHAPTER 4 

Wavelet Transform 

Multifrequency decomposition schemes were introduced by Crochier, Webber, and 

Flanagan [40] for sub-band coding of speech signals. The basic idea of a sub-band 

coding scheme is to decompose an input signal into a number of frequency bands 

(or sub-bands) using a bank of band-pass filters. Each sub-band is then decimated 

and encoded appropriately. The encoded sub-bands are decoded, interpolated, and 

then passed through synthesis filters to reconstruct the signal. Quadrature mirror 

filters (QMF) were introduced in [41] and it was proved that QMFs can reconstruct 

the signal without aliasing in the absence of quantization errors. A number of mul-

tiresolution signal processing schemes have emerged independently in many different 

fields. Wavelet theory is recognized as a unified framework for multiresolution signal 

representations. Wavelets were introduced by Grossmann and Morlet [IS] as a family 

of functions ¢a,b(X), where 

1 x-b 
¢a,b(X) = fI::j¢(-)' 

vial a 

(4.1) 

They are derived from translations and dilations of one basic function ¢(x), referred 

to as the mother wavelet. The parameter a in (4.1) is a scale parameter and the 

constant +. is used for energy normalization. Depending on the type of applica­
vial 

tion, different families of wavelets may be chosen. There are various continuous and 
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discrete ways of representing time-scale parameters (b, a), each one yielding a differ­

ent type of wavelet transform. One can then represent functions f E L2(R) by the 

functions 

Da,bf = 1: f(x) . 'I/;:,b(x)dx, (4.2) 

where the asterisk stands for complex conjugate. L2(R) denotes the vector space 

of measurable, square-integrable one dimensional functions. If '1/;( x) satisfies the 

admissibility condition such that 

(4.3) 

where ¢ denotes the Fourier transform of '1/;, then, Da,b is an isometry (up to a 

constant) from L2(R) into L2(R*xR) [19], where R* is equal to R except that 0 is 

excluded. The operator Da,b is called the "Continuous wavelet transform" which was 

originated by Goupillaud, Grossmann, and Morlet [42]. If 'I/; has sufficient decay, then 

the condition (4.3) implies that 

1: 'I/;(x)dx = O. (4.4) 

Typically, the function 'I/; will therefore have at least some oscillations. The basic 

idea of the wavelet transform is to represent any arbitrary function f as a superpo­

sition of wavelets. Any such superposition decomposes f into different scale levels, 

where each level is then further decomposed with a resolution adapted to the level. 

One way to achieve such a decomposition writes f as an integral over a and b of 'l/;a,b 
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with appropriate weighting coefficients [18] as follows, 

1
00 100 dadb 

f(x) = -00 -00 Da,d¢a,b(X)7' (4.5) 

We can sample the parameters a and b to represent f as a discrete superposition. 

If we define a = a~, b = kboa~ with j, k E Z, and ao > 1, bo > 0 fixed, the wavelet 

decomposition is then 

(4.6) 

where 

(4.7) 

Decompositions of this type were studied in [43]. For discrete wavelet transforms 

where ao = 2, bo = 1, there exist very special choices of ¢ such that the ¢2i,k2i 

constitute an orthonormal basis. Different bases of this nature were constructed 

by Stromberg [36], Meyer [37], Lemarie [38], Battle [39], and Daubechies [19]. All 

these examples correspond to a multi resolution analysis, which gives rise to a fast 

computation algorithm. 

4.1 Multiscale Signal Representation using Wavelets 

In multiresolution analysis, one really has two functions; the mother wavelet ¢ 

and a scaling function <p. One introduces dilated and translated versions of the 



scaling function as well as the mother wavelet, 

¢2i,k2i(X) = 2-t¢(2-i x - k) 

¢2i ,k2j(X) = 2-t¢(2-i x - k). 
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(4.8) 

For fixed j, ¢2i ,k2i are orthonormal. We denote by Vi the space spanned by the ¢2i ,k2i ; 

these spaces Vi describe successive approximation spaces, ... V2 c Vi c Va C V-I 

C V-2 C "', each with resolution 2i. For each j, the ¢2j,k2i span a space 0i which 

is exactly the orthogonal complement in Vi-I of Vi; the coefficients < ¢2i,k2i, f > 

which are J~oo f(x)¢2i,k2i(x)dx therefore, describe the information lost when going 

from an approximation of f with resolution 2i - I to the coarser approximation with 

resolution 2i. All this is translated into the following algorithm for the computation 

(4.9) 

h(.) and g(.) are obtained in the following way, 

1.100 

h(k) = 22 -00 ¢>(x - k)¢(2x)dx, ( 4.10) 

h(k) = h(-k) 

g(k) = (_l)I-kh( -k + 1) (4.11) 

g(k) = g(-k). 

If we compute the Fourier transform of (4.10), we get 

¢(2w) = H(w)¢(w), ( 4.12) 
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where ¢(w) is the Fourier transform of cjJ(x). H(w) satisfies the following conditions 

[22]: 

IH(O)I = 1; h(n) = o(n-2), n --. 00 

IH(w)12 + IH(w + 11")1
2 = 1. 

From (4.12), ¢(w) can be expressed as 

00 

¢(w) = II H(2-Pw). 
p=l 

The Fourier transform of (4.11) gives 

G(w) = e-jw H(w + 11"), 

and the Fourier transform of t/J(x) can be written as 

For details, see [22]. 

A W A W 

t/J(w) = G( - )cjJ( -) 
2 2 

(4.13) 

(4.14) 

(4.15) 

( 4.16) 

In practice, real signals are represented at finite resolution. For normalization 

purposes, we suppose that this resolution is equal to 1. The orthonormal projection 

on V2i can now be computed by decomposing the signal f(x) on the above orthonor-

mal basis. The approximation of the signal f( x) at the resolution 1, f20 (x) can be 

expressed as 

00 

f(x) = f20(X) = 2: A20f(k)cjJ(x - k), (4.17) 
k=-oo 

where A20f(k) is characterized by the set of inner products, which we denote by 

A20f(k) - « f(x), cjJ(x - k) > )kEZ 

= ((f(:t) * cjJ(-x))(k))kEZ. 

(4.18) 
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In other words, A20 f( k) corresponds to the sampled version of f( x) * ifJ( -x). The 

Fourier transform of (4.18) gives 

( 4.19) 

where A20F(w), F(w), and 4>(w) are the Fourier transforms of A20f(k), f(x), and 

ifJ(x), respectively. A2of(k) is filtered by a low-pass filter H(w) to give the first low 

frequency sub-band signal A21f(k). Using (4.14), A21F(w) can be rewritten as 

A21F(w) - A2oF(w)H(w) 

- F( w )¢>*( w )H*( w) 

= F(w)¢>*(2w). 

(4.20) 

Likewise, the first high frequency sub-band signal D21f(k) is obtained by passing 

A20f through the high-pass filter G(w). Using (4.16), D21F(w) can be expressed as 

D21F(w) = F(w)¢>*(w)G(w) 

= F(w)¢>*(w)G*(w) 

= F(w)~*(2w). 

( 4.21) 

This can be easily implemented by the filtering process shown in Figure 4.1. If this 

filtering process is repeated, then 

A2jF(w) - F(w)¢>*(2iw) 

D2jF(w) - F(w)~*(2iw). 

The above equation can be rewritten as 

A2iF(w) = A20F(w),j;;~~~) 

D2j F( w) = .42oF( w) yj;;!~~). 

(4.22) 

( 4.23) 
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(a) Analysis (b) Synthesis 

w 

(c) 

Figure 4.1: One-dimensional wavelet transform 

Thus, the approximation at the resolution 2i , 12 j (X) can be expressed in the spatial 

domain as 

00 

12j(X) = L A2d(k)¢>(2- i x - k), (4.24) 
k=-oo 

where k;.d(k) is characterized by the set of inner product&, which we denote by 

A2jl(k) = « I(u), ¢>(2-i u - k) > hez 

- ((f(u) * ¢>( -2-i u))(2-k))kez. 

(4.25) 

This set of signals is called an orthogonal wavelet representation, and consists of 

the reference signal at a coarse resolution A2J 1 and the details signals D2i 1 at the 

resolutions 2i for 1 ~ j ~ J. The set can be interpreted as a decomposition of the 

original signal in an orthonormal wavelet basis or as a decomposition of the signal in 

a set of independent frequency channels as shown in Figure 4.1(c). This model can 

be easily extended to two dimensions. The signal is now a finite energy continuous 
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function f(x,y) E L2(R2). L2(R2) denotes the vector space of measurable, square­

integrable two dimensional functions f(x, y). Let (1!2j )jEZ be such a multiresolution 

approximation of L2(R2). The approximation of a signal f(x, y) at resolution 2j 

is equal to its orthogonal projection on the vector space 1!2j. One can show that 

there exists a unique scaling function <I> (x, y) whose dilation and translation gives an 

orthonormal basis of each space 1!2j. The set 2- j <I>(2- j x - m, 2-j x - n)(m,n)EZ2 forms 

an orthonormal basis of 1!2j. 2-j is a normalization factor of each function in the 

L2(R2) norm. For the case of separable multiresolution approximations of L2(R2), 

the scaling function <I>(x, y) can be written as 

<I>(x, y) = </>(x)</>(y), (4.26) 

where </>(x) is the one dimensional scaling function. The approximation of the signal 

f(x, y) at the resolution 1, f20(X, y) can be expressed as 

f(x,y) -

- L~,n=-oo A2of(m,n)<I>(x - m,y - n) (4.27) 

- L~,n=-oo A2of(m, n)</>(x - m)</>(y - n), 

where A20 f( m, n) is characterized by the set of inner products, which we denote by 

A2of(m,n) = «J(u,v),</>(u-m)</>(v-n»m,nEZ 

= ((J(u,v) * </>(-u)</>(-v))(m,n))m,nez. 

( 4.28) 

In other words, A2of(m, n) corresponds to the sampled version of f(x, y)*<I>( -x, -y). 

Actually, we are given A2of(m, n) rather than f(x, y). We can rewrite the above 
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equation in the frequency domain 

(4.29) 

where A20F(wx, wy), F(wx, wy), and ¢(w) are the Fourier transforms of A20f(m, n), 

f(x,y), and ¢(x), respectively. The above operations can be easily implemented by 

the filtering process shown in Figure 4.2(a), where A20f is filtered to give A21f, D~d, 

D~d, Did. Using (4.14) and (4.16), their Fourier transforms can be written as 

A21F(w) - A20F(wx,wy)il(wx)il(wy) 

- A F( ) i·(2w:r) i;(2wv) 
2
0 wx, Wy i.(wz) "'.(WII)' 

(4.30) 

D~lF(w) = A20F(wx,wy)il(wx)Cl(wy) 

- A F( ) i;(2wz) ,f:(2wv) 
2
0 wx, wY "'.(wz) "'.(WII) , 

( 4.31) 

D~lF(w) - A20~(Wx,wy)Cl(wx)il(wy) 

- A F( )f;(2wz) i:(:.wu) 
2
0 wx, Wy "'.(Wz) "'.(WII)' 

(4.32) 

and, 

Di1F(w) = A20F(wx, wy)Cl(wx)Cl(wy) 
( 4.33) 

- A ~( ) ,j;(2wz) ,j;(2wv) 
20 wx, Wy ",.(wz) "'.(WII)' 

If this filtering process is repeated, then 

A2iF(w) - A F( ) i·(2iwz) i·(2iwv) 
2
0 wx, Wy f(wz) i.(wlI) ' 

D2iF(w) = A F(w W )i·,C2iw:r) ,j·(2iwlI) 
2
0 

x, y ",.(w:r) "'.(WII)' 

D2iF(w) = A F( ) ,j·(2iwz) i·(2iwv) 
2
0 wx, Wy ,fi.(wz) i.(wlI) ' 

(4.34) 

D2JF(w) = A F( )f·(2iwz),f·(2iWV) 
20 .ox, Wy ,fi.(wz) ,fi.(WII)· 
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Thus, the approximation at the resolution 2i, f2 i (x,y) can be expressed as 

00 

f2i(x,y) = E A2d(m,n)c/J(2-i x - m)c/J(2-i y - n), (4.35) 
m,n=-oo 

where A2;f(m, n) is characterized by the set of inner products, which we denote by 

« f(u, v), c/J(2-i u - m)c/J(2-i v - n »m,nez 
( 4.36) 

This set of signals is called an orthogonal wavelet representation in two dimensions. 

4.2 Implementation of the Wavelet Transform 

In fact, A2i,k2;f(k) are coefficients characterizing the projection of f(x) onto Vj. 

If the function f is given in sampled form, then one can take these samples for 

the highest order resolution approximation coefficients A2o,k! and (4.9) describes a 

sub-band coding algorithm on these sampled values, with low-pass filter k(.) and 

high-pass filter g(.). These filters can give exact reconstruction because they are 

associated with orthonormal wavelet bases, given as 

00 

A2i-I,k2i-1f(k) = E h(2k -1)A2i,k2if(k) + g(2k -l)D2i,k2;f(k). ( 4.37) 
k=-oo 

H(w) and G(w) are the complex conjugate of H(w), G(w), respectively, for the 

orthogonal wavelet transform. In implementing this process, it is desirable that the 

FIR filters be linear phase, since such filters can be easily cascaded in pyramidal 

filter structures without phase compensatIOn. Unfortunately, it is known that there 
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are no nontrivial orthonormal linear phase FIR filters with the exact reconstruction 

property [44], regardless of any regularity considerations. One can preserve linear 

phase by using biorthogonal wavelet bases, which have recently been constructed 

by Cohen, Daubechies and Feauveau [45] and by Herley and Vetterli [46]. In this 

case, we decompose and reconstruct a signal as in (4.9) and (4.37), respectively. 

However, the filters H(w) and G(w) may not be the complex conjugates of H(w), 

G(w), respectively. These filters should satisfy the following conditions for perfect 

reconstruction, 

g(k) - (_l)l-kk( -k + 1) 

g(k) - (_l)l-kh( -k + 1) ( 4.38) 

Ef:-oo h(k)k(k + 2n) - On,O. 

We define the analysis scaling function ¢( x) and the synthesis function tjJ( x) by 

¢(x) - Ef:-oo h(k)¢(2x - k) 

tjJ(x) = Ef:-oo k(k)tjJ(2x - k), 

with Fourier transforms given as 

¢(w) = rr~l H(2-Pw) 

¢(w) = rr~lH(2-Pw). 

(4.39) 

( 4.40) 

Likewise, if we define the analysis wavelet .(fi( x) and the synthesis wavelet 'lfJ( x) by 

.(fi(x) - Ef:-oo g(k)¢(2x - k) 

'lfJ(x) = Ef:_oog(k)tjJ(2x - k), 

(4.41) 



their Fourier transforms are given as 

~(w) = G(~)~(~) 

¢(w) = G(~)¢>(~). 
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( 4.42) 

Then, the analysis and synthesis procedures are also the same as shown in (4.9) 

and (4.37), respectively. Thus, the discrete wavelet transform is equivalent to a sub­

band decomposition of one dimensional signals, as shown in Figure 4.1. The input 

signal A20f (for simplicity, we omit time index k) is filtered by a low-pass filter H(w) 

followed by down-sampling by a factor of two to give the first low-frequency sub-band 

signal A21f. The first high-frequency sub-band signal D21f is created by passing A20f 

through the high-pass filter G(w), again followed by down-sampling. The structure 

for applying the filters for computing A2jf and D2if is shown in Figure 4.1(a). 

The filters H (w) and G( w) are designed to give an octave decomposition of the 

frequency domain, as seen in Figure 4.1(c). Together the components A21f and D21f 

define the first octave of the wavelet transform. The filtering process is repeated using 

A21 f as the input to the next level of the sub-band decomposition. The outcome after 

N octaves is N details signals D21 f - D2N f and one smooth signal A2N f. The details 

signals are the most interesting as they represent a band-pass decomposition into 

structure whose scale increases with octave level. Each details sub-band represents 

a certain scale range of the residual component discussed in the previous section. 

Reconstruction of A20f is achieved by upsampling (inserting zeros between samples 

of the sub-bands) and filtering using H(w) and G(w) as shown in Figure 4.1(b). This 
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is called the orthogonal wavelet transform if the synthesis wavelets are the same as 

the analysis wavelets, otherwise it is called the biorthogonal wavelet transform. 

A separable two-dimensional wavelet transform for image analysis can be imple­

mented using the one-dimensional transform (Figure 4.2) if the two-dimensional scal­

ing function <1>( x, y) and the associated three wavelets \lI l (x, y), \lI 2 (x, y) and \lI3( x, y) 

are such that 

<1>(x,y) - </J(x)</J(y) 

\lIl(x, y) - </J(x)¢(y) 
( 4.43) 

\lI2(x, y) - ¢(x)</J(y) 

\lI3(x, y) - ¢(x)¢(y). 

Each row of the input image is separately filtered by the same filters used in 

the one-dimensional transform. The resulting pair of row-transformed images are 

likewise filtered in the column direction, yielding four sub-band images at the first 

octave level. The three details images - termed LH, H L, and H H - correspond to 

specific bands in the frequency domain as shown in Figure 4.2(c). The LH sub-band 

is formed by low-pass filtering the rows followed by high-pass filtering the columns, 

and is therefore sensitive to horizontally oriented features. In the same way the 

H L sub-band contains vertically oriented details, and the H H sub-band contains 

primarily diagonal structure. The LL component is a low-pass filtered or smooth 

version of the original image, and is passed through to the next octave for further 

sub-band decomposition. Thus, the LL band of the frequency domain is segmented 
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1 
D2j+l f (LH) 

2 
D2j+l f (HL) 

oij+l f (HH) 

(a) Analysis 

(b) Synthesis 

HH LH LH HH 

HL LL LL HL 

HL LL LL HL 

HH LH LH HH 

(0) 

Figure 4.2: Separable two-dimensional wavelet transform 
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into four sub-bands at the second octave level, and so on. The two-dimensional 

wavelet transform is inverted by filtering and combining the details images from all 

octaves plus the LL component from the highest octave. 

Down-sampling and up-sampling are normally employed in the forward and inverse 

transforms, respectively. However, in our work we maintain full resolution throughout 

the sub-band decomposition, for two reasons. First, from the point of view of a human 

observer it helps to display the sub-bands at full size during algorithm development 

simply because features are easier to see at full resolution. Second, it is easier to 

combine the detected pixels from each sub-band when they are at the same resolution. 

In addition, a decimation operation can deform the patterns if their sizes are small. 

So when we try to detect certain patterns in the details images, it is desirable to keep 

the details images at full resolution. In other words, the wavelet transform without 

decimation and interpolation is shift invariant. Although the resulting transform is 

highly redundant from an information theoretic point of view, it is still simple to 

compute and the same filters are employed for analysis and synthesis. 

Filtering with H( w) followed by down-sampling is equivalent to filtering with 

H(2w) with respect to the spectrum. H(2w) can be obtained by putting a zero 

between each of the coefficients of h(n). In the case of up-sampling, its operation is 

the dual of the above process. The discrete wavelet transform without down-sampling 

and up-sampling can be implemented using the method shown in Figure 4.3. The 

corresponding two-dimensional wavelet tr:'.nsform is shown in Figure 4.4. Perhaps the 
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(a) Analysis (b) Synthesis 

Figure 4.3: One-dimensional wavelet transform at full resolution 

simplest way to appreciate the difference between the full resolution and conventional 

wavelet transforms is to consider the evolution of the smooth component in the one-

dimensional case. Let the original signal be sampled at the frequency WS' Then, as 

seen in Figure 4.5, the wavelet transform employs down-sampling to fill the available 

bandwidth in each octave, whereas the full resolution wavelet transform occupies 

lesss and less of the available spectrum at higher octaves. The same is true of the 

band-pass details components. 

A second modification overcomes the limited dyadic sampling grid of the basic 

wavelet transform. By passing a Gaussian object of size (j through a sub-band de-

composition and recording the peak response in each octave we obtain the scale 

bandwidth of the first four octaves, and observe significant dips in coverage between 

octaves 2 and 3, and between octaves 3 and 4, which will be explained in more detail 

in section 5.1. As proposed by Rioul [34] we can remedy this by computing a separate, 

three octave wavelet transform using x V2 interpolated versions of h( x) and g( x). 

Thus, octaves 2 and 3 of the modified transform fill the gaps in coverage as desired. 

These inserted sub-bands are known as voices of the original octave decomposition. 
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D2j+l f (LH) 
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oij+lf (HH) 

(a) Analysis 

rows 

columns 

(b) Synthesis 

Figure 4.4: Separable two-dimensional wavelet transform at full resolution 
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Wavelet Transform Undeclmated Wavelet 

Octave 1 

rnSfOj 

o o 

Octave 2 h 
o ws/B o 

Figure 4.5: Frequency coverage of a ID octave decomposition with (left) and without 
(right) downsampling. The redundancy of the undecimated decomposition is evident. 
Only the low frequency component is represented. 

The scales covered by octaves 1 through 4 (including the voices) occupy the range 

0.4 $ u $ 5.2 which, given that a Gaussian object is visible over ±u pixels, corre-

sponds to objects of diameter 1 -+ 10 pixels, or 100 pm -+ 1 mm. This, as stated 

earlier, is the relevant scale range for pCa++s. 

4.3 Finer Sampling in Scale 

The discrete wavelet transform (DWT) is the octave-by-octave computation of 

the continuous wavelet transform (CWT), and is usually used in the discrete domain 

to represent signals in multi resolution. But, in signal analysis, the dyadic wavelet 

transform is generally not enough. Sampling in scale denser than the dyadic grid 

may be required depending on the application. It is desirable to obtain more wavelet 

coefficients with finer sampling in scale. In our research, we are interested only in 
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IlCa++s whose variances are less than 10. As shown in Table 5.2, the details at 

the 1st , 2nd , 3rd and 4th octaves cover IlCa++s whose variances are around 0.16, 

1.4, 6.8 and 27.0, respectively. Those IlCa++s whose variances lie between these 

octaves are not clear in the dyadic wavelet transform domain. The 1 st octave of 

wavelet coefficients contain the high frequency components, and they are not useful 

in detecting IlCa++s, whereas the 4th or higher octaves of wavelet coefficients cover 

the frequency range corresponding to IlCa++s whose variances are larger than 10. 

But in almost all mammograms, IlCa++s are in the variance range between 1 and 

8, so they are rarely used. Thus, the 2nd and 3rd octaves of wavelet coefficients 

are largely used to detect the IlCa++s. This dyadic grid is too sparse to represent 

IlCa++s whose sizes are small. That is why we need to sample the scale parameter 

more densely between the 2nd and the 3rd octaves. So, we should focus on scales 

corresponding to actual IlCa++s. 

We can solve this problem by computing M voices per octave rather than octave 

by octave computation. This is computed by repeating the dyadic wavelet transform 

algorithm M times, with the scale a = 2j replaced by 

a = 2i+m
/
M

, m = 0,1, ... ,M -1, ( 4.44) 

where m is called the voice [34]. M should be determined according to the dy­

namic ranges of IlCa++s. For each m, replace 'Ij;(x) by a slightly stretched wavelet 

2-m/2M'Ij;(2-m/Mx) in the expression 'lj;i,k(X) = 2-i /2'1j;(2-i x - k). The wavelet basis 
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functions become 

2-U+m/M)/21f;(2-U+m/M)(X - k2i)), j, k E Z, m = 0,1, ... ,.M - 1. ( 4.45) 

Now, the computation of M voices per octave is done by applying the dyadic 

wavelet transform algorithm M times, with M different prototypes 

2-(m/M)/21f;(2-(m/M)X), m = 0,1, ... , M - 1. ( 4.46) 

In this case, the parameters of each dyadic algorithm should be recomputed for each 

m. The M voices per octave computation requires about M times the computational 

load of the DWT. The filter coefficients and their interpolated versions (M = 2) for 

the biorthogonal spline wavelets proposed by Cohen et al. [45] will be given in Table 

5.1 and Table 5.3, respectively. 

It will be shown in the next chapter that matched filters for detecting Gaussian 

signals in separable and nonseparable Markov noise can be implemented using the 

wavelet transform if the Laplacian of Gaussian wavelet is used. This is verified by 

computing ROC (receiver operating characteristic) curves using simulated Gaussian 

objects embedded in such noise. 
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CHAPTER 5 

Matched Filter Implemented using the Wavelet Transform 

In chapter 3, it was shown that the prewhitening matched filter for detecting a 

Gaussian object in highly correlated Markov noise resembled a Laplacian of Gaussian. 

If we try to detect objects of varying size, we should have as many prewhitening 

matched filters as different sizes. Thus, 0' in (3.15) can be considered a variable, giving 

the object f(x, Yi 0'). We can detect f(x, Yi 0') by convolution with the prewhitening 

matched filters of varying 0' in the following way, 

o(x, y) = hmJ(x, y) * f(x, Yi 0'), (5.1) 

followed by thresholding the output o( x, y). 

This can be easily implemented by decomposing the image f(x, Yj 0') into multiple 

scales using the wavelet transform. In the following section, it is shown how the sep­

arable and nonseparable prewhitening matched filters developed in (3.16) and (3.20) 

can be implemented via a wavelet transform using Laplacian of Gaussian wavelets. In 

order to support the above assertion, the detection performance of the wavelet trans­

form is compared with that of the matched filter by computing ROC curves using 

simulated Gaussian objects embedded in both separable and nonseparable Markov 

nOIse. 
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5.1 Relationship between Matched Filtering and the Wavelet Transform 

Consider the 2D wavelet transform with input i(x,y), and sub-band components 

A2i(X, y), D~i (x, y), D~i (x, y), Dii (x, y) in octave j. We obtain the four correspond-

ing, separable transfer functions 

PIL(wx, wy) = H~(wx)H~(wy) 

PIH(wx, wy) = H~(wx)H~(wy) 

pj{L(wx, wy) = H~(wx)H~(wy) 

PjIH(wx, wy) = H~(wx)H~(wy), 

H
i( ) _ ~*(2iw) 
'" w - A , 

,p*(w) 
H

i( )_¢*(2iw) 
.p w - A • 

,p*(w) 

(5.2) 

(5.3) 

Here, ¢(w) and .,j;(w) represent the Fourier transforms of the scaling function ,p(x) 

and the wavelet 'l/J(x), respectively. 

For wavelets close in form to the Laplacian of Gaussian, the details filters can be 

approximated as point spread functions 

PLH(X, y) - -:;2 G(X,y) 

PHL(X, y) - -::2G(X,y) (5.4) 

PHH(X,y) = ax~~y2 G(x, y), 
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Figure 5.1: Frequency responses of the sub-band filters iI, H (solid) and 0, G 

(broken). (a) Analysis sub-band filters. (b) Synthesis sub-band filters. 

(",2+t l 
where G(x, y) = e- 2.. and q depends on octave j. These point spread functions 

can be computed explicitly as 

PLH(X,y) -

PHL(X,y) -
(",2+ 112) 

-1-(1- :r:2)e-~ 
q2 q2 

(5.5) 

PHH(X,y) 

The transfer functions corresponding to the components D~i(X, y) and D~i(X, y) + 

D~i(X,y) compute to be 

(5.6) 

We can see that PHH(W:r:, wy ) approaches the PWMF for the separable Markov 

process given in (3.16), while PLH(W:r:, wy ) + PHL(w:r:, wy ) approach the PWMF for 

the nonseparable Markov process given in (3.20) if the correlation coefficients Pl 
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and P2 are high (i.e. ax and a y are small). Thus, the details images D~i(X,y) and 

D~i (x, y) + D~i (x, y) can be regarded as the outputs of a bank of PWMFs in two 

dimensions for separable and nonseparable Markov noise image, respectively. In our 

studies, we selected the biorthogonal spline wavelets proposed by Cohen et al.[45], 

which are close in form to the Laplacian of Gaussian, and therefore appropriate for 

multi scale matched filtering. The filter coefficients corresponding to the wavelets are 

shown in Table 5.1. Figure 5.1 shows H, H, G and G for the biorthogonal wavelets, 

while ~, 4>, .(fi and ¢ are depicted in Figure 5.2. 

Figure 5.3 compares the separable HH details filter P'HH(X, 0) resulting from the 

biorthogonal spline wavelet with the separable matched filter hm (x) whose transfer 

function is given in (3.19), where 

(5.7) 

Since the filters are separable they can be represented in one dimension and thus easily 

compared. Likewise, the nonseparable LH + HL details filter PlH(X, y) + P'HL(X, y) 

and the nonseparable matched filter hNONSEP(X,y) whose transfer function is given 

in (3.20), where 

(5.8) 

are compared in Figure 5.4 using their profiles. 
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Figure 5.2: Scaling functions and wavelets: (a) Analysis scaling function ~, (b) Anal­

ysis wavelet ,(fi, (c) Synthesis scaling function <p, (d) Synthesis wavelet "p. 
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n h h 
0 0.602949 0.557543 

±1 0.266864 0.295636 

±2 -0.078223 -0.028772 

±3 -0.016864 -0.045636 

±4 0.026749 0 

Table 5.1: Filter coefficients for the analysis (h) and synthesis (it) spline wavelets. 

Octave Q U 

1 0.01 0.4 

2 0.01 1.2 

3 0.01 2.6 

4 0.01 5.2 

5 0.01 10.8 

Table 5.2: The wavelet transform approximates these values of Q and u in the matched 

filter. 

The details filters are close approximation to the matched filters over four octaves. 

Table 5.2 shows parameters Q and u of Hm(w) in (3.19) .1nd HNoNSEP(Wx , wy) in 

(3.20) corresponding to Pk H( w, 0) and PIH ( Wx , wy) + Pk L ( Wx , wy). The fil ter shapes 

change slightly with scale due to the scaling term 2i only in the numerator. But if the 

scaling function ¢( x) is sufficiently smooth, then the change in shape is negligible. 

The closest fit between the above filter and the matched filter occurs when the 

Markov noise is highly correlated with p -t 1. As p gets smaller the negative 

lobes of the matched filter shrink, the filter approaching a Gaussian in the limit 

as p approaches 0, as shown in Figure 3.8. However the wavelet is constrained by 

f 'ljJ(x )dx = 0, so this method only works well for highly correlated noise. Fortunately, 
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Figure 5.3: Comparison of the point spread functions of the separable details filter 

P}m(X, 0) (solid) and the separable matched filter hm(x) (broken) across four octaves, 
shown from upper left to lower right. 



80 

Markov noise with p close to unity is a reasonable model for the large-scale texture 

in mammograms. We have seen this to be true of the Nijmegen database. 

In this noise regime a multiscale image decomposition with the above wavelet 

creates a sequence of HH and LH + HL details subimages which are equivalent to 

applying the matched filters in (3.16) and (3.20) at increasing scale in separable and 

nonseparable Markov noise image, respectively. The smallest JLCa++s appear in the 

low octaves and vice versa. Microcalcifications of a certain size give rise to a strong 

peak response in both HH and LH + HL at the corresponding octave level. Com­

puting a combination of both responses provides an even stronger indication of the 

presence and location of JLCa++s. The combination of separable and nonseparable 

filter responses is supported by the composite texture model of breast tissue, as shown 

in Figure 2.6. 

We have simulated the wavelet transform using images containing Gaussian ob­

jects with varying size and amplitude 200. The scale range each octave covers, shown 

in Figure 5.5, represents the peak values of the H H details subimages as 0' and oc­

tave increase. From this figure, we can see that dyadic wavelet transform can cover 

the scale range from 0.0 to 6.0 by decomposing the image into 4 octaves of details 

subimages. Given that a Gaussian object is visible over ±O' pixels, this range corre­

sponds to objects of diameter 1 -+ 10 pixels, or 100 JLm -+ 1 mm. This, as stated 

earlier, is the relevant scale range for JLCa++s. However, we observe significant dips 

in coverage between octaves 2 and 3, an-l between octaves 3 and 4. For Gaussian 
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Figure 5.4: The point spread functions of the nonseparable details filter plH(X, y) 
+ ~HL(X,y) (solid) and the nonseparable matched filter hNoNsEP(x,y) (broken) are 
compared across four octaves using their row and column profiles, shown from upper 

left to lower right. 
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objects with (j assumed 1.2 or 2.5, the performance is expected to be worst. We 

can remedy this by computing a separate, three octave wavelet transform using x V2 

interpolated versions of h( x) and g( x), mentioned in section 4.3. Table 5.3 lists the 

interpolated filter coefficients. Thus, octaves 2 and 3 of the modified transform fill 

the gaps in coverage as desired. 

In the next section, the detection performance of the wavelet transform is com-

pared with that of the matched filter by computing ROC curves using simulated 

Gaussian objects embedded in both separable and nonseparable Markov noise. 
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n h 9 h lJ 
-6 0.001468 0.004865 0.014129 0.013926 

-5 -0.009883 -0.006096 0.017579 0.053966 

-4 -0.039354 0.032090 -0.026275 -0.069523 

-3 -0.032041 0.028221 -0.061015 -0.220655 

-2 0.091054 -0.082874 0.049910 0.076328 

-1 0.291691 0.059997 0.292614 0.561895 

0 0.394243 -0.481643 0.426351 -0.501956 

1 0.291691 0.593791 0.292614 0.079261 

2 0.091054 0.107794 0.049910 -0.040136 

3 -0.032041 -0.205431 -0.061015 0.041269 

4 -0.039354 -0.095943 -0.026275 0.014346 

5 -0.009883 0.013006 0.017579 -0.016223 

6 0.001468 0.008187 0.014129 0.007383 

Table 5.3: Interpolated filter coefficients for the analysis (h and g) and synthesis (i~ 

and lJ) spline wavelets. 

5.2 Simulation of Matched Filter and Wavelet Transform 

We showed in the previous section that the wavelet transform can act as a bank 

of multiscale matched filters for detecting Gaussian objects in Markov noise. The 

performance of the matched filter compared to that of the wavelet transform is com-

puted using a test image comprising Gaussian objects in Markov noise. First, we 

create the system function 

H(w w) - JS (w w )eiO(wz,wlI ) .1:, y - 00.1:, Y , (5.9) 

where Soo(W.1:,Wy ) is the noise power spectrum and fJ(W.1:'w y ) is an arbitrary angle. 

White noise with unit variance is passed through this system yielding an output 



84 

whose power spectrum is 

(5.10) 

For convenience, we assume that Soo(w:c, wy ) corresponds to a separable Markov 

process as given in (3.3). Hence, from (3.3) and (5.10), 

= (I-pn (I-pn 
(I-PI eJWr )(1-P2e-Jwr) (I-PI e-Jwy )(1-P2e-Jwy) • 

(5.11) 

Thus, a first order separable Markov noise image can be generated by passing white 

noise through the causal system function 

J1- P~ J1 - P~ 
H(wx, wy ) = ( . ) ( . )' 1 - PIe-Jwz 1 - P2e-JWy 

(5.12) 

Likewise, the first order nonseparable Markov noise image can be generated by 

replacing Soo(wx, wy ) with SNONSEP(Wx, wy ) in (3.7). Examples of separable and 

nonseparable first order Markov noise images are located in ~he upper right and lower 

left of Figure 2.6. Then, a uniformly-spaced array of simulated Gaussian objects is 

added. Figure 5.6 shows the simulated Gaussian object images embedded in such 

noise. Although neither the number nor the spatial distribution of the Gaussians are 

realistic, the array makes it possible to test multiple object sites in one experiment. 

Given the homogenity of the background image, this is practically the same as running 

multiple experiments with single object inserted at random locations. 

To justify this combination of matched filter forms, we compare the detection 

performance of the wavelet method with that of the matched filters by computing 
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(a) 

(b) 

Figure 5.6: (a) Simulated Gaussian objects embedded in separable Markov noise. (b) 

Simulated Gaussian objects embedded in nonseparable Markov noise. 
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ROC (receiver operating characteristic) curves given in Figure 5.7 using simulated 

Gaussian objects embedded in both separable and nonseparable Markov noise. The 

ROC curve is explained in more detail in Appendix A. The number of objects is 484, 

the object size is u = 2.6, the SNR used is 0.2 (peak object intensity + un) and 

the Markov correlation parameter a = 0.01. Since the objects are of fixed size in 

the test, only one octave band of the wavelet decomposition is involved in the ROC 

computation. Figure 5.8 and Figure 5.9 show several output images when the images 

given in Figure 5.6 are applied to the matched filter and the wavelet transform. The 

performance of the PjlH(wx , wy ) filter is almost identical to that of the matched filter 

based on separable noise. Likewise, the LH + HL results compare to those of the 

matched filter based on nonseparable noise. 

In the next chapter a nonlinear algorithm for detecting pCa++s is described in 

detail and the intermediate results at each step of the algorithm are shown. 
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Figure 5.7: ROC curves of matched filters and details filters of one octave based on 
Gaussian object in (a) separable Markov noise, (b) nonseparable Markov noise. In 
(a) the HH filter, and in (b) the LH + HL filters are close to optimum. 
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Figure 5.8: Output images of matched filter and wavelet transform. Upper left Sim­
ulated Gaussian objects embedded in separable Markov noise. Upper right Matched 

filter output. Lower left HH image of 3rd octave. Lower right LH + HL image of 

3rd octave. 
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Figure 5.9: Output images of matched filter and wavelet transform. Upper left 

Simulated Gaussian objects embedded in nonseparable Markov noise. Upper right 

Matched filter output. Lower left HH image of 3rd octave. Lower right LH + HL 
image of 3rd octave. 
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CHAPTER 6 

Recognition of Microcalcifications 

In these studies we have designed a nonlinear algorithm for detecting roughly 

circular pCa++s ranging in size from 1- 8 pixels (0.1- 0.8 mm) in diameter. Although 

pCa++s vary in outline and degree of elongation, they can be modeled as a circularIy-

symmetric Gaussian function as in 

1 _~ 
Gs(x,y) = --e 2. , 

271"82 
(6.1) 

where 8 is a scale parameter. This can be supported by Figure 2.5(b). This modeling 

provides valuable merits. As stated in the previous chapter, the application of the 

wavelet transform to Gaussian signals, which corresponds to the output of matched 

filters for detecting them, yields Gaussian related signals in the 8 direction of scale 

space although both size and height vary. This property is very important because 

we want to implement scale independent methods, which immediately implies that 

changing the resolution should affect the size and perhaps the amplitude but certainly 

not the structure of the operators. 

Figure 6.1 shows the overall recognition process. As explained in Section 2.1, digi-

tized mammograms with 12 bit resolution are first mapped using the noise-equalizing 

look-up table. Then we employ a four octave wavelet transform, implemented at full 
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Figure 6.1: Overall recognition process. 
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Figure 6.2: 512 x 512 Sub-region of Figure 2.2. 

resolutiofl with intermediate voices computed between octaves 1 and 2, between oc­

taves 2 and 3 and between octaves 3 and 4. As a result of using the Laplacian of 

Gaussian wavelet, the separable 2D filters which transform the input image into the 

HH ( Dij ) details sub-bands are closely related to the prewhitening matched fil­

ters for detecting Gaussian objects in separable Markov noise. The sum of the two 

sub-band components of the wavelet transform, LH + HL ( D~j + D~j ), which can 

be approximated as an output of the PWMF in nonseparable Markov noise, helps 

to preserve the shape of any detected /lCa++s. Figure 6.2 shows the 512 x 512 

mammogram cropped from Figure 2.2, still at full resolution. 
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Figures 6.3 and 6.4 show the sub-band images D~il D~j + D~j of Figure 6.2 at 

1 :5 j :5 4, respectively. This analysis phase of the computation is equivalent to a 

bank of multiscale matched filters for detecting objects of diameter 100 /-Lm -. 1 mm. 

Our recognition algorithm is composed of two major processes: detection and 

segmentation. Although the /-LCa++s can be detected in the detection process, their 

individual shapes are not preserved in this stage. That is why the segmentation 

process is required. 

6.1 Detection process 

The major steps in the detection process, as indicated in Figure 6.5, are: (1) find 

the candidate /-LCa++ sites (potential /-LCa++ locations) within the breast region, (2) 

classify the potential /-LCa++s into true and false positives. False alarms are usually 

caused by edges and other linear structures in background texture. 

6.1.1 Finding candidate /-LCa++s 

This node is a procedure that finds specific areas which may contain /-LCa++s. 

Candidate /-LCa++s can be detected by thresholding a combination of the details sub­

bands, which are equivalent to a bank of multiscale matched filters. Two methods 

have been proposed to achieve this purpose. 
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1st octave 2nd octave 

3rd octave 4th octave 

Figure 6.3: Details images D~j (HH) at 1 :5 j :5 4. 
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lat octave 2nd octave 

3rd octave 4th octave 

Figure 6.4: Sum of two details images D~j+D~j (LH+HL) at 1 :5 j :5 4. 
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Detection process 

Figure 6.5: Detection process. 

6.1.1.1 Method #1 

The outputs HH and LH + HL from each octave are thresholded at some fixed 

percentile of the histogram of each component. (A common threshold for all sub-

bands is required for FROe computation.) The detected (binary) images from all 

octaves are then logically ORed to yield the binary map of detected pixels. Figure 6.6 

shows the detailed procedure for computing the binary map, one of which is given in 

Figure 6.7, where the gray circle represents a true cluster identified by the radiologist. 

This detection model can be explained mathematically. The probability of detec-

tion for this model P(detect) is a function of the probabilities of detection for each 

channel (sub-band) Pi(detect), according to 

L 

P(detect) = 1 - TI(l- Pi(detect)), (6.2) 
i=l 

where L ( = 8 ) is the total number of the channels [74]. 
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detected pixel map 

Find candidete microcalcificationa 

Figure 6.6: A procedure for detecting candidate IlCa++s, using Method #1. 

It is very difficult to evaluate the performance of this method, because each channel 

responds differently as the size of the IlCa++s vary. 

6.1.1.2 Method #2 

The most elementary situation in detection theory involves discrimination between 

two hypotheses, Hand /(, based on a single observation or realization x of a random 

variable X; that is, 

H: hypothesis on the observation x, e.g. X = N 

/(: alternative hypothesis on x, e.g. X = N + s. 

(6.3) 

Here we assume that N is a noise random variable, s is a signal to be detected and 

X is the observation random variable. Given x, a realization of X, we need to decide 

whether x belongs to H or /(, namely, "signal-absent" or "signal-present." In order 
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Figure 6,7: This binary map image shows candidate IlCa++s detected by Method 

#1. 

to accomplish this task, we need a decision rule d = d(x). The decision rule d = d(x) 

partitions the X space n = {x E X} into two disjoint regions nH and nK, where nH 

It is desired to obtain the classifier to separate the two distributions p()..1 H) and 

p()..1 K) effectively. A parameter d called "detectability" can be defined as 

d _ « )..1 K > - < )..1 H » 

- Vp(H)uk + p(K)uJ< ' 
(6.4) 

to measure quantitatively the separability between the two distributions, where < 

)..1 H > and Uk are the mean and variance of the test statistic).. under the hypothesis 

H. A Hotelling observer is known to be the optimum detector in the sense that 
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it maximizes the detect ability [74J. Thus, a Hotelling observer is employed in this 

method. 

The Hotelling observer, reviewed in more detail in Appendix B, bases its discrim­

ination rule on the first and second order statistics, namely, the mean, variance and 

covariance of the population data, rather than requiring full statistical knowledge 

about the population distribution. A Hotelling observer can be defined in terms of 

either sample statistics estimated from sample data, or ensemble statistics derived 

from the ensemble properties of the data. In this dissertation, a Hotelling observer 

is defined by the sample statistics. 

In order to apply the Hotelling observer to detect candidate pCa++s, we need 

to define feature vectors. The feature vector is a set of measurements which is sup­

posed to condense the description of relevant properties of the clusters into a small, 

Euclidean space. In this method, the feature vector v(x,y) = (Vl(X,y), "', V7(X,y)) 

is defined as 

Vl(X,y) = D~l(X,y) + D~l(X,y) + D~l(X,y) 

V2(X, y) = D~1.5(x,y) + D~l.I;(x,y) + D~1.5(x,y) 

V3(X, y) = D~2(X,y) + D~2(X,y) + D~2(X,y) 

V4(X, y) = D~2.!>(x,y) + D~2.5(X,y) + D~2.5(X,y) (6.5) 

vs(x,y) - D~3(X, y) + D~3(X, y) + D~3(X, y) 

V6(X, y) - D~3.6(X,y) + D~3.6(X,y) + D~3.5(X,y) 

V7(X, y) = A23(X, y) 
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where A2i(X,y), D~i(X,y), D~i(X,y) and D~i(X,y) are wavelet coefficients of the ph 

octave at (x,y). At first, we get a training data set composed of equal numbers 

of signal-present vectors VI and signal-absent vectors V2. Signal-present vectors are 

obtained from the center points where jlCa++s are present, whereas signal-absent 

vectors arise from the background. For each class, 205 samples are randomly ex­

tracted from 20 mammograms. Figure 6.9 shows the probability density functions 

estimated from each component of VI and V2. 

The measurement values for a feature should be correlated with its class member­

ship and cluster according to the class from which they are derived. In this respect, 

measurements VI, V2, V3 and V4 are good features which separate the different classes, 

while Vo, Vs and V6 are not a good choice of features. 

From this training data, a Hotelling observer is computed in the following way. 

First, the mean vectors of signal-present vectors VI and signal-absent vectors V2, VI, 

V2 are computed and the difference between two mean vectors b:.v is obtained, 

(6.6) 

Then, the scatter matrix S, which corresponds to the estimated covariance matrix of 

VI and V2 is computed as follows, 

where < > represents an average operation. From (6.6) and (6.7), the Hotelling 

observer weights (b:.vf . S-I are computed. 
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Figure 6.8: Probability density functions of each component of VI and V2. The solid 

line and the broken line represent the pdfs of the components of signal-absent and 
signal-present vectors, respectively. 
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S = 

[9.761, 12.897, 14.067, 10.250, 9.474, 4.091, 98.571? 

r 
[0.242, 0.649, 0.284, 0.527, 0.333, 0.337, 86.658] 

I1v = [9.519, 12.248, 13.783, 9.723, 9.141, 3.754, 11.913]T 

0.219 -0.158 -0.199 0.245 -0.010 -0.008 0.001 

-0.158 0.186 0.019 -0.205 0.125 -0.057 -0.000 

-0.199 0.019 0.629 -0.439 -0.266 0.264 -0.002 

0.245 -0.205 -0.439 0.838 -0.206 0.701 -0.601 

-0.010 0.125 -0.266 -0.206 0.701 -0.601 0.002 

-0.008 -0.057 0.264 -0.107 -0.601 0.957 -0.004 

0.001 -0.000 -0.002 0.002 0.002 -0.004 0.001 

I1vT. S-l= [-0.318, -0.032, 1.283, -0.341, -0.059, -0.116, 0.015] 

Figure 6.9: Vb V2, ~V, 8-1 and the Hotelling observer (~vf .8-1
• 
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Matched-

Pi"ewhitenlng 
Filtering Out put 

Figure 6.10: A block diagram of the Hotelling observer. 

Figure 6.9 shows Vb "2, ilv, S-1 and the Hotelling observer (ilV)T. S-I, obtained 

from the training data. Given the Hotelling observer, the Hotelling discriminant 

A(X,y) can be obtained as follows, 

A(X, y) = (ilvf . S-1 . v(x, y). (6.8) 

The inner product of v(x, y) with S-1 functions as a prewhitening operator, while 

that of the prewhitened v(x, y) with ilv is equal to the matched filter. This is similar 

to the prewhitening matched filtering operation. Figure 6.10 shows a block diagram 

of the Hotelling observer. 

In order to see how the Hotelling observer works, it is applied to the training data. 

Figure 6.11 (a) depicts the probability density functions of the Hotelling discriminant. 

The corresponding detect ability d is 3.182. 

For comparison, a nonlinear single layer perceptron [75], as shown in Figure 6.12( a) 

is trained using the same training data. The single node computes a weighted sum 

of the feature elements, where W7 acts as a threshold, and passes the result through 
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(a) (b) 

Figure 6.11: Probability density functions of the Hotelling discriminant (a) and the 
percept ron discriminant (b). The solid line and the broken line represent the pdfs of 

the components of signal-absent and signal-present vectors, respectively. 

a sigmoid function so that the output y approach either 1 or 0, namely, 

where 

6 

Y = fCLwiVi + W7), 
i=O 

1 
f(x) = 1 + e-.r 

(6.9) 

(6.10) 

The decision rule is to choose class A (signal-present) if the output y js close to 1 and 

class B (signal-absent) if the output is close to O. The perceptron forms two decision 

regions separated by a hyperplane. These regions are shown in Figure 6.12(b) when 

there are only two inputs and the hyperplane is a line. In this case, inputs above 

the boundary line lead to class A responses and inputs below the line lead to class 

B responses. As can be seen, the equation of the boundary line depends on the 

connection weights and the threshold. 

The connection weights after convergence are 

w = [-0.520,0.665,3.390,2.194, -1. 767, -0.839, -0.118, -7.768]. (6.11) 
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Figure 6.12: A single layer nonlinear perceptron that classifies an input vector into 
two classes denoted A and B. This perceptron divides the space spanned by the 
input into two regions separated by a hyperplane or a line in two dimensions. 

The probability density functions of the perceptron outputs are depicted in Figure 

6.11(b), and the detectability d is 2.483. As expected, the Hotelling observer is 

better in the sense of detect ability although its probability density functions partially 

overlap. 

Figure 6.13 shows the Hotelling discriminant A(X,y) when Figure 6.2 is applied, 

and the binary map, which is obtained by thresholding A(X,y), is depicted in Figure 

6.14. Figure 6.14 shows more true positives and less false positives caused by texture 

edges, compared to Figure 6.7. 

6.1.2 Classifying candidate jlCa++s 

In practice, the multiscale matched filter detects false alarms created by edges 

and other linear structures, as well as jlCa++s, as shown in Figure 6.7 or Figure 

6.14. Many false alarms can be eliminated by shape analysis. Figure 6.15 shows 
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Figure 6.13: This image shows the output when the Hotelling observer is applied to 
the input vectors v(x,y). 

a procedure for classifying the candidate pCa++s. To reduce the false alarms, we 

first detect the boundaries of the detected pixel regions. Marr and Hildreth [62] 

showed that one can obtain the positions of multiscale sharp variation points from 

the zero-crossings of the signal convolved with the Laplacian of Gaussian. 

The first step in zero-crossing edge detection is to smooth an image to remove 

discontinuities and small fluctuations. Then the second derivative of this smooth 

function is computed. It will have a zero crossing at the location of the edge. The zero-

crossings of a wavelet transform indicate the location of sharp variation points which 

corresponds to the edges in two dimensions, if the wavelet is the second derivative of a 

smoothing function, typically a Laplacian of Gaussian [24]. Hence, the boundaries are 
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Figure 6.14: This binary map image shows candidate pCa++s detected by Method 

#2. 
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Figure 6.15: A procedure for classifying candidate pCa++s. 
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Figure 6.16: Boundaries around the detected pixels. 

obtained easily from the zero-crossings locations in the LH + HL sub-bands, which 

corresponds to the result of convolution with 2D Laplacian of Gaussian functions. 

A pixel is considered a zero-crossing if the pixel value of the LH+HL sub-band is 

greater than or equal to zero, and it has at least one 8-connected neighbor with a 

value less than zero. The zero-crossing points are detected in LH + HL at each 

octave. These zero-crossings, however, may represent spurious edges as well as true 

edges. These false edges can be deleted by computing an approximation of the 

gradient magnitude at each zero-crossing. In other words, true edges will be more 

likely to have large gradient magnitudes, while the gradient magnitude of false edges 

is small. To remove false edges, the computed gradient magnitudes are thresholded 
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Figure 6.17: The detected regions whose boundaries are closed are classified as true 
positives. 

at some fixed histogram percentile. Figure 6.16 shows the zero-crossing points around 

the potential JLCa++s given in Figure 6.14. JLCa++s are usually circular and their 

boundaries are rounded. 

To discriminate between JLCa++s and false alarms, we first search for a precise 

closed boundary of a possible JLCa++ at each candidate JLCa++ site. When we find 

such a boundary, we refer to the resultant object as a true positive. Figure 6.17 

represents the closed edges detected from the above edge map using a chain coding 

technique [64]. The remaining edge map without closed edges is given in Figure 6.18. 

The straight edges shown in the upper right and lower left of Figure 6.18 should 

be removed because they are caused by the linear structure of normal breast tissue. 
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Figure 6.18: The remaining edges without closed boundaries. 

At each boundary, both end points are searched. The boundary is regarded as a 

straight edge and removed if the distance between two end points is long compared 

to its length. Figure 6.19 represents the edge map in which the straight edges are 

removed using the chain coding technique. 

Then, a circularity measure for each boundary is computed and those detected 

regions falling below a threshold (determined by training using the database) are 

discarded. Given the position vector a = (at, a2) and a radius r, the circularity of 

the boundary for the triplet (at, a2, r) is defined as the number of edge pixels on 

a circumference at radius r about a. This technique is called the Hough transform 

[64]. Triplets (at, a2, r) with high circularity values are selected as true positives if 
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Figure 6.19: The edges caused by long, linear structure are removed. 

the radius r is in the range of 1 to 5 pixels. The output image after applying the 

Hough transform is given in Figure 6.20. 

To remove more false positives, a phase distribution feature is calculated from the 

regions detected by the Hough transform. Figure 6.21 shows the region of support of 

phase distribution. Phase distribution p(i,j) [67] is depicted as 

(
' ') _ E(k.IlERcos lJ(k,l) 

P Z,J - N , (6.12) 

where (i, j) is the location of the center of the region detected by the Hough transform, 

and N is the number of pixels in the region of support R. The variable O( k, I) is defined 

as the angle between a gradient vector at (k, l) and the straight line connecting pixels 

at (i,j) and (k,/). The term cosO(k,/) is a measure of convergence of the gradient 
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Figure 6.20: A circularity measure IS applied. The white regions are detected 

jlCa++s. 

gradient vectO~'k"1 

(i, j) 

center pixel 

Region of support R 

Figure 6.21: The region of support which corresponds to the detected pixel region. 
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(a) Circular shape. (b) Line edge. 

Figure 6.22: Phase distribution patterns of gradient vectors. 

vector upon the pixel of interest and p(i,j) is the average convergence of gradient 

vectors in the region of support. It is bounded between -1 and 1. If it is close to 

1.0, it means that almost all gradient vectors in the region of support point to the 

same point. This can happen near the center of pCa++s, as shown in Figure 6.22(a). 

On the other hand, the gradient vectors do not converge to a particular point if a 

local high density area is long and slender as shown in Figure 6.22(b), and p(i,j) for 

such shapes can not be large. The feature p(i,j) is sensitive not to long and slender 

shapes but to rounded local high density regions. Among the regions detected by the 

Hough transform the regions whose p(i,j) are below some threshold are picked out, 

as shown in Figure 6.23. 

The final detected pCa++s, shown in Figure 6.24, are obtained by adding the 

closed edges shown in Figure 6.17 to the regions detected by the Hough transform 

and phase distribution shown in Figure 6.23. By comparing Figure 6.24 with Figure 

6.14, we see that many false positives are removed after applying the circularity 

measure technique. 
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Figure 6.23: Among the regions detected by the Hough transform the regions whose 
p( i, j) are below some threshold are eliminated. 

To see how well the Hough transform works, it is applied to a subimage containing 

elongated jlCa++s as well as circular jlCa++s. Figure 6.25 shows the results at each 

step. As expected, circular jlCa++s can easily be detected by the Hough transform 

because it is tuned to detect circular shapes. The Hough transform is related to 

template matching and is used to match the simple analytic form or known shape. 

Although, as stated earlier, the average jlCa++ is assumed to be circular, individual 

jlCa++s may be elongated or curved. So, the Hough transform is inappropriate 

for detecting jlCa++s of arbitrary shape. However, if we assume that elongated or 

curved shapes can be modeled as a chain of circles, the Hough transform can be 

applied by modifying the algorithm. In other words, it is regarded as detected, if the 
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Figure 6.24: The final detected jlCa++s obtained by adding the closed edges shown 
in Figure 6.17 to the regions detected by Hough transform and phase distribution 
shown in Figure 6.23. The outlined regions correspond to detected sites with closed 

boundaries. The filled-in regions originally had open boundaries but later passed a 

shape test. 
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Figure 6.25: The output images at each stage. Upper left LH + HL image of octave 
2, Upper right Zero crossings around the detected pixels, Lower left Zero crossings 
with edges caused by linear structure removed. Lower right Hough transform output. 

sum of circularity measures of adjacent points is far above a threshold although each 

of them falls below the threshold. An elongated shape is detected as a superposition 

of several circles, as shown in the lower right of Figure 6.25. 
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Segmentation process 

Figure 6.26: Segmentation process. 

6.2 Segmentation process 

If segmentation of pCa++s is desired, and since matched filter detectors do not 

preserve pCa++ shape, the following step is required. First, each details sub-band 

is nonlinearly mapped to achieve multi scale contrast enhancement. The nonlinear 

mapping function is given as 

f(x) = a[max. sigm(b(x - c)/max) + min· sigm(b(x + d)/min)] 

where sigm(x) is defined by 

sigm(x) = 1 1 , + e-X 

(6.13) 

(6.14) 

a controls the gain of details images, max and min are the maximum and minimum 

values of each details sub-band, and c, d and b control the threshold and rate of 

enhancement, respectively [76]. 
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The wavelet coefficients corresponding to dilated circular regions centered at each 

detected pixel site are further weighted (typically by 7); then a straightforward in­

verse wavelet transform of the LL image from octave 4 and the detection-enhanced 

details subimages from octaves 1 through 4 reconstructs the original mammogram 

with detected J.LCa++s visible. A procedure for segmenting the detected J.LCa++s is 

indicated in Figure 6.26. Figure 6.27 shows the dilated version of the final map of 

detected pixels, the reconstructed mammogram with detected J.LCa++s highlighted 

and the segmented J.LCa++s when the mammogram given in Figure 2.4 is applied. 

This form of output may be useful where further viewing by the radiologist is re­

quired, since the context of the detected pixels within the breast will probably be 

required for diagnosis purposes. Alternatively, the smooth subimage may be omit­

ted in computing the inverse transform, leaving an image containing only suspected 

J.LCa++s. The diameter of the circular weighting region increases with octave, and 

hence object scale. 

Experimental results of this nonlinear algorithm are described in the next chapter. 

Performance resulting from tests on a set of 40 digital mammograms is presented 

in the form of a free-response receiver operating characteristic (FROC) curve, and 

examples of reconstructed calcifications are shown. 
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Figure 6.27: (a) Dilated version of the final map image. (b) Reconstructed mammo­
gram with detected j.tCa++s highlighted. (c) Segmented microcalcifications. (Origi­
nal image is shown in Figure 6.2.) 
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CHAPTER 7 

Experimental Results 

We have tested our detection algorithms on the Nijmegen database of 40 mam­

mograms[lO]. Each mammogram contains at least one J.lCa++s cluster verified by 

radiologists. Since individual J.lCa++s are not usually a warning sign in breast can­

cer, only clusters of J.lCa++s need to be detected. Although the mammograms were 

digitized to arrays of 2048 x 2048 pixels, they are reduced to 1024 x 1024 to re­

duce processing time. This is done by manually cutting out parts of the image that 

contains at least one J.lCa++s cluster. Regions of film outside the breast tissue were 

identified by hand and not processed. The free-response receiver operating charac­

teristic (FROC) curves in Figure 7.1 were generated by counting true positive (TP) 

and false positive (FP) clusters for each mammogram while varying the threshold 

applied to the sub-band images. The FROC curve is a graph of the percentage of 

TP clusters found versus the average number of FP clusters per image detected. So, 

it is sufficient only to glance at the FROC curve to see what percentage of TP are 

detected and how many FP clusters there are, if one is viewing an output image and 

wants to know how accurate it is. 

The program code for the FROC testing is obtained from Karssemeijer. It reads 

in a binary image that contains the location and shape of the clusters. Then each of 
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Figure 7.1: Cluster detection performance measured on 40 mammograms. 
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the pCa++s is thinned to one pixel, then it searches for the circular region known 

to contain a cluster and counts the number of pixels found in the region. If there 

are two pCa++s or more in a region, a TP is returned for that cluster. The process 

is repeated for each cluster. Any pCa++ clusters found outside the true positive 

regions are FPs. 

Figure 7.1 shows that the performance of the method #2 which uses a Hotelling 

observer is slightly better than that of method #1. The improved FROC curves are 

obtained by using object shape to reduce false positives caused by linear structure, 

for both methods. The best performance can be obtained when the method #2 is 

used to detect candidate pCa++s, followed by shape analysis. 
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As stated earlier, each image in the database contains an average of two clusters. 

However, one pair of images, numbered 120 (oblique) and 12c (craniocaudal), con-

tains a total of 28 clusters, which is approximately 27% of the total. Furthermore, 

many of these clusters are closely grouped or partly overlapping, and many IlCa++s 

fall outside the truth circles marked by the radiologists. These IlCa++s are often 

detected, resulting in a higher false positive rate, and an overall drop in FROC per-

formance. To demonstrate the impact of the images numbered 12c and 120, Figure 

7.2 also shows an FROC curve computed when these images were omitted from the 

test. Examples showing IlCa++s reconstructed by the second, segmentation step are 

given in Figure 7.3. 
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Notice that, although the matched filter is predicated on circular jlCa++s, the 

segmentation process is able to reconstruct jlCa++s of arbitrary shape. This can 

be explained as follows. The matched filter, although designed for detecting objects 

of Gaussian shape, nevertheless produces a significant peak response to objects of 

similar shape and of the same size as the Gaussian. However, the shape of the 

matched filter response is not an estimate of the object; it is the location and height 

of the peak value that is significant. Hence, when thresholded, the matched filter 

output is typically smaller than the object to be detected. By dilating each detected 

pixel, we effectively "cast a net" encircling that location to find the object responsible 

for the output peak at that point. This process of weighting circular regions centered 

on detected pixels is analogous to filtering in the Fourier domain, except that the 

wavelet transform occupies a domain whose coordinates are space and scale. One 

example shown here (image 7c) contains elongated calcifications. That these are 

recovered by our approach can be explained by noting that fine, linear structures 

may in some cases be modeled by superposing Gaussian functions of appropriate 

scale along a line or curve. To justify the inverse wavelet transform stage we present 

a close-up example of segmented jlCa++s in Figure 7.4. The calcification boundaries 

generated by the second, segmentation step are visibly more accurate than those 

present in the detected pixel map created by the first stage. 
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Figure 7.3: Four examples of micro calcification clusters reconstructed using the com­

plete algorithm shown in Figure 6.1. (a) Original mammogram. (b) Hough trans­
formed output. (c) Reconstructed mammogram with detected microcalcifications 
highlighted. (d) Segmented micro calcifications. 
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Figure 7.4: Close-up view of a cluster showing that microcalcifications are more ac­
curately segmented when the second stage processing is implemented (weight/inverse 

wavelet transform/threshold) (b), compared to the detected pixel map (c) generated 
by the first sta.ge. The original mammogram section is in (a). 
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CHAPTERS 

Summary 

We have developed wavelet-based algorithms for detecting ILCa++s of varying size 

in mammograms. Our work has been reported in [31], [68] - [72]. With an appropriate 

choice of wavelet basis the undecimated wavelet transform with inter-octave voicing 

can be a useful tool for detecting ILCa++s in digitized mammograms. The method 

uses multiscale matched filters designed for detecting Gaussian objects in correlated 

Markov noise. We assume that individualILCa++s possess similar rounded profiles. 

We further simplify their profiles as a Gaussian signal. 

Under the assumption of a known object in stationary background noise, an opti­

mum detector can be derived, namely, the pre-whitening matched filter(PWMF)[13]. 

Even when noise is nonstationary, a spatially-adaptive filter may be used [28]-[31] to 

create a significantly decorrelated and more homogeneous background. In these cir­

cumstances we have shown that the PWMF is useful, although non-optimum, when 

applied to pre-processed gamma-ray images. The shape of the PWMF for a simple 

Gaussian object in stationary noise is similar to that of the second derivative of Gaus­

sian with its characteristic positive center lobe surrounded by a smaller negative lobe, 

as shown in section 3.3. Thus, we expect that wavelets of form akin to the second 
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derivative of a Gaussian approximate multi-scale, pre-whitening matched filters as 

they compute the details sub-bands of the various octaves. 

Our recognition algorithm is composed of two major process: detection and seg­

mentation. The purpose of the detection process is to find the candidate IlCa++ 

locations within the breast region, and then classify the potentiaIIlCa++s into true 

and false positives. Two methods have been proposed to find the potentiaIIlCa++s 

within the breast region. One method uses the details sub-bands HH and LH + HL 

from each octave, which are thresholded at some fixed percentile of the histogram of 

each component. The detected binary images from all octaves are then logically ORed 

to yield the binary map of detected pixels. The other method employs a Hotelling 

observer. The input vectors needed to apply the Hotelling observer to detect can­

didate IlCa++s are defined using the wavelet coefficients from each octave. Since 

the procedure to compute the Hotelling discriminant is similar to the prewhitening 

matched filtering, this method can be modeled as concatenating two matched filters. 

Better performance is obtained from this method. The detected potentiaIIlCa++s 

are classified to reduce the false alarms by analyzing their shape. 

The classical matched filter used in communications receivers makes no attempt 

to recover the shape of the incoming signal. Likewise, while the first (detection) stage 

of our method detects the presence of IlCa++s, it does not accurately segment them. 

However, by weighting the details sub-bands at the sites of detected pixels followed 

by computing the inverse wavelet transform we achieve a reasonable segmentation 
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of fLCa++s outlines. The effectiveness of the technique is constrained by certain 

approximations and assumptions. For example, adopting the Gaussian object model 

prevents us from optimally detecting anything but an average fLCa++s at any given 

scale. The detection performance of the method has been tested by computing FROC 

curves using the Nijmegen database of 40 mammograms. Several qualitative examples 

of segmentated clusters are presented as evidence that fLCa++s of varied shape can 

be recovered. 

The method requires computing one 4 octave wavelet transform, one 3-octave 

wavelet transform (for the inter-octave voices), and one inverse wavelet transform if 

accurate fLCa++s segmentation (as opposed to just detection) is desired. Efficient 

wavelet transform techniques are employed throughout. In practice we notice little 

drop in detection results when we omit the contributions from HH and LH+HL in 

octaves 1 and 4. Hence octave 4 need not be computed, whereas octave 1 is required 

in the sub-band decomposition. Octaves 2, 2.5, 3 and 3.5 are required to obtain best 

performance at the working resolution of the Nijmegen database. Further work is 

needed to ascertain the optimum sampling of this scale range. 

The weighting factor applied during the reconstruction stage influences the con­

trast of the segmented fLCa++s relative to the background. We currently use a factor 

of 7. The smaller the value used, the more noticeable the background breast texture 

appears, and vice versa. As stated earlier, we usually omit the LL component in the 
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final reconstruction, unless the context of the large scale breast structure is deemed 

to be valuable in a given situation, such as for viewing by a radiologist. 

The proposed method is founded on the principles of optimum detectors (matched 

filters); furthermore, the analysis/synthesis paradigm of the wavelet transform is 

elegant, simple to implement. In addition, the wavelet basis used here, being close 

to the Laplacian of Gaussian, provides useful zero-crossing information in the details 

LH + HL sub-bands which could be applied to the suppression of false edges and 

lines. Many false positives are removed by analyzing the shape of the detected pixels 

through the edges. 

The basic matched filtering / probability summation method attains a TPF of 

55% at a false positive rate of 0.7 clusters per image. Introducing shape discrimina­

tion improves the TPF to 70% at the same false positive rate as above. The Hotelling 

observer method has slightly better performance, achieving a detection rate of 73%. 

When the images 12c and 120 are omitted, even better performance of 81% is ob­

tained. 

8.1 Future Directions 

This method affords the potential for future enhancements of the basic approach. 

For example, the sub-bands could also be scanned for, and weighting applied to, 

clusters of detected pixels, prior to the inverse wavelet transform step. (The current 

method applies equal weight to all detected pixels, whether isolated or clustered.) 
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We will be able to improve our method further by: (1) using a neighborhood 

interaction mechanism which disallows detected pixels from regions containing both 

calcifications and linear structure, and (2) rewarding detected pixels which occur 

in local clusters. Action (1) will reduce the number of false positives due to long 

strands of connective tissue, and action (2) will tend to eliminate many isolated false 

detections. 

As well, future work will address the potential of using multiple wavelet bases 

for computing multiple forward wavelet transforms. The idea here is that differ­

ent wavelets may target different object classes. For example, a given wavelet may 

be more appropriate for enhancing the background texture in mammograms. By 

combining sub-bands from the multiple transforms it is conceivable that background 

structures could' be favorably suppressed. Significantly, only one set of sub-bands 

needs to be involved in the reconstruction (inverse wavelet transform) stage. 
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Appendix A 

Receiver Operating Characteristic Curve 

This appendix provides the details of the ROC curves used for the performance 

evaluation of the wavelet transform and the matched filters in Chapter 5. 

The most elementary situation in the detection theory involves discrimination 

between two hypotheses, Hand K, based on a single observation or realization x of 

a random variable X; that is, 

H: hypothesis on the observation x, e.g. X = N 
(A.l) 

K: alternative hypothesis on x, e.g. X = N + s. 

Here we assume that N is a noise random variable, s is a signal to be detected 

and X is the observation random variable. Given x, a realization of X, we need to 

decide whether x belongs to HoI' K, namely, "signal absent" or "signal present". In 

order to accomplish this task, we need a decision rule d = d( x). The decision rule d 

= d( x) partitions the X space 0 = {x E X} into two disjoint regions OH and OJ(, 

Then we can commit such errors as deciding for K when H is true. These errors 

are often called false alarms. The probability of false alarms can be written as 
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false positive fraction 
1 

Figure A.l: Receiver operating characteristic curve for some particular detector. 
Points A, Band C correspond to different decision thresholds. 

The probability of the correct detection of J( is 

(A.3) 

where dJ( represents a decision for J( and PH(X), pJ«(x) are a posteriori conditional 

densities of the random variable X under Hand J(, respectively. 

Then the detector performance can be measured by examining (3 as a function 

of the threshold, 0: as a function of the threshold, and (3 as a function of 0:. This 

is called a receiver operating characteristic or ROC curve, as illustrated in Figure 

A.I. 
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In some cases where PH(X) and P[((x) are not known, it is very difficult to compute 

Q, f3 and thus, the ROC curve. Under this situation, we can estimate Q and f3 in the 

following way. 

We first define some terminologies, namely, true positives (TP), when we correctly 

decide for J( when J( is true, true negatives (TN), when we correctly decide for H 

when H is true, false positives (FP), when we incorrectly decide for J( when H 

is true, and false negatives (FN), when we incorrectly decide for H when J( is 

true. Suppose that N observations are made, with NTP of them being true positives, 

NTN true negatives, NFP false positives, and NFN false negatives. Then Q can be 

estimated as 

Q IV False positive fraction(F P F) 

(Number 0/ false positive decisions) 
(Number 0/ actually negative cases) 

Nep 

Likewise, f3 can be obtained by 

f3 IV True positive fraction(T P F) 

= 

= 

(Number 0/ true positive decisions) 
(Number 0/ actually positive cases) 

Nxp 

(AA) 

(A.5) 

We can compute ROC curve by plotting TPF vs FPF, with various points along 

the curve obtained simply by varying the decision threshold. The imaging system, 

the input object, and the viewing conditions should be held constant for a particular 

curve. 
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ROC curves are very important measures to analyze the performances of the 

different detectors as shown in Figure A.2. An ideal detector would give no false 

positives until all true positives are detected. Its ROC curve would therefore hug the 

left and top edges of the graph, something like curve IV in Figure A.2. On the other 

hand, if the ROC curve would be the diagonal line from lower left to upper right, 

this detector simply guesses whether the object is present, not using any information. 

Thus the amount by which the ROC curve bows away from the diagonal and towards 

the upper left-hand corner is a measure of the performance of the detector, at least 

for the simple binary detection experiment for which the ROC curve was computed 

[65]. 
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Figure A.2: ROC curves for four different detectors. System IV is the best, system I 
is the worst for this detection task. 
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This appendix provides the details of a Hotelling observer whose strategy is based 

on the discrimination theory proposed in the early 30's by three eminent statisticians 

Hotelling, Fisher and Mahalanobis. 

Starting with different practical problems, their theories more or less converge to 

answer a common question: How to quantify the discrimination of two population 

distributions? Hotelling and Mahalanobis each suggested a figure of merit, later 

known as the Hotelling Trace and Mahalanobis Distance, respectively, to measure 

statistical distance between the two distributions. Equivalently, Fisher derived an 

optimum linear discriminant that maximized the statistical distance [73][74]. 

In order to separate several clusters well, the difference between the center points 

of the clusters should be large compared to the standard deviation for each cluster. 

Hotelling proposed a quantity called "Hotelling Trace" which is a scalar that 

measures the separability of two or more clusters in the sample space. The Hotelling 

Trace is defined as 

(B.l) 

where Sw and SB are matrices that describes the scatter characteristics of these 

clusters. 
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If mi is the sample mean of ith cluster given by 

(B.2) 

then the "within-class" scatter matrix Sw is defined as 

N 

Sw = I: Pi < (x - mi)(X - mif >, (B.3) 
i=l 

where N is the number of clusters, Pi represents a priori probability of occurrence of 

the ith cluster and < > means an average operation. Sw, which is proportional to the 

covariance matrices of the clusters, indicates the average scattering of the clusters. 

On the other hand, the "between-class" scatter matrix SB is defined as 

N 

SB = I:Pi(mi - me)(mi - mef, 
i=l 

where me represents the average over the whole clusters given by 

N 

me = I:Pimi. 
i=l 

(BA) 

(B.5) 

SB, an average distance between each cluster center mi and the center of whole 

clusters, represents the relative distance between the clusters. 

The Hotelling Trace, expressed by two scatter matrices, measures the separability 

between the clusters. This is proportional to the distance between the clusters. The 

feature operator w is obtained so that the Hotelling Trace J has a maximum. The 

"Hotelling Discriminant" is then defined as the linear function w T x. 
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If we assume that there are two clusters of samples with equal a priori probability 

(PI = P2 = !), then the scatter matrix SB reduces to 

SB = Hml - m2)(ml - m2)T, 

and the Hotelling Trace J can be written as 

Since (ml - m2)Siil(ml - m2)T is a scalar, the above equation reduces to 

(B.6) 

(B.7) 

(B.8) 

This Hotelling Trace J satisfies the eigen value equation of the matrix SiilSB' In 

other words, it can be expressed as 

(B.9) 

which is a generalized eigenvalue problem. By substituting the expression for J given 

in (B.8) into (B.9), the above equation can be written as 

~Siil(mi - m2)(ml - m2)Tw = ~w(mi - m2)SH>(ml - m2)T, 

and the eigenvector satisfying the above equation has the form 

Thus, the Hotelling discriminant>. can be computed in the following way, 

>. _ uT • X 

= (mi - m2)SH> . x. 

(B.I0) 

(B.ll) 

(B.12) 
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The inner product of x with S", functions as a prewhitening operator, while that 

of the prewhitened x with ml - m2 is equal to the matched filter. This is similar to 

the prewhitening matched filtering operation, as shown in Figure 6.9. 
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