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 AND BESOV, TRIEBEL-LIZORKIN SPACES-
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Abstract. We define a class of wavelet transforms as a continuous and microlocal 
version of the Littlewood-Paley decompositions. Hormander's wave front sets as well as 

the Besov and Triebel-Lizorkin spaces may be characterized in terms of our wavelet 

transforms.

Introduction. We define a class of wavelet transforms as a continuous and 

micro-local version of the Littlewood-Paley decompositions. Hormander's wave front 

sets as well as the Besov and Triebel-Lizorkin spaces may be characterized in terms of 

our wavelet transforms. We remark that the components of our decompositions are 

not linearly independent but can be treated as if they were. This paper consists of two 

parts. The first part treats the comparison between the wave front sets defined by our 
wavelet transforms and Hormander's wave front sets. The second part gives the 

characterization of the Besov and Triebel-Lizorkin spaces by using our wavelet 

transforms

First, we define our wavelet transforms as follows:

DEFINITION 1. Suppose that a function ƒÕ(x) (called a wavelet) has the following 

properties: •¬, •¬ and •¬. Let ƒ¶=suppƒÕ(ƒÌ) be in a 

neighbourhood of (0,...,0,1). When n=l, ƒ¶•¼(0,•‡), while when n•†2, ƒ¶ is connect-

ed, does not contain the origin 0 and ƒÕ(x)=ƒÕ(rx) for any r•¸SO(n) satisfying 

r(0,...,0, 1)=(0,...,0,1). Let rƒÌ be any rotation which sends ƒÌ/|ƒÌ| to (0,...,0,1). 

Then our wavelet transform is defined as follows: for •¬,

•¬

Here •¬(Rn) stands for the Schwartz class and C•‡0(Rn) consists of functions which are 

smooth and compactly supported.

REMARK 1. WƒÕf(x,ƒÌ) is rewritten as follows:

•¬
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From this, the meaning of our wavelet transforms is clear.

REMARK 2. Our wavelet transforms in Rn are the reduced versions of those defin-

ed by Murenzi [6].

REMARK 3. The domain of a wavelet transformation is usually the L2-space (see 

[1]), but can be extended to •¬(Rn), that is, the dual space of •¬(Rn).

Now, we define our wave front set WF•¬(f)(•¼Rnx•~RnƒÌ) of f•¸•¬(Rn) as follows:

DEFINITION 2. We say (x0,ƒÌ0)•¬WF•¬(f) if there exists a neighbourhood U(x0) of 

xo and a conic neighbourhood ƒ¡(ƒÌ0) of ƒÌ0 such that •¬ as |ƒÌ| tends 

to •‡ for any N•¸N in U(x0)•~ƒ¡(ƒÌ0). Here N stands for the set of all positive integers.

Moreover, we define the refinement WF(s)•¬)(f) as follows:

DEFINITION 3.

•¬

It is easy to prove that if f•¸L2(Rn), then WF•¬(f) is contained in the closure of 

•¬.

We need the following definition to state Theorem 1.

DEFINITION 4. For ƒ¶=suppƒÕ, let cone ƒ¶={tƒÌ;ƒÌ•¸ƒ¶, t>0}. Let W be a subset 

of Rnx•~RnƒÌ conical in the ƒÌ variables and denote by proj x W the projection of W 

onto the x-space. We say •¬ if •¬ porjxW and ƒÌ0•¸Rn, or x0•¸proj
xW and 

r(cone ƒ¶) does not intersect {ƒÌ•¸Rn; (x0, ƒÌ)•¸W} for any r•¸SO(n) with r(cone ƒ¶) con-

taining ƒÌ0.

That is to say, the set W•¬ is the expanded set of W only in the frequency space.

THEOREM 1. Let f•¸L2(Rn), and s•†0. When n=1, •¬. When 

n•†2, •¬ and •¬. We have the same inclusion re-

lations between WF•¬(f) and WF(f ).

In the second part of this paper we characterize the Besov and Triebel-Lizorkin 
spaces by using our wavelet transforms. We use continuous decompositions not only 
for the radial direction but also for the unit sphere of the frequency space . We recall 
the definitions of those spaces by Peetre [4] and Triebel [5].

DEFINITION 5. Let ƒÓ(x) be a rapidly decreasing function whose Fourier transform 

is compactly supported in 1/2•…|ƒÌ|•…2. Moreover, suppose that any half line starting 

from the origin intersects supp ƒÓ(ƒÌ) . Let ƒÓr(x) be rnƒÓ(rx). Then ƒÓr(ƒÌ) is equal to ƒÓ(ƒÌ/r).
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DEFINITION. A function f is said to belong to the Besov space •¬

 if

•¬

DEFINITION. A function f is said to belong to the Triebel-Lizorkin space 

Fsp,q(Rn)•¬ if

•¬

THEOREM 2. A function f belongs to Bsp
,q(Rn)(s>0, 1•…p, q•†•‡) if and only if the 

following condition holds:

•¬.

THEOREM 3. A function f belongs to Fsp,q(Rn)(s>0, 1•…p<•‡, 1•…q•…•‡) if and 

only if the following condition holds:

•¬.
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1. Proof of Theorem 1. As we have already defined, a wavelet ƒÕ(x) is essentially 

of two parameters, since it is rotationally invariant around ƒ¦ when n•†2. For the 

purpose of proving Theorem 1, we need three propositions. For simplicity, we assume 

ƒ¦ =(0,...,1).

PROPOSITION 1 (Parseval's formula and the inversion formula). For f, g•¸L2(Rn), 

we have

•¬ ,

where

•¬.

From this, we also have

•¬,

when n•†2. When n=1, |ƒÌ|rƒÌ(t-x) is replaced by ƒÌ(t-x). For f•¸•¬, this inversion formula 

holds in the sense of distribution.
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PROPOSITION 2 (the local property). If x0 does not belong to supp f, then there 

exists a neighbourhood U(x0) of x0 such that WƒÕf(x,ƒÌ) is rapidly decreasing in ƒÌ uniformly 

in x•¸U(x0).

PROPOSITION 3 (the global Sobolev property).

•¬.

PROOF OF PROPOSITION 1. We use the method which Daubechies [1] employed 
to prove the statement in the case n=1. We have

(1)

 •¬

We change the variable ƒÌ to •¬. The right hand side of (1) is equal to

•¬

q.e.d.

PROOF OF PROPOSITION 2. We take n as 1. The proof is similar to that in the case 

n•†2. Because there exists a neighbourhood U1(x0) of x0 such that f=0 in U1(x0)
, it 

follows that

•¬

Since ƒÕ belongs to •¬(R), there exists a neighbourhood U(x0)•¬U1(x0) satisfying this 

proposition. q.e.d.

PROOF OF PROPOSITION 3. It suffices to prove the statement when n•†2. The 

proof follows from direct application of Parseval's formula. We have
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•¬

We use the polar coordinate representation of ƒÖ=(r,ƒÆ) and denote •¬ by S(r). 

Then the second integral in the last term equals •¬. By the assumption 

on ƒÕ(ƒÖ), supp S(r) is a compact set contained in (0,•‡). Thus •¬

. q.e.d.

Now, we are ready to prove Theorem 1.

PROOF OF THEOREM 1. We may assume n•†2.

Step 1. Suppose that (0,ƒÌ0) does not belong to the set WF(s)(f)ƒÕ. We suppose 

0•¸projxWF(s)(f). Let ƒ¡(ƒÌ0) be the union of r (coneƒ¶) for all rotations r such that 

ƒÌ0•¸r (coneƒ¶). Then there exist a function ƒÓ(x)•¸C•‡0(Rn) such that ƒÓ=1 near x=0 and 

a conic neighbourhood •¬ such that •¬. What 

we want to say is that there exist a conic neighbourhood ƒ¡(ƒÌ0) of ƒÌ0 and a 

neighbourhood U(0) of 0, satisfying

•¬

Using the inversion formula, we divide WƒÕf(x,ƒÌ) into two parts:

•¬.

If we take a set U(0)•¬{ƒÓ(x)•ß1}, then by the argument of Proposition 2, the second 

term is rapidly decreasing in |ƒÌ| uniformly in x•¸U(0). Therefore, •¬. 

On the other hand, if we take ƒ¡(ƒÌ0) sufficiently small, then we obtain

•¬
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We change the variable ƒÌ to •¬ as before. We may assume that ƒÖ•¸ƒ¶. Therefore, 

we can see that ƒÑ stays in ƒ¡'(ƒÌ0) because we took ƒ¡(ƒÌ0) sufficiently small. Thus the last 

term of the above inequality is bounded by

•¬

where C is a constant. Therefore, we have •¬.

Step 2. Suppose that (0, ƒÌ0) does not belong to the set WF(s)ƒÕ(f)ƒÕ. If we take a 

conic neighbourhood ƒ¡'(ƒÌ0) of ƒÌ0 as in Step 1, then there exists a neighbourhood U(0) 

of x=0 such that

•¬

Now using the inversion formula, we divide f into two parts f=fƒ¡'+fƒ¡'c, where

•¬,•¬,

Then

•¬

If we take a sufficiently small conic neighbourhood ƒ¡(ƒÌ0) of ƒÌ0, then we obtain

•¬ for any ƒÑ•¸ƒ¡(ƒÌ0) and for any ƒÌ•¸ƒ¡'(ƒÌ0)c

Therefore, it follows that •¬.

Next, we choose a function ƒÓ(x)•¸C•‡0(Rn) such that supp ƒÓ(x) is compactly supported 

in U(0) and that ƒÓ(x)•ß1 in some neighbourhood U1(0) of 0. Then, we further divide 

fƒ¡'(t) into two parts •¬, where

•¬
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•¬.

Let U2(0)•¬{ƒÓ(x)•ß1}. Then we can easily see that •¬ by Proposition 

2 and the exchange of order of differentiation and integration. Therefore, it follows 

that •¬. Lastly, we want to show that •¬. This is 

the heart of the matter in proving Theorem 1. In fact, we can show more strongly that 

fƒ¡',ƒÓ belongs globally to the Sobolev space Hs(Rn). Its Fourier transform is given by

•¬

If we put •¬, then it follows from the hypothesis and 

from the fact that supp ƒÓ(x) is contained in U(0) that

•¬

If we denote the Fourier transform of g(x, ƒÌ) with respect to x by g(ƒÑ,ƒÌ), we have

•¬

Here, K(ƒÑ,ƒÌ) is defined by •¬.

Since supp ƒÕ is compact, there exists a constant C such that

•¬

Therefore, since 0•¬suppƒÕ, by the argument given in the proof of Proposition 1, the 

integral •¬ is bounded with bound (2ƒÎ)-nCƒÕC2. Consequently, we obtain the 

following inequality:

•¬
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•¬

q.e.d.

2. Proof of Theorems 2 and 3.

PROOF OF THEOREM 2. Sufficiency: For simplicity, let •¬ 

and •¬, where dƒÆƒÌ, is the Haar measure on Sn-1. Then, ƒÓr(ƒÌ) is compactly 

supported in the domain C1r•…|ƒÌ|•…C2r because  suppƒÕ is compact and does not contain 

0, and any half line starting from the origin intersects supp ƒÓr(ƒÌ). We have

•¬

The first inequality is due to the continuous version of the Minkowski inequality and 

the second one is due to the Holder inequality. Integrating both sides of this inequality 

with respect to |ƒÌ|sq-1d|ƒÌ|, we can see that the usual Besov norm is bounded by the 

Besov norm via the wavelet transform.

Necessity: Let

•¬

(cf. the proof of Proposition 1). Then, supp ƒÐr(ƒÑ) is contained in the domain 

C1r•…|ƒÑ|•…C2r and

•¬

that is,

•¬.

By using this continuous decomposition of unity, we have

(2)  •¬ .

Because the Fourier transform of •¬ is identically zero unless C3|ƒÌ|•…r•…C4|ƒÌ|, 

and because the L1-norm of ƒÕ|ƒÌ|,rƒÌ
. and that of ƒÐr is bounded, the last term in (2) does 

not exceed
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(3)

 •¬

The right hand side of (3) is independent of the rotation dƒÆƒÌ and moreover

•¬

Thus we can conclude that the Besov norm via the wavelet transform is bounded by 

the usual Besov norm. q.e.d.

PROOF OF THEOREM 3. Sufficiency: As in Theorem 2, let •¬. 

Then, we have

•¬

Hence, we can easily see that the usual Triebel-Lizorkin norm is bounded by the norm 

via the wavelet transform.

Necessity: This part needs very deep results which are continuous versions of the 
work of Fefferman-Stein [2] and Triebel [5].

First, we state the results without proof. The proof is carried out in the same way 

as in the discrete case. See [2], [5].

Claim 1 (continuous version of [2]). Let f(x, y) be a function of (x, y)•¸Rnx•~Rny 

and Mf(x, y) the Hardy-Littlewood maximal function of f(x, y) with respect to x. Then, 

we have

•¬

where 1<p<•‡, 1<q•…•‡.

Claim 2 (continuous version of the maximal inequalities in [5]). Let p, q, r sat-
isfy

0<p<•‡, 0<q•…•‡ and 0<r<min(p,q).

Let f(ƒÌ, y) be the Fourier transform of f(x, y) with respect to x and let ƒ¶y be a set 

containing supp f (•E, y). Let the diameter dy of ƒ¶y be a continuous function of y and dy 

be positive. Then the following inequality holds:

•¬

Claim 3 (continuous version of the multiplier theorem in [5]). Let
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0<p<•‡, 0<q•…•‡ and •¬

Let ƒ¶y, dy be as in Claim 2. Let M(x, y) be a function on Rnx•~Rny . Then the following 

inequality holds:

•¬

Claim 1 is essential in proving Claim 2. To prove Claim 3, we need Claim 2 and 

the following inequality:

•¬

where 0<r<min(p, q) and K>n/2+n/r.
As in the proof of Theorem 2, we use the continuous decomposition of unity: •¬

. We have

(4)

 •¬

We apply Claim 3 to the integrand on the right hand side of (4) with d|ƒÌ|=C|ƒÌ| and •¬

. Since •¬, the term 

•¬ is bounded. Therefore, the Triebel-

Lizorkin norm via the wavelet transform is bounded by the usual norm . q.e.d.

REMARK 4. In Theorems 2 and 3, the case where p+q<2 and 0<p•…1 or 0<q•…1 

remains to be dealt with. Such troubles occur because we used the Holder inequality 

and the Minkowski inequality in the proof of Theorems 2 and 3 .
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