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WAVELET TRANSFORMS VERSUS FOURIER TRANSFORMS

GILBERT STRANG

Abstract. This note is a very basic introduction to wavelets. It starts with
an orthogonal basis of piecewise constant functions, constructed by dilation
and translation. The "wavelet transform" maps each f(x) to its coefficients
with respect to this basis. The mathematics is simple and the transform is
fast (faster than the Fast Fourier Transform, which we briefly explain), but
approximation by piecewise constants is poor. To improve this first wavelet, we
are led to dilation equations and their unusual solutions. Higher-order wavelets
are constructed, and it is surprisingly quick to compute with them — always
indirectly and recursively.

We comment informally on the contest between these transforms in sig-
nal processing, especially for video and image compression (including high-
definition television). So far the Fourier Transform — or its 8 by 8 windowed
version, the Discrete Cosine Transform — is often chosen. But wavelets are
already competitive, and they are ahead for fingerprints. We present a sample
of this developing theory.

1. The Haar wavelet
To explain wavelets we start with an example. It has every property we hope

for, except one. If that one defect is accepted, the construction is simple and
the computations are fast. By trying to remove the defect, we are led to dilation
equations and recursively defined functions and a small world of fascinating
new problems — many still unsolved. A sensible person would stop after the
first wavelet, but fortunately mathematics goes on.

The basic example is easier to draw than to describe:
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Figure 1. Scaling function (¡>(x)
the next level of detail.

wavelet W{x), and

Already you see the two essential operations: translation and dilation. The
step from W{2x) to W(2x-\) is translation. The step from W(x) to W{2x)
is dilation. Starting from a single function, the graphs are shifted and com-
pressed. The next level contains W(4x), W(4x-l), W(4x-2), W(4x-3).
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Each is supported on an interval of length \ . In the end we have Haar's infinite
family of functions:

Wjk(x) = W(2jx - k)   (together with <p{x)).

When the range of indices is j > 0 and 0 < k < 21, these functions form a
remarkable basis for L2[0, 1]. We extend it below to a basis for L? (R).

The four functions in Figure 1 are piecewise constant. Every function that is
constant on each quarter-interval is a combination of these four. Moreover, the
inner product / <p(x) W(x) dx is zero — and so are the other inner products.
This property extends to all j and k : The translations and dilations of W are
mutually orthogonal. We accept this as the definition of a wavelet, although
variations are definitely useful in practice. The goal looks easy enough, but the
example is deceptively simple.

This orthogonal Haar basis is not a recent invention [1]. It is reminiscent
of the Walsh basis in [2] — but the difference is important, t For Walsh and
Hadamard, the last two basis functions are changed to W{2x) ± W{2x - 1).
All of their "binary sinusoids" are supported on the whole interval 0 < x <
1. This global support is the one drawback to sines and cosines; otherwise,
Fourier is virtually unbeatable. To represent a local function, vanishing outside
a short interval of space or time, a global basis requires extreme cancellation.
Reasonable accuracy needs many terms of the Fourier series. Wavelets give a
local basis.

You see the consequences. If the signal f{x) disappears after x = \ , only a
quarter of the later basis functions are involved. The wavelet expansion directly
reflects the properties of / in physical space, while the Fourier expansion is
perfect in frequency space. Earlier attempts at a "windowed Fourier transform"
were ad hoc — wavelets are a systematic construction of a local basis.

The great value of orthogonality is to make expansion coefficients easy to
compute. Suppose the values of f(x), constant on four quarter-intervals, are
9, 1,2,0. Its Haar wavelet expansion expresses this vector y as a combination
of the basis functions:

r9-
1
2

.0.
The wavelet coefficients bj^ are 3,2,4, 1 ; they form the wavelet transform of
/. The connection between the vectors y and b is the matrix W4 , in whose
orthogonal columns you recognize the graphs of Figure 1 :

r 1      1      1      On r3i
1      1-10 2
1-1      0      1 4   •

.1-1      0   -1J Ll.
This is exactly comparable to the Discrete Fourier Transform, in which f(x) =
J2ake'kx stops after four terms. Now the vector y contains the values of /

t Rademacher was first to propose an orthogonal family of ± 1 functions; it was not complete.
After Walsh constructed a complete set, Rademacher's Part II was regrettably unpublished and
seems to be lost (but Schur saw it).
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at four points:

y = F4a   is
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This Fourier matrix also has orthogonal columns. The « by « matrix Fn
follows the same pattern, with co = e2ni/n in place of i = e2*'/4. Multiplied
by \/\/ñ to give orthonormal columns, it is the most important of all unitary
matrices. The wavelet matrix sometimes offers modest competition.

To invert a real orthogonal matrix we transpose it. To invert a unitary matrix,
transpose its complex conjugate. After accounting for the factors that enter
when columns are not unit vectors, the inverse matrices are

W~x = -W*        4

r i
i
2

L 0

1
1

-2
0

1 1
-1 -1

0 0
2 -2

and F~l = -*4        4

1111
1     (-/)    {-if   (-if
i   (-02   (-04   (-06
1      (_/)3      (_06      (_09

The essential point is that the inverse matrices have the same form as the origi-
nals. If we can transform quickly, we can invert quickly — between coefficients
and function values. The Fourier coefficients come from values at n points.
The Haar coefficients come from values on n subintervals.

2. Fast Fourier Transform and Fast Wavelet Transform
The Fourier matrix is full — it has no zero entries. Multiplication of Fn

times a vector a, done directly, requires n2 separate multiplications. We are
evaluating an n-term Fourier series at n points. The series is J2o~ ak e'kx >
and the points are x — 2nj/n .

The wavelet matrix is sparse — many of its entries are zero. Taken together,
the third and fourth columns of W fill a single column; the fifth, sixth, seventh,
and eighth columns would fill one more column. With n — 2l, we fill only i + 1
columns. The total number of nonzero entries in W„ is n(£ + 1). This already
shows the effect of a more local basis. Multiplication of Wn times a vector b,
done directly, requires only «(log2 n + 1) separate multiplications.

Both of these matrix multiplications can be made faster. For Fna, this is
achieved by the Fast Fourier Transform — the most valuable numerical algo-
rithm in our lifetime. It changes n2 to j«log2« by a reorganization of the
steps — which is simply a factorization of the Fourier matrix. A typical calcu-
lation with « = 210 changes (1024)(1024) multiplications to (5)(1024). This
saving by a factor greater than 200 is genuine. The result is that the FFT has
revolutionized signal processing. Whole industries are changed from slow to
fast by this one idea — which is pure mathematics.

The wavelet matrix W„ also allows a neat factorization into very sparse
matrices. The operation count drops from 0(«log«) all the way to O(n).
For our piecewise constant wavelet the only operations are add and subtract; in
fact, W2 is the same as F2. Both fast transforms have I — log2 n steps, in the
passage from n down to 1. For the FFT, each step requires \ n multiplications
(as shown below). For the Fast Wavelet Transform, the cost of each successive
step is cut in half.   It is a beautiful "pyramid scheme" created by Burt and
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Adelson and Mallat and others. The total cost has a factor 1 + \ + \ -\— that
stays below 2. This is why the final outcome for the FWT is O(n) without the
logarithm £ .

The matrix factorizations are so simple, especially for n = 4, that it seems
worthwhile to display them. The FFT has two copies of the half-size transform
F2 in the middle:

ri   i i ri 1
1 i2 1

11 1
i  i2\ L i.

The permutation on the right puts the even a's ( an and a2 ) ahead of the odd
a's ( a\ and a$ ). Then come separate half-size transforms on the evens and
odds. The matrix at the left combines these two half-size outputs in a way that
produces the correct full-size answer. By multiplying those three matrices we
recover F4.

The factorization of W4 is a little different:

-1 i ri      l
1 1   -1

1 1
1J L 1.

At the next level of detail (for W% ), the same 2 by 2 matrix appears four
times in the left factor. The permutation matrix puts columns 0,2,4,6 of
that factor ahead of 1,3,5,7. The third factor has W4 in one corner and I4
in the other corner (just as W4 above ends with W2 and I2 — this factorization
is the matrix form of the pyramid algorithm). It is the identity matrices I4 and
I2 that save multiplications. Altogether W2 appears 4 times at the left of W-g,
then 2 times at the left of W4 , and then once at the right. The multiplication
count from these n - 1 small matrices is 0{n) — the Holy Grail of complexity
theory.

Walsh would have another copy of the 2 by 2 matrix in the last corner,
instead of I2. Now the product has orthogonal columns with all entries ± 1 —
the Walsh basis. Allowing W2 or I2, W4 or I4, W% or 78, ... in the third
factors, the matrix products exhibit a whole family of orthogonal bases. This is
a wavelet packet, with great flexibility. Then a "best basis" algorithm aims for
a choice that concentrates most of / into a few basis vectors. That is the goal
— to compress information.

The same principle of factorization applies for any power of 2, say n =
1024. For Fourier, the entries of F are powers of a> = e2n'/1024 . The row and
column indices go from 0 to 1023 instead of 1 to 1024. The zeroth row and
column are filled with co° = 1 . The entry in row j , column k of F is œ-'k .
This is the term e'kx evaluated at x = 2nj/l024. The multiplication -Fi024<3
computes the series Y,ak(t}jlc for j = 0 to 1023.

The key to the matrix factorization is just this. Squaring the 1024th root
of unity gives the 512th root: (a>2)512 = 1. This was the reason behind the
middle factor in (1), where i is the fourth root and i2 is the square root. It
is the essential link between Fl024 and F5i2. The first stage of the FFT is the
great factorization rediscovered by Cooley and Tukey (and described in 1805

(1) F4 =

i i
1 i

1 -1
1 -i

(2) W± = 1
-1
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by Gauss):

(3) '1024 ^512
-¿512

£>512
-0512

512
512

even-odd
shuffle

/512 is the identity matrix. D512 is the diagonal matrix with entries (1, a>,
... , cd511), requiring about 512 multiplications. The two copies of F512 in
the middle give a matrix only half full compared to F1024 — here is the crucial
saving. The shuffle separates the incoming vector a into (üq, a2, ... , #1022)
with even indices and the odd part (ai, a$, ... , 01023) •

Equation (3) is an imitation of equation (1), eight levels higher. Both are
easily verified. Computational linear algebra has become a world of matrix
factorizations, and this one is outstanding.

You have anticipated what comes next. Each F5i2 is reduced in the same
way to two half-size transforms F = F25(,. The work is cut in half again, except
for an additional 512 multiplications from the diagonal matrices D — D2s(, :

(4)
F512

512

/
D

-D
D

-D\   L
F

even-odd gives
0 and 2 mod 4
even-odd gives
1 and 3 mod 4

For n = 1024 there are I = 10 levels, and each level has \n = 512 multi-
plications from the first factor — to reassemble the half-size outputs from the
level below. Those D's yield the final count \nt.

In practice, I = log2 n is controlled by splitting the signal into smaller blocks.
With n — 8, the scale length of the transform is closer to the scale length of
most images. This is the short time Fourier transform, which is the transform of
a "windowed" function wf. The multiplier w is the characteristic function of
the window. (Smoothing is necessary! Otherwise this blocking of the image can
be visually unacceptable. The ridges of fingerprints are broken up very badly,
and windowing was unsuccessful in tests by the FBI.) In other applications the
implementation may favor the FFT — theoretical complexity is rarely the whole
story.

A more gradual exposition of the Fourier matrix and the FFT is in the mono-
graphs [3, 4] and the textbooks [5, 6] — and in many other sources [see 7]. (In
the lower level text [8], it is intended more for reference than for teaching. On
the other hand, this is just a matrix-vector multiplication!) FFT codes are freely
available on netlib, and generally each machine has its own special software.

For higher-order wavelets, the FWT still involves many copies of a single
small matrix. The entries of this matrix are coefficients c\ from the "dilation
equation". We move from fast algorithms to a quite different part of mathemat-
ics — with the goal of constructing new orthogonal bases. The basis functions
are unusual, for a good reason.

3. Wavelets by multiresolution analysis
The defect in piecewise constant wavelets is that they are very poor at approx-

imation. Representing a smooth function requires many pieces. For wavelets
this means many levels — the number 2J must be large for an acceptable ac-
curacy. It is similar to the rectangle rule for integration, or Euler's method for
a differential equation, or forward differences Ay/Ax as estimates of dy/dx .
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Each is a simple and natural first approach, but inadequate in the end. Through
all of scientific computing runs this common theme: Increase the accuracy at
least to second order. What this means is: Get the linear term right.

For integration, we move to the trapezoidal rule and midpoint rule. For
derivatives, second-order accuracy comes with centered differences. The whole
point of Newton's method for solving f(x) = 0 is to follow the tangent line.
All these are exact when / is linear. For wavelets to be accurate, W(x) and
<t>(x) need the same improvement. Every ax + b must be a linear combination
of translates.

Piecewise polynomials (splines and finite elements) are often based on the
"hat" function — the integral of Haar's W(x). But this piecewise linear func-
tion does not produce orthogonal wavelets with a local basis. The requirement
of orthogonality to dilations conflicts strongly with the demand for compact sup-
port — so much so that it was originally doubted whether one function could
satisfy both requirements and still produce ax + b . It was the achievement of
Ingrid Daubechies [9] to construct such a function.

We now outline the construction of wavelets. The reader will understand that
we only touch on parts of the theory and on selected applications. An excel-
lent account of the history is in [10]. Meyer and Lemarié describe the earliest
wavelets (including Gabor's). Then comes the beautiful pattern of multiresolu-
tion analysis uncovered by Mallat — which is hidden by the simplicity of the
Haar basis. Mallat's analysis found expression in the Daubechies wavelets.

Begin on the interval [0, 1]. The space V0 spanned by <f>(x) is orthogonal
to the space W0 spanned by W(x). Their sum Vx = V0 © W0 consists of
all piecewise constant functions on half-intervals. A different basis for Vx is
4>{2x) = \(<t>{x) + W{x)) and <p{2x - 1) = {(cf>{x) - W{x)). Notice especially
that V0 c Vx. The function (j>(x) is a combination of 4>(2x) and 4>(2x - 1).
This is the dilation equation, for Haar's example.

Now extend that pattern to the spaces V¡ and W¡ of dimension 2' :

Vj = span of the translates 4>(2Jx - k) for fixed j,
Wj = span of the wavelets W(2'x - k) for fixed j.

The next space V2 is spanned by 4>{4x), 4>{4x - 1), 4>(4x - 2), <j>(4x - 3).
It contains all piecewise constant functions on quarter-intervals. That space
was also spanned by the four functions <f>{x), W{x), W(2x), W(2x - 1) at
the start of this paper. Therefore, V2 decomposes into Vx and Wx just as Vx
decomposes into Vq and Wo '■

(5) V2 = Vx®Wx = Vq®Wq®Wx.

At every level, the wavelet space Wj is the "difference" between Vj+X and Vj-.

(6) VJ+i = Vj®Wj=VQ®WQ®---®Wj.

The translates of wavelets on the right are also translates of scaling functions on
the left. For the construction of wavelets, this offers a totally different approach.
Instead of creating W(x) and the spaces W¡■■, we can create </>(x) and the spaces
Vj. It is a choice between the terms Wj of an infinite series or their partial sums
Vj. Historically the constructions began with W(x). Today the constructions
begin with <f>(x). It has proved easier to work with sums than differences.
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A first step is to change from [0,1] to the whole line R. The translation
index k is unrestricted. The subspaces Vj and W¡ are infinite-dimensional
(L? closures of translates). One basis for L2(R) consists of <\>(x - k) and
Wjk(x) = W(2jx-k) with j >Q,k eZ. Another basis contains all Wjk with
j, k € Z. Then the dilation index j is also unrestricted — for j = — 1 the
functions (j>(2~lx-k) are constant on intervals of length 2. The decomposition
into Vj © Wj continues to hold! The sequence of closed subspaces Vj has the
following basic properties for -oc < j < oo :

Vj c Vj+X  and   Ç] Vj = {0} and   |J Vj is dense in L2(R) ;
f(x) is in Vj if and only if /(2.x) is in VJ+X ;
Vq has an orthogonal basis of translates <f>(x - k),  k eZ.

These properties yield a llmultiresolution analysis" — the pattern that other
wavelets will follow. Vj will be spanned by <\>(2>x - k). W¡ will be its orthog-
onal complement in V¡+x . Mallat proved, under mild hypotheses, that Wj is
also spanned by translates [11]; these are the wavelets.

Dilation is built into multiresolution analysis by the property that f(x) €
Vj <& f(2x) 6 Vj+X . This applies in particular to <f>(x). It must be a combi-
nation of translates of <f>(2x). That is the hidden pattern, which has become
central to this subject. We have reached the dilation equation.

4. The dilation equation
In the words of [10], "'la perspective est complètement changée." The construc-

tion of wavelets now begins with the scaling function <f>. The dilation equa-
tion (or refinement equation or two-scale difference equation) connects <j>{x) to
translates of 4>{2x):

N

(7) d>(x) = J2ck<P(2x-k).
k=0

The coefficients for Haar are Co - cx = I . The box function <j> is the sum of
two half-width boxes. That is equation (7). Then W is a combination of the
same translates (because W0 c Vx ). The coefficients for W = 4>{2x) - <j)(2x - 1 )
are 1 and -1. It is absolutely remarkable that W uses the same coefficients
as (f>, but in reverse order and with alternating signs:

i
(8) W(x) = Y, (-Vk Ci-k <K2x - k).

\-N

This construction makes W orthogonal to cf> and its translates. (For those
translates to be orthogonal to each other, see below.) The key is that every
vector Co, cx, c2, C3 is automatically orthogonal to C3, -c2, cx, -Co and all
even translates like 0, 0, cj, -c2.

When N is odd, cx^¡< can be replaced in (8) by cN_k . This shift by N - 1
is even. Then the sum goes from 0 to A' and W(x) looks especially attractive.

Everything hinges on the c's. They dominate all that follows. They determine
(and are determined by) 4>, they determine W, and they go into the matrix
factorization (2). In the applications, convolution with cf> is an averaging oper-
ator — it produces smooth functions (and a blurred picture). Convolution with
W is a differencing operator, which picks out details.
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The convolution of the box with itself is the piecewise linear hat function
— equal to 1 at x = 1 and supported on the interval [0, 2]. It satisfies the
dilation equation with c0 = 2 > <?i = 1, c2 = \. But there is a condition on
the c's in order that the wavelet basis W(2->x - k) shall be orthogonal. The
three coefficients |, 1, | do not satisfy that condition. Daubechies found the
unique Cn, cx, c2, c-¡ (four coefficients are necessary) to give orthogonality plus
second-order approximation. Then the question becomes: How to solve the
dilation equation!

Note added in proof. A new construction has just appeared that uses two
scaling functions </>, and wavelets W¡. Their translates are still orthogonal
[38]. The combination <j)X(x) + 4>x(x- l) + (f>2(x) is the hat function, so second-
order accuracy is achieved. The remarkable property is that these are "short
functions": 4>x is supported on [0, 1] and <f>2 on [0, 2]. They satisfy a matrix
dilation equation.

These short wavelets open new possibilities for application, since the greatest
difficulties are always at boundaries. The success of the finite element method
is largely based on the very local character of its basis functions. Splines have
longer support (and more smoothness), wavelets have even longer support (and
orthogonality). The translates of a long basis function overrun the boundary.

There are two principal methods to solve dilation equations. One is by
Fourier transform, the other is by matrix products. Both give <j> as a limit,
not as an explicit function. We never discover the exact value <f){V2). It is
amazing to compute with a function we do not know — but the applications
only require the c's. When complicated functions come from a simple rule, we
know from increasing experience what to do: Stay with the simple rule.

Solution of the dilation equation by Fourier transform. Without the "2" we
would have an ordinary difference equation — entirely familiar. The presence
of two scales, x and 2x, is the problem. A warning comes from Weierstrass
and de Rham and Takagi — their nowhere differentiable functions are all built
on multiple scales like ^ a" cos(b"x). The Fourier transform easily handles
translation by k in equation (7), but 2x in physical space becomes £/2 in
frequency space:

(9) m = \ £ ck e*«2 ¿ (!) = p (!) ¿ (!).

The "symbol" is /»({) = | £«*'*"*■ With £ = 0 in (9) we find P(0) = 1
or Y,ck = 2 — the first requirement on the c's. This allows us to look for a
solution normalized by 0(0) = / <f>(x) dx = 1 . It does not ensure that we find
a <f> that is continuous or even in L1 . What we do find is an infinite product,
by recursion from £/2 to f/4 and onward:

*°-'(M)-'G)'G)'G)-- 8'®-
This solution (f> may be only a distribution. Its smoothness becomes clearer by
matrix methods.
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Solution by matrix products [12, 13]. When 0 is known at the integers, the
dilation equation gives 0 at half-integers such as x = \ . Since 2x - k is an
integer, we just evaluate 5Z ck(l)(2x - k). Then the equation gives 0 at quarter-
integers as combinations of 0 at half-integers. The combinations are built into
the entries of two matrices A and B, and the recursion is taking their products.

To start we need 0 at the integers. With N = 3, for example, set x = 1
and x = 2 in the dilation equation:

;io) 0(1) = d 0(1) +c0 0(2),
0(2) = C30(1)+C2 0(2).

Impose the conditions Ci + C3 = 1 and Co + c2 = 1 . Then the 2 by 2 matrix
in (10), formed from these c's, has X = 1 as an eigenvalue. The eigenvector is
(0(1), 0(2)). It follows from (7) that 0 will vanish outside 0 < x < N.

To see the step from integers to half-integers in matrix form, convert the
scalar dilation equation to a first-order equation for the vector v(x) :

v(x) =
0(JC)

0(X + 1)
0(x + 2)

A =
Co 0 0
c2 cx Co
0    c3    c2

B =
c\ c0 0
c3 c2 cx
0     0    c3

The equation turns out to be v(x) = Av(2x) for 0 < x < 5 and v(x) =
Bv(2x - 1) for j < x < 1. By recursion this yields v at any dyadic point
— whose binary expansion is finite. Each 0 or 1 in the expansion decides
between A and B . For example

(11) v(.01001) = (ABAAB)v(O).
Important: The matrix B has entries c2i-¡. So does A , when the indexing

starts with i = j — 0. The dilation equation itself is 0 = C0, with an operator
C of this new kind. Without the 2 it would be a Toeplitz operator, constant
along each diagonal, but now every other row is removed. Engineers call it
"convolution followed by decimation". (The word downsampling is also used —
possibly a euphemism for decimation.) Note that the derivative of the dilation
equation is 0' = 2C0'. Successive derivatives introduce powers of 2. The
eigenvalues of these operators C are \, \, \, ... , until 0("> is not defined in
the space at hand. The sum condition £ ceven = ^ ¿odd = 1 is always imposed
— it assures in Condition Ai below that we have first-order approximation at
least.

When x is not a dyadic point p/2n , the recursion in ( 11 ) does not terminate.
The binary expansion x - .0100101... corresponds to an infinite product
AB A AB AB.... The convergence of such a product is by no means assured. It is
a major problem to find a direct test on the c's that is equivalent to convergence
— for matrix products in every order. We briefly describe what is known for
arbitrary A and B.

For a single matrix A, the growth of the powers A" is governed by the
spectral radius p(A) = max |A;|. Any norm of A" is roughly the «th power of
this largest eigenvalue. Taking rath roots makes this precise:

lim   \\A"\\l'n = p(A).

The powers approach zero if and only if p(A) < 1 .
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For two or more matrices, the same process produces the joint spectral radius
[14]. The powers A" are replaced by products n„ of ra A's and 5's. The
maximum of ||n„||, allowing products in all orders, is still submultiplicative.
The limit of rath roots (also the infimum) is the joint spectral radius:

(12) lim (max||n„||)1/" = /)(^,ß).

The difficulty is not to define p(A, B) but to compute it. For symmetric or
normal or commuting or upper triangular matrices it is the larger of p(A) and
p(B). Otherwise eigenvalues of products are not controlled by products of
eigenvalues. An example with zero eigenvalues, p(A) = 0 = p(B), is

A = 0   2
0   0 5 = 0   0

2   0 AB = 4   0
0   0

In this case p(A, B) = \\AB\\1/2 = 2. The product AB AB AB... diverges. In
general p is a function of the matrix entries, bounded above by norms and
below by eigenvalues. Since one possible infinite product is a repetition of any
particular n„ (in the example it was AB), the spectral radius of that single
matrix gives a lower bound on the joint radius:

(p(Un))l'"<p(A,B).

A beautiful theorem of Berger and Wang [15] asserts that these eigenvalues of
products yield the same limit (now a supremum) that was approached by norms:

;i3) limsup (maxp(Un))l/" = p(A,B).

It is conjectured by Lagarias and Wang that equality is reached at a finite product
n„ . Heil and the author noticed a corollary of the Berger-Wang theorem: p is
a continuous function of A and B . It is upper-semicontinuous from (12) and
lower-semicontinuous from (13).

Returning to the dilation equation, the matrices A and B share the left
eigenvector ( 1, 1, 1 ). On the complementary subspace, they reduce to

A' = Co 0
-C3     1 - Co - c3

and   B' = -co-Ci    -c0
0 c3

It is p(A', B') that decides the size of 0(x) - 0(y). Continuity follows from
p < 1 [16]. Then 0 and W belong to Ca for all a less than -\og2p. (When
a > 1, derivatives of integer order [a] have Holder exponent a - [a].) In
Sobolev spaces Hs, Eirola and Villemoes [17, 18] showed how an ordinary
spectral radius — computable — gives the exact regularity 5 .

5. Accuracy and orthogonality
For the Daubechies coefficients, the dilation equation does produce a contin-

uous 0(x) with Holder exponent 0.55 (it is differentiable almost everywhere).
Then (8) constructs the wavelet. Figure 2 shows 0 and W with Co, cx , c2,
c3 = |(l + \/3), ±(3 + ^/3), {-(3-V3), ¿(l-v7?).

What is special about the four Daubechies coefficients? They satisfy the
requirement A2 for second-order accuracy and the separate requirement O
for orthogonality. We can state Condition A2 in several forms. In terms of
W, the moments / W(x) dx and / x W(x) dx are zero.   Then the Fourier



GILBERT STRANG

Figure 2. The family W4(2Jx-k) is orthogonal. Trans-
lates of D4 can reproduce any ax + b . Daubechies also
found D2p with orthogonality and pih order accuracy.

transform of (8) yields P(n) — P'(n) — 0. In terms of the c's (or the symbol
P(£) - 5 2~^ck e'kt )> the condition for accuracy of order p is Ap :

(14)     £(-!)* Â:mcfc = 0 forra? <p   or equivalent^   P(¿¡ + n) = 0{\t\").

This assures that translates of 0 reproduce (locally) the powers 1, x, ... , xp~l
[19]. The zero moments are the orthogonality of these powers to W. Then the
Taylor series of f(x) can be matched to degree p at each meshpoint. The error
in wavelet approximation is of order hp , where h = 2~J is the mesh width or
translation step of the local functions W(2Jx). The price for each extra order
of accuracy is two extra coefficients ck — which spreads the support of 0
and W by two intervals. A reasonable compromise is p = 3. The new short
wavelets may offer an alternative.

Condition Ap also produces zeros in the infinite product 0(£) = T1P(Ç/2J).
Every nonzero integer has the form n = 27_1rai, m odd. Then 0(27tn) has the
factor P(2nn/2J) - P(mn) = P(n). Therefore, the /?th order zero at c¡ - n in
Condition Ap ensures a pth order zero of 0 at each Ç = 2nn . This is the test
for the translates of 0 to reproduce 1, x, ... , xp~x . That step closes the circle
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and means approximation to order p. Please forgive this brief recapitulation of
an older theory — the novelty of wavelets is their orthogonality. This is tested
by Condition O:

(15)        Yckck-2n, = 2S0m   or equivalent^   |/>(£)|2 + \P{Ç + n)\2 = 1.

The first condition follows directly from (0(x), 0(x - raí)) = <$0m . The dilation
equation converts this to (X)ck 0(2x - k), J2ce 0(2* -2m- I)) = ôom • It is
the "perfect reconstruction condition" of digital signal processing [20-22]. It
assures that the L2 norm is preserved, when the signal /(x) is separated by
a low-pass filter L and a high-pass filter H. The two parts have || Lf \\2 +
II Hf \\2—\\ / II2 • -^ fihcr is just a convolution. In frequency space that makes
it a multiplication. Low-pass means that constants and low frequencies survive
— we multiply by a symbol P(£,) that is near 1 for small |<^|. High-pass means
the opposite, and for wavelets the multiplier is essentially P(Ç + n). The two
convolutions are "mirror filters".

In the discrete case, the filters L and H (with downsampling to remove
every second row) fit into an orthogonal matrix:

(16)
L

H V2

c0    cx C2       C3
Co     cx Cl       Ci

Ci -ci   cx
c-s

-co
-c2   cx -c0

This matrix enters each step of the wavelet transform, from vector y to wavelet
coefficients b. The pyramid algorithm executes that transform by recursion with
rescaling. We display two steps for a general wavelet and then specifically for
Haar on [0, 1]:

(17)
L
H is J_71

i   ii  -i
V2

V2

_\_
71

n   i
i -i

i   i
i -i

This product is still an orthogonal matrix. When the columns of W4 in §1
are normalized to be unit vectors, this is its inverse (and its transpose). The
recursion decomposes a function into wavelets, and the reverse algorithm re-
constructs it. The 2 by 2 matrix has low-pass coefficients 1, 1 from 0 and
high-pass coefficients 1,-1 from W . Normalized by 5 , they satisfy Condi-
tion O (note ein = -1 ), and they preserve the I2 norm:

1 + e* +
1 + ei{i+n) = 1.

Figure 3 shows how those terms \P{Ç)\2 and \P(Ç + n)\2 are mirror functions
that add to 1. It also shows how four coefficients give a flatter response — with
higher accuracy at t\ = 0. Then |P|2 has a fourth-order zero at \ = n.

The design of filters (the choice of convolution) is a central problem of signal
processing — a field of enormous size and importance. The natural formulation
is in frequency space. Its application here is to multirate filters and "subband
coding", with a sequence of scales 2;x.
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Figure 3. Condition O for Haar ( p = 1 ) and Daubechies
(P = 2).

Note. Orthogonality of the family 0(x - k) leads by the Poisson summation
formula to Y. \<t>(£ + 27rra)|2 = 1 . Applying the dilation equation (7) and sep-
arating even ra from odd n shows how the second form of Condition O is
connected to orthogonality:

J^\Mi + 2nn)f
= £ + nn

£ 0

[f +
+ n2m

71« J

+ + 71 £ 0   ^ + 7t(2m+l)

+ P\¿ + n (= 1 by Condition O).

The same ideas apply to W. For dilation by 3J or MJ instead of 2J, Heller has
constructed [23] the two wavelets or M - 1 wavelets that yield approximation
of order p . The orthogonality condition becomes Y$f~X \f(i + 2nj/M)\2 = 1 •

We note a technical hypothesis that must be added to Condition O. It was
found by Cohen and in a new form by Lawton (see [24, pp. 177-194]). Without
it, Co = C3 = 1 passes test O. Those coefficients give a stretched box function
4> = 3*[0,3] that is not orthogonal to 0(x - 1). The matrix with L and H
above will be only an isometry — it has columns of zeros. The filters satisfy
LL* = HH* = I and LH* = HL* = 0 but not L*L + H*H = I. The
extra hypothesis is applied to this matrix A , or after Fourier transform to the
operator srf :

Aij = Y,ckCj_2i+k  or j//(í)= />(!)    /(!) + |p(! + n)\ /(f + 7r)-

The matrix A with |/| < N and \j\ < N has two eigenvectors for X — 1 . Their
components are vm = ö0m and wm = (0(x), 0(x - raj)). Those must be the
same! Then the extra condition, added to O, is that X = 1 shall be a simple
eigenvalue.
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In summary, Daubechies used the minimum number 2p of coefficients ck to
satisfy the accuracy condition Ap together with orthogonality. These wavelets
furnish unconditional bases for the key spaces of harmonic analysis ( LP , Holder,
Besov, Hardy space H1 , BMO, ... ). The Haar-Walsh construction fits func-
tions with no extra smoothness [25]. Higher-order wavelets fit Sobolev spaces,
where functions have derivatives in Lp (see [11, pp. 24-27]). With marginal
exponent p — 1 or even p < 1, the wavelet transform still maps onto the right
discrete spaces.

6. The contest: Fourier vs. wavelets
This brief report is included to give some idea of the decisions now being

reached about standards for video compression. The reader will understand
that the practical and financial consequences are very great. Starting from an
image in which each color at each small square (pixel) is assigned a numerical
shading between 0 and 255, the goal is to compress all that data to reduce the
transmission cost. Since 256 = 28, we have 8 bits for each of red-green-blue.
The bit-rate of transmission is set by the channel capacity, the compression rule
is decided by the filters and quantizers, and the picture quality is subjective.
Standard images are so familiar that experts know what to look for — like
tasting wine or tea.

Think of the problem mathematically. We are given f(x ,y,t), with x- y
axes on the TV screen and the image / changing with time t. For digital
signals all variables are discrete, but a continuous function is close — or piece-
wise continuous when the image has edges. Probably / changes gradually as
the camera moves. We could treat / as a sequence of still images to com-
press independently, which seems inefficient. But the direction of movement
is unpredictable, and too much effort spent on extrapolation is also inefficient.
A compromise is to encode every fifth or tenth image and, between those, to
work with the time differences Af — which have less information and can be
compressed further.

Fourier methods generally use real transforms (cosines). The picture is bro-
ken into blocks, often 8 by 8. This improvement in the scale length is more
important than the control of log« in the FFT cost. (It may well be more
important than the choice of Fourier.) After twenty years of refinement, the
algorithms are still being fought over and improved. Wavelets are a recent en-
try, not yet among the heavyweights. The accuracy test Ap is often set aside
in the goal of constructing "brick wall filters" — whose symbols P(£) are near
to characteristic functions. An exact zero-one function in Figure 3 is of course
impossible — the designers are frustrated by a small theorem in mathematics.
(Compact support of / and / occurs only for / = 0.) In any case the Fourier
transform of a step function has oscillations that can murder a pleasing signal
— so a compromise is reached.

Orthogonality is not set aside. It is the key constraint. There may be eight or
more bands ( 8 times 8 in two dimensions) instead of two. Condition O has
at least eight terms \P(¿¡ + knß)\2 . After applying the convolutions, the energy
or entropy in the high frequencies is usually small and the compression of that
part of the signal is increased — to avoid wasting bits. The actual encoding or
"quantization" is a separate and very subtle problem, mapping the real numbers
to {1,_, JV} . A vector quantizer is a map from Rd , and the best are not just
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tensor products [28]. Its construction is probably more important to a successful
compression than refining the filter.

Audio signals have fewer dimensions and more bands — as many as 512.
One goal of compression is a smaller CD disk. Auditory information seems to
come in octaves of roughly equal energy — the energy density decays like 1 /¿;.
Also physically, the cochlea has several critical bands per octave. (An active
problem in audio compression is to use psychoacoustic information about the
ear.) Since f dÇ/Ç is the same from 1 to 2 and 2 to 4 and 4 to 8 (by a
theorem we teach freshmen!), subband coding stands a good chance.

That is a barely adequate description of a fascinating contest. It is applied
analysis (and maybe free enterprise) at its best. For video compression, the
Motion Picture Experts Group held a competition in Japan late in 1991. About
thirty companies entered algorithms. Most were based on cosine transforms, a
few on wavelets. The best were all windowed Fourier. Wavelets were down the
list but not unhappy. Consolation was freely offered and accepted. The choice
for HDTV, with high definition, may be different from this MPEG standard to
send a rougher picture at a lower bit-rate.

/ must emphasize. The real contest is far from over. There are promising
wavelets (Wilson bases and coiflets) that were too recent to enter. Hardware is
only beginning to come—the first wavelet chips are available. MPEG did not
see the best that all transforms can do.

In principle, wavelets are better for images, and Fourier is the right choice
for music. Images have sharp edges; music is sinusoidal. The 7th Fourier co-
efficient of a step function is of order l/j. The wavelet coefficients (mostly
zero) are multiples of 2~H2. The L2 error drops exponentially, not polyno-
mial^, when N terms are kept. To confirm this comparison, Donoho took
digitized photos of his statistics class. He discarded 95% of the wavelet and
the Fourier coefficients, kept the largest 5%, and reconstructed two pictures.
(The wavelets were "coiflets" [24], with greater smoothness and symmetry but
longer support. Fourier blocks were not tried.) Every student preferred the
picture from wavelets.

The underlying rule for basis functions seems to be this: choose scale lengths
that match the image and allow for spatial variability. Smoothness is visually
important, and D4 is being superseded. Wavelets are not the only possible
construction, but they have opened the door to new bases. In the mathematical
contest (perhaps eventually in the business contest) unconditional bases are the
winners.

We close by mentioning fingerprints. The FBI has more than 30 million in
filing cabinets, counting only criminals. Comparing one to thousands of others
is a daunting task. Every improvement leads to new matches and the solution
of old crimes. The images need to be digitized.

The definitive information for matching fingerprints is in the "minutiae" of
ridge endings and bifurcations [29]. At 500 pixels per inch, with 256 levels of
gray, each card has 107 bytes of data. Compression is essential and 20 : 1 is
the goal. The standard from the Joint Photographic Experts Group (JPEG) is
Fourier-based, with 8 by 8 blocks, and the ridges are broken. The competi-
tion is now between wavelet algorithms associated with Los Alamos and Yale
[30-33] — fixed basis versus "best basis", I < 100 subbands or I > 1000,
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vector or scalar quantization. There is also a choice of coding for wavelet co-
efficients (mostly near zero when the basis is good). The best wavelets may be
biorthogonal — coming from two wavelets Wx and W2. This allows a left-right
symmetry [24], which is absent in Figure 2. The fingerprint decision is a true
contest in applying pure mathematics.
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Additional note. After completing this paper I learned, with pleasure and amaze-
ment, that a thesis which I had promised to supervise ("formally", in the most
informal sense of that word) was to contain the filter design for MIT's entry
in the HDTV competition. The Ph.D. candidate is Peter Monta. The com-
petition is still ahead (in 1992). Whether won or lost, I am sure the degree
will be granted! These paragraphs briefly indicate how the standards for High
Definition Television aim to yield a very sharp picture.

The key is high resolution, which requires a higher bit-rate of transmission.
For the MPEG contest in Japan — to compress videos onto CD's and computers
— the rate was 1 megabit/second. For the HDTV contest that number is closer
to 24. Both compression ratios are about 100 to 1. (The better picture has
more pixels.) The audio signal gets \ megabit/sec for its four stereo channels;
closed captions use less. In contrast, conventional television has no compression
at all — in principle, you see everything. The color standard was set in 1953,
and the black and white standard about 1941.

The FCC will judge between an AT&T/Zenith entry, two MIT/General In-
struments entries, and a partly European entry from Philips and others. These
finalists are all digital, an advance which surprised the New York Times. Monta
proposed a filter that uses seven coefficients or "taps" for low-pass and four for
high-pass. Thus the filters are not mirror images as in wavelets, or brick walls
either. Two-dimensional images come from tensor products of one-dimensional
filters. Their exact coefficients will not be set until the last minute, possibly for
secrecy — and cosine transforms may still be chosen in the end.

The red-green-blue components are converted by a 3 by 3 orthogonal matrix
to better coordinates. Linear algebra enters, literally the spectral theorem. The
luminance axis from the leading eigenvector gives the brightness.

A critical step is motion estimation, to give a quick and close prediction of
successive images. A motion vector is estimated for each region in the image
[34]. The system transmits only the difference between predicted and actual
images — the "motion compensated residual". When that has too much energy,
the motion estimator is disabled and the most recent image is sent. This will be
the case when there is a scene change. Note that coding decisions are based on
the energy in different bands (the size of Fourier coefficients). The L1 norm is
probably better. Other features may be used in 2001.

It is very impressive to see an HDTV image. The final verdict has just been
promised for the spring of 1993. Wavelets will not be in that standard, but
they have no shortage of potential applications [24, 35-37]. A recent one is the
LANDSAT 8 satellite, which will locate a grid on the earth with pixel width of
2 yards. The compression algorithm that does win will use good mathematics.
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