
Wavelet Trees: from Theory to Practice

Roberto Grossi
Dipartimento di Informatica

Università di Pisa, Italy
grossi@di.unipi.it

Jeffrey Scott Vitter Bojian Xu
Department of Electrical Engineering & Computer Science

The University of Kansas, USA
{jsv, bojianxu}@ku.edu

Abstract—The wavelet tree data structure is a space-efficient
technique for rank and select queries that generalizes from
binary characters to an arbitrary multicharacter alphabet.
It has become a key tool in modern full-text indexing and
data compression because of its capabilities in compressing,
indexing, and searching. We present a comparative study of its
practical performance regarding a wide range of options on the
dimensions of different coding schemes and tree shapes. Our
results are both theoretical and experimental: (1) We show
that the run-length δ coding size of wavelet trees achieves
the 0-order empirical entropy size of the original string with
leading constant 1, when the string’s 0-order empirical entropy
is asymptotically less than the logarithm of the alphabet size.
This result complements the previous works that are dedicated
to analyzing run-length γ-encoded wavelet trees. It also reveals
the scenarios when run-length δ encoding becomes practical.
(2) We introduce a full generic package of wavelet trees for
a wide range of options on the dimensions of coding schemes
and tree shapes. Our experimental study reveals the practical
performance of the various modifications.

Keywords-wavelet tree; full-text indexing; pattern matching;
data compression

I. INTRODUCTION

The field of compressed full-text indexing [1] involves the
design of indexes that support fast full-text pattern matching
using limited amount of space. In particular, the goal is
to have an index whose size is roughly equal to the size
of the text in compressed format, with search performance
comparable to the one achieved by uncompressed methods
such as suffix trees and suffix arrays. Some compressed
data structures are in addition self-indexing in that the data
structure encodes the original text and can quickly recreate
any portion of it in a random access manner, and thus the
original text can be discarded and replaced by only the index.

Many of the compressed indexing techniques developed
in the last decade made use of wavelet trees [2], used
in conjunction with the text’s Ψ decomposition [3] or the
Burrows-Wheeler transform (BWT) [4], [5]. Conceptually,
the wavelet tree in [2] can be most simply described as a
full (and often balanced) binary tree (Figure 1). The root
node is a bit array of the same length of the input text

The work of the first author was partially supported by Italian project
PRIN MAINSTREAM of MIUR, and that of the last two authors was
supported in part by National Science Foundation grant CCF-1017623.

and partitions the text’s alphabet in two sets, where a 0-
bit indicates the corresponding text character is in the left
set and a 1-bit indicates that the text character is in the right
set. Such bit array representation happens recursively at each
internal node, where the text at the internal node is of the
characters dispatched from the parent node with their order
in the text preserved. Each leaf node represents a distinct
character in the alphabet of the input text. Wavelet trees
cleverly decompose the text into a hierarchy of bit arrays
without introducing any redundancy, so that the total size of
the raw bit arrays in the wavelet tree is exactly the same as
the size (in bits) of the input text, regardless of the shape of
the wavelet tree. If the bit arrays at each node are 0th-order
entropy compressed, the resulting space usage of the wavelet
tree is equal to the 0th-order entropy-compressed size of the
input text, again regardless of the shape of the tree [2], [6].

Definition 1. Given a text T of size n from alphabet
Σ = {1, 2, . . . , σ}, the 0th-order empirical entropy of T is
H0(T) =

∑
i∈Σ(ni/n) log(n/ni)1, where ni is the number

of occurrences of character i in T .

Let Bi (i = 1, 2, . . . , t = σ− 1) denote the raw bit arrays
in the level-order traversal of the wavelet tree of T , and |Bi|
denote the number of bits contained in Bi.

Fact 2 ([2]). nH0(T) =
∑t

i=1 |Bi|H0(Bi).

Wavelet trees support several useful queries, such as
member (reporting the character at a given text position),
rank (reporting the number of occurrences of a given char-
acter in a given prefix of the text), and select (reporting
the position of a given occurrence of a given character),
generalizing dictionaries from the binary alphabet [7], [8]
to arbitrary multicharacter alphabets; the running time per
query is O(log σ), provided constant-time responses to
member, rank, and select queries on the bit arrays and a
(nearly) balanced wavelet tree. When leaves are arranged
in some canonical order such as the alphabetical order,
wavelet trees support 2-d 4-sided range queries, which report
the positions of the characters in a given range of the
alphabet and in a given range of text locations. If the
alphabet size is within a polylog factor of the text size,

1In this paper, we use log to denote log2.

all the aforementioned queries can be answered in constant
time [9]. A single wavelet tree over the Burrows-Wheeler
transform of a text with proper 0th-order entropy coding
for the bit arrays produces a compressed full-text index,
whose size is the same as the high-order entropy-compressed
size of the text [10], [6], [11]. Wavelet trees also work
on external memory by increasing the branching factor at
the tree nodes to correspond to page sizes [12], [13]. Due
to its capabilities in compressing, indexing, and searching,
wavelet tree has become a key tool in modern full-text
compressed indexing [2], [5], [14], [10], [15], [11], [9], [16]
and data compression [6], [10], [15], [11], [17]. Besides the
aformentioned set of results, the recent work [6] anticipated
the open problem of analyzing the compression performance
of the wavelet trees using run-length (or gap) δ encoding and
studying the influence of the tree shape on the compression
performance. In this paper, we partially complement this
need by the following results:

• We study the scenarios where run-length δ encoding
becomes better in wavelet tree compression. We show
that if the alphabet size is bounded by a constant and the
0-order empirical entropy of the string is asymptotically
less than the logarithm of the alphabet size, the run-
length δ-encoded wavelet trees achieve the 0-order em-
pirical entropy compression of the string with leading
constant 1, whereas under the same condition the run-
length γ coding achieves the same bound but with
the best known leading constant 2. We recall that for
arbitrary strings, the run-length γ encoded wavelet trees
are more space saving than the run-length δ encoded
wavelet trees, as was empirically observed in [15].

• We introduce a generic template-based package library
of wavelet trees with a wide range of options on the
coding schemes and tree shapes (summing up to 33
options). Our experimental study not only validates
the above theoretical result on the compression per-
formance of the run-length δ-encoded wavelet tree, but
more importantly, it reveals the practical performance
of all the relevant options, providing users a guide in
choosing the appropriate type of wavelet trees based on
the theme of their data. Although the implementation of
some of the options are indeed available in the context
of compressed full-text indexes such as those in the
Pizza&Chili Corpus2, as far as we know, this is the
first package to provide a large set of options living in
the same independent library.

II. RUN-LENGTH δ-ENCODED WAVELET TREES

The γ code [18] of a positive integer i, denoted as γ(i),
uses 2

⌊
log i

⌋
+ 1 bits: � =

⌊
log i

⌋
+ 1 bits to represent the

unary of �log i�, followed by anther
⌊
log i

⌋
bits to represent

the binary of i with the most significant bit removed. The

2http://pizzachili.dcc.uchile.cl

mississippi$
101101101100

iiii$
11110

$(1) i(4)

msssspp
0111111

m(1) sssspp
111100

p(2) s(4)

Figure 1. An example of a standard wavelet tree for text
mississippi$ with uncompressed raw bit arrays. The text at
each internal node is split into two subtexts by (nearly) evenly
dividing the local alphabet into two. The texts shown at internal
nodes are only for illustration purpose and are not actually stored.
The numbers at leaf nodes represent the number of occurrences of
the corresponding character in the original text.

δ code [18] of a positive integer i, denoted as δ(i), uses
�log i� + 2

⌊
log

(�log i� + 1
)⌋

+ 1 bits: 2
⌊
log �

⌋
+ 1 =

2
⌊
log

(�log i� + 1
)⌋

+ 1 bits to represent the γ code of
the length �log i� + 1 of the binary representation of i,
followed by another �log i� bits to represent the binary
of i with its most significant bit removed. Both γ and
δ codes are prefix-free and can be uniquely decoded. Let
B = B[1 . . . n] be a binary string of size n. String B can
be viewed as a sequence of maximal runs of identical bits
B = b�1

1 b�2
2 · · · b�m

m for some m ≤ n, where bi �= bi+1 for
1 ≤ i < m. The run-length δ encoding of string B is the
binary string Brle,δ = b1δ(�1)δ(�2) · · · δ(�m) where b1 is
necessary for decoding. The run-length δ encoded wavelet
trees are the ones whose bit arrays are run-length δ encoded.
The run-length γ-encoded wavelet trees can be similarly
obtained by having all the wavelet tree bit arrays run-length
γ encoded. Run-length δ encoding is less space efficient than
run-length γ encoding in practice, because δ(i) consumes
more bits than γ(i) does when i is small (Figure 2), which
is often the case in the wavelet tree compression for the
real-world data [15]. In this section, we reveal the scenarios
when run-length δ encoding becomes more space efficient
than run-length γ encoding in wavelet tree compression. We
want to note that all the proofs in this section are considered
for the asymptotic case, when the text size n goes to infinite.

A. Binary string run-length δ encoding—achieving H0

Let t be the number of the occurrences of the least
frequent bit in B. Let m′ ≤ m be the number of maximal
runs in B that have size larger than 1. We use the following
results from [6]:

Lemma 3 ([6]). (1) nH0(B) ≥ t log(n/t) + t; (2) m ≤
2t + 1; (3) m′ ≤ t + 1.

Run-length γ encoding is suboptimal in compressing bit
arrays, namely, |Brle,γ | ≤ 4nH0(B)+4 (Lemma 3.3 in [6]),
which we can further improve to be |Brle,γ | ≤ 2nH0(B) +
2 logn+2 (Lemma 10 in the Appendix). In this section, we

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 0 5 10 15 20 25 30 35

|γ
(x

)|
 /

|δ
(x

)|

x

(a) Over a narrow range of x

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

|γ
(x

)|
 /

|δ
(x

)|

x

(b) Over a wide range of x

Figure 2. |δ(x)| < |γ(x)| for x > 31; |δ(x)| = |γ(x)| for x ∈ {1, 4–7, 16–31}; |δ(x)| > |γ(x)| for x ∈ {2–3, 8–15}.

show that although run-length δ encoding is also suboptimal
for arbitrary bit arrays, it can reach the optimality when
H0(B) is small enough. We first show the following result.

Lemma 4. |Brle,δ| ≤ 3nH0(B)+2 log(log n+1)+logn+2.

Proof: By definition,

|Brle,δ| = 1 +
m∑

i=1

|δ(�i)|

= 1 +
m∑

i=1

(�log �i� + 2�log(�log �i� + 1)� + 1)

≤ 1 +
m∑

i=1

(log �i + 2 log(log �i + 1) + 1)

=
∑
�i>1

(log �i + 2 log(log �i + 1)) + m + 1

≤ m′ log
n

m′ + 2m′ log
(
log

n

m′ + 1
)

+ m + 1

≤ (t + 1) log
n

t + 1
+ 2(t + 1) log

(
log

n

t + 1
+ 1

)

+2t + 2

The second inequality is due to Jensen’s inequality. The last
inequality is due to the fact that m ≤ 2t+1 and m′ ≤ t+1
(Lemma 3) and x log(n/x)+2x log(log(n/x)+1) increases
over 1 ≤ x ≤ t + 1 ≤ �n/2�+ 1. We proceed in evaluating
our main inequality as

(t + 1) log
n

t + 1
+ 2(t + 1) log

(
log

n

t + 1
+ 1

)

+2t + 2

≤ (t + 1) log
n

t
+ 2(t + 1) log

(
log

n

t
+ 1

)
+ 2t + 2

=
(
t log

n

t
+ t

)
+

(
2t log

(
log

n

t
+ 1

)
+ t

)

+2 log
(
log

n

t
+ 1

)
+ log

n

t
+ 2

≤ nH0(B) + 2nH0(B) + 2 log(log n + 1) + log n + 2
= 3nH0(B) + 2 log(log n + 1) + log n + 2

The last inequality is due to Lemma 3 and the fact that
log x + 1 ≤ x for any x ≥ 2.

Lemma 5. If H0(B) = o(1), then |Brle,δ| ≤ nH0(B) +
o(nH0(B)) + 2 log(log n + 1) + log n + 2.

Proof: We first show that H0(B) = o(1) implies t =
o(n). Suppose t = Ω(n) by contradiction: there must exist a
positive constant C ≤ 1/2, such that when n becomes large
enough, we have Cn ≤ t ≤ n/2, which forces

H0(B) =
t

n
log

n

t
+

n − t

n
log

n

n − t
≥ C+

1
2

log
1

1 − C
> C

which is a positive constant, a contradiction to H0(B) =
o(1), so we have t = o(n).

Now we bound |Brle,δ|. Following the result in the proof
for Lemma 4, we have

|Brle,δ| ≤
(
t log

n

t
+ t

)
+

(
2t log

(
log

n

t
+ 1

)
+ t

)

+2 log
(
log

n

t
+ 1

)
+ log

n

t
+ 2

≤ nH0(B) + o(nH0(B)) + 2 log(log n + 1)
+ logn + 2

The last inequality is due to Lemma 3 and the fact
2t log (log(n/t) + 1) + t = o(t log(n/t) + t), because t is
positive and 2 log (log(n/t) + 1) = o(log(n/t)) since n/t
goes to infinite when n goes to infinite due to t = o(n).

B. General string compression—achieving H0

Let Trle,δ denote the wavelet tree over the text T with
the bit arrays run-length δ encoded. Let |Trle,δ| denote the
total number of bits in the run-length δ encoded bit arrays
in Trle,δ. We can similarly define Trle,γ and |Trle,γ | using
the run-length γ coding. By combining Lemma 10 in the
Appendix and Fact 2, it is trivial to show that |Trle,γ | ≤
2nH0(T)+(2 logn+2)(σ−1) for any text T . As for Trle,δ,
we can similarly obtain |Trle,δ| ≤ 3nH0(T)+(2 log(log n+
1)+logn+2)(σ−1) for any text T , by combining Lemma 4
and Fact 2. In this section, we want to further show that if
σ is constant and H0(T) is asymptotically less than log σ,

1 2 …… …...

Figure 3. A wavelet tree of T whose σ is constant and H0(T) = o(log σ)

|Trle,δ| achieves nH0(T) with leading constant 1, plus some
lower order terms.

Lemma 6. If σ is a constant and H0(T) = o(log σ),
then there must exist some α, 1 ≤ α ≤ σ, such that∑

i∈Σ,i�=α ni = f(n), where f(n) is some function of n
and f(n) = o(n).

Proof: We first show by contradiction that there cannot
be more than one character from Σ whose frequencies
in T are asymptotically close to n. Suppose we have
k > 1 characters whose frequencies in T are Ω(n). Without
loss of the generality, we assume that these characters are
{1, 2, . . . , k}. That is, when n is large enough, for each
i ∈ {1, 2, . . . , k}, there exist some constants Ci and Di,
such that 0 < Ci < 1, 0 < Di < 1, and Ci n ≤ ni ≤ Di n
(clearly, 0 <

∑
i Ci ≤

∑
i Di ≤ 1). Then,

H0(T) ≥
∑

1≤i≤k

ni

n
log

n

ni
≥

∑
1≤i≤k

Ci log
1

Di

which is a positive constant, a contradiction to H0(T) =
o(log σ).

On the other hand, by the pigeon principle there must
exist a character α ∈ Σ, whose frequency is nα = Ω(n):
indeed nα ≥ n/σ and σ is a constant by hypothesis. As
previously proved, α is the only character with this property:
we must have ni = o(n) for all i ∈ Σ\{α}. Letting f(n) =∑

i∈Σ,i�=α ni, observe that nα = n − f(n). It suffices to
observe that f(n) = o(n) since each ni = o(n) for i �= α
and there are σ−1 = O(1) of these terms in the summation
for f(n), thus proving the claimed bound.

Figure 3 visualizes what Lemma 6 claims. Character α
dominates the string T . Let Ai, 1 ≤ i ≤ σ − 2 (i = σ − 2
can happen in a very skewed wavelet tree), denote the
wavelet tree raw bit arrays that do not involve character α
(represented by those short white rectangles in Figure 3).
Let Bi, 1 ≤ i ≤ σ − 1 (i = σ − 1 can happen in a
very skewed wavelet tree), denote the wavelet tree raw bit
arrays that involve character α (represented by those long
gray rectangles in Figure 3). Let |Ai

rle,δ| and |Bi
rle,δ| denote

the run-length δ coding size of Ai and Bi respectively. We
now prove our main result, for which the following lemma
is used.

Lemma 7. For any bit string B of size n, |Brle,δ| ≤ 3n

Proof: For any bit-run of size �i > 0, we have the
fact δ(�i) ≤ 2�i. That is, the δ code of a bit-run uses no
more than double of the number of bits in the run. Since
Brle,δ also has a leading bit for decoding, we get |Brle,δ| ≤
2n + 1 ≤ 3n.

Theorem 8. If σ is a constant and H0(T) = o(log σ), then
|Trle,δ| ≤ nH0(T)+o(nH0(T))+(2 log(log n+1)+log n+
2)(σ − 1)

Proof: We first give a lower bound of nH0(T). By
Lemma 6, we have nα = n − f(n) with f(n) = o(n), thus

nH0(T) ≥ f(n) log
n

f(n)
+ nα log

n

nα
= ω(f(n)) (1)

The right side of inequality (1) is the 0-order empirical
entropy size of a text, which is obtained by converting all
the characters in T except α into an identical character other
than α. The entropy size of this new binary text must be no
more than the entropy size of T .

For those wavelet tree bit arrays that do not involve α,
we have

∑
i |Ai

rle,δ| < 3
∑

i |Ai| < 3f(n)(σ − 2), because
each |Ai

rle,δ| ≤ 3|Ai| (Lemma 7) and the sum of all |Ai| on
each wavelet tree level is bounded by f(n) and we have no
more than σ − 2 levels where Ai’s can occur. Because of
inequality (1) and σ being a constant, we get

∑
i |Ai

rle,δ| <
3f(n)(σ/2 + 1) = o(nH0(T)).

For those bit arrays that involve α, because α dominates
the string at each node of Bi, each Bi has the property
that ti = o(ni), where ti is the number of the least
frequent bit in Bi and ni is the size of Bi. Therefore,
|Bi

rle,δ| ≤ niH0(Bi) + o(niH0(Bi)) + 2 log(log ni + 1) +
log ni + 2 (Lemma 5). By adding up all the |Bi

rle,δ|, we get∑
i |Bi

rle,δ| ≤ nH0(T) + o(nH0(T)) + (2 log(log n + 1) +
log n+2)(σ−1), because

∑
i niH0(Bi) ≤ nH0(T) (Fact 2)

and we have no more than (σ−1) number of Bi bit arrays.
Finally, |Trle,δ| =

∑
i |Ai

rle,δ|+
∑

i |Bi
rle,δ| ≤ nH0(T)+

o(nH0(T)) + (2 log(log n + 1) + log n + 2)(σ − 1).

Corollary 9. If σ is a constant, H0(T) = o(log σ), and
nH0(T) = ω(log n), then |Trle,δ| ≤ (1 + o(1))nH0(T) +
O(σ).

Proof: Immediately from the result in Theorem 8 and
the hypothesis nH0(T) = ω(log n).
Comment: Theorem 3.1 in [19] claims that if A is a non-
singular compressor 3, then |A(T)| ≤ λnH∗

0 (T) + gσ holds
only for λ ≥ 2. Here: (1) |A(T)| is the number of bits
in the output of compressing T using A; (2) H∗

0 (T) is
the modified 0-order empirical entropy [20] of T , which
essentially defines nH∗

0 (T) = log n + 1 if T is a text of
n identical characters; otherwise nH∗

0 (T) = nH0(T); and
(3) gσ is a function only of the alphabet size σ. However,

3A is a non-singular compressor, if A(T1) �= A(T2) given T1 �= T2

our Theorem 8 and Corollary 9 indicate that we can do
better in terms of the above lower bound in [19], except
few cases. That is, (1) λ < 2 can be achieved, when
nH∗

0 (T) = ω(log n) (or equivalently, nH0(T) = ω(log n));
(2) for the few special cases where nH∗

0 (T) = Θ(log n) (or
equivalently, nH0(T) = Θ(log n) or nH0(T) = o(log n)),
λ can be larger than 2. It is nevertheless worth noting that
when employed to encode an optimal partition of the BWT,
it may happen several times that nH0 = O(log n), so the
motivation for Theorem 3.1 in [19] is realistic in that context.
In our context, we however look at the general case in which
a 0th-order compressor is needed.

III. A MANIFOLD SOFTWARE TOOL FOR

EXPERIMENTING ON WAVELET TREES

We wanted to experiment with the properties discussed in
Section II. In that context, we realized that a more general
tool could be useful also for other experiments. As a result,
we implemented a generic template-based software package
library that provides several incarnations of the wavelet trees
using C++.4 In this way, we hope that we can contribute
to the current status of the wavelet tree implementations.
Indeed, some of them are available in the context of com-
pressed full-text indexes in the Pizza&Chili Corpus and can
be extracted from that software distributions. Other imple-
mentations using normal and Huffman wavelet trees with
RRR [8] coding have been studied by Navarro et al. [21],
[22], from which we reuse the practical implementation of
the RRR structure as a component in the RRR compressed
wavelet trees. Along with the above implementations, we
added a lot more options than those previously known. As
far as we know, this is the first package to provide a large
set of options living under the same roof.

We employed our tool to present the experiments on low-
entropy texts required in Section II, as well as the experi-
ments on normal texts to evaluate a wide range of options
shown in Table I. All the options in Table I are supported
while only those with bold selection marks will be discussed
in the experimental study: the others are apparently less
efficient or unnecessary, but there could be other applications
using them in a different context that might favor them. So
we leave the final choice to the end user, depending on the
kind of application she has in mind.

A. Software tool

We give a brief description for the available options
shown in Table I. We first give a choice for three kinds
of shapes. Normal: a balanced shape of the wavelet tree
(see an example in Figure 1), where the local alphabet at
each node is divided (nearly) into two halves, while the
alphabetic order among leaf nodes is preserved, so that
the height is the logarithm of the alphabet size. AWWT:

4Download: http://www.ittc.ku.edu/∼bojianxu/publications

alphabetic weight-balanced wavelet tree (aka Hu-Tucker-
shaped wavelet tree [23]), where the frequencies of the
alphabet symbols are considered when dividing each node
into its children having similar weights. Huffman: the
standard Huffman-shaped wavelet tree [22].

We then give 11 options for choosing the coding scheme
for the bit array at each wavelet tree node, where the
attached directories for searching capability can be omit-
ted in several cases. None: raw bit arrays are stored,
augmented by structures of o(n) extra bits to support the
O(1) time member, rank, and select queries. As suggested
in [22], we use the technique based on one-level superblocks
and lookup table-based popcount operations for the o(n)
searching structures. RRR: the practical implementation
of the RRR structure [21] is used to compress each bit
array. Huffman shaped-wavelet tree combined with RRR
coding was claimed the best in [21], so our experimental
study did include the comparison with the best prior work.
RLE+γ: Each bit array is compressed using the run-length
γ encoding [15], [6]. We also use one-level superblock-
based technique over the runs for the searching ability.
RLE+δ: Each bit array is compressed using the run-length
δ encoding: note that this is an implementation of what was
discussed in Section II. We also use one-level superblock
based technique over the runs for the searching ability.
SC: Each bit array is compressed using the small-integer
t-subset encoding [24]. AC: Each bit array is compressed
using pure 0th-order arithmetic coding [25]. LP/*: Only
the bit arrays at nodes whose local alphabet size is no more
than three are compressed using any of the aforementioned
coding schemes, while other bit arrays are not compressed.
This option is proposed because empirical observations show
that, in the inherently compressed wavelet trees such as the
AWWT, those nodes close to the leaves are likely to have
sparse bit arrays, which can be highly compressed.

B. Experimental setup

We used the following real-world biological and textual
data and their low-entropy variations to test the efficiency
of the several wavelet trees. The main goal of using the
low-entropy data is to validate our analysis in Section II
that run-length δ encoding is more space efficient than run-
length γ encoding when the entropy of the data is small.

1) Genome: The whole human genome sequences of
around 2.8G bases from NCBI5. We removed all
the masked ‘N’ characters, so that the sequence only
contain characters from {ACGT}.

2) Protein: Protein data of around 1.1G characters
from the Pizza&Chili Corpus.

5ftp://ftp.ncbi.nlm.nih.gov/genomes/H_sapiens/
Assembled_chromosomes

None RRR RLE+γ RLE+δ SC AC LP/RRR LP/(RLE+γ) LP/(RLE+δ) LP/SC LP/AC

Normal
√√√ √√√ √√√ √√√ √ √ √ √ √ √ √

AWWT
√√√ √√√ √√√ √ √ √ √√√ √√√ √ √ √

Huffman
√√√ √√√ √√√ √ √ √ √√√ √√√ √ √ √

Table I
THE 33 SUPPORTED WAVELET TREE OPTIONS ON THE TREE SHAPES AND CODING SCHEMES.

3) English: English text of around 2G characters from
the Wikipedia dump on 2010–07–30 6.

4) Genome-X , Protein-X , and English-X : The
symbol X implies that the average length of the
maximal runs of identical characters in the sequence is
X − 1. The low-entropy data is obtained by randomly
replacing each character in the original real-world data
with an identical character from the alphabet. For
example, Genome-10 is obtained by replacing each
character in Genome with an identical character from
the alphabet {ACGT} with probability 9/10 = 0.9;
Genome-20 is similarly obtained but with probability
19/20 = 0.95. Therefore, a larger value for X leads
to a sequence of a lower entropy. In our experiments,
we set X ∈ {10, 20, 40, 80, 160}.

For our computing platform, we employed g++ 4.4.1
with -O9 option to build the executables of all the
source code in our experiments. The experiments were
conducted on a Dell Vostro 430 with a 2.8GHz four-core
Intel@CoreTM i7-860 chip with 8MB L3 Cache, but no
parallelism was used and only one core is used. The machine
runs 64-bit Ubuntu 9.10 operating system and has 8GB
internal memory.

C. Experimental study

We focused on the measurements of the wavelet tree
size (the size of the bit arrays and their search structures),
construction time, and query (member, rank, and select)
performance. We did not specifically run experiments for
the 2-d 4-sided range queries as they are reduced to the
member, rank, and select queries.

Summary. The overall statement from the experimental
study can be summarized as the following: (1) run-length
encoding-based wavelet trees are the best in space efficiency
for BWT and lower-entropy data, but have the worst query
performance. Run-length γ coding is more space saving in
practice, whereas run-length δ coding becomes better when
the entropy of the data is very small. (2) The compression
ratio of a plain AWWT is comparable to the Huffman-
shaped wavelet tree. It is also the case when they are both
combined with RRR compression. Huffman-shaped wavelet
tree is more space efficient than AWWT for the data of

6http://download.wikimedia.org/enwiki/20100730/
enwiki-20100730-pages-articles.xml.bz2

very low entropy. (3) Huffman wavelet tree and AWWT
combined with RRR coding are the good trade-off between
space efficiency and query performance. (4) The search
performance of plain AWWT is one of the best in all types
of wavelet trees and a bit slower when combined with RRR
compression for a better compression ratio. AWWT is also
the fastest in the construction time and the only type of
wavelet trees that are inherently compressed and also support
2-d 4-sided range queries. We believe that using the wavelet
tree in other contexts other than those discussed here, could
give probably different results since they depend on the kind
of distribution of the input data. This is the reason to leave
so many options in our package library.

We give more details on the experimental results. We ran
two sets of experiments, one for normal texts and the other
for the BWT of the texts. For ease of display in the tables, we
use the following numbers to represent the subset of options
that we are going to discuss, where option 3 represents what
we called |Trle,δ| in Section II, and option 4 represents what
we called |Trle,γ |.

1: Huffman + None 2: Normal + None
3: Normal + (RLE+δ) 4: Normal + (RLE+γ)
5: Normal + RRR 6: AWWT + LP/(RLE+γ)
7: AWWT + LP/RRR 8: AWWT + None
9: AWWT + (RLE + γ) 10: AWWT + RRR

11: Huffman + RRR 12: Huffman + (RLE+γ)
13: Huffman + LP/RRR 14: Huffman + LP/(RLE+γ)

Wavelet tree size. Table II shows the size of the wavelet
trees without searching capability. Exceptions are the RRR-
compressed wavelet trees (options 5, 10, 11), still being
searchable.

We first examine the compression size of the normal
texts of the real-world data. The run-length γ coding
(option 4) is more space efficient than the run-length δ
coding (option 3) in practice, which is consistent with
our description in Section II. Huffman (option 1) and
AWWT+LP/RRR (option 7) achieve the best compression
ratio, while AWWT+LP/RLE+γ (option 6) is also close
to the best. This result is consistent with our empirical
observations that the tree nodes close to the leaf nodes in
AWWT are likely to have sparse bit arrays, which can be
effectively compressed using RRR or run-length encoding
to reach a good compression ratio. Another observation is
that an AWWT itself is already good at 0th-order entropy

(a) normal texts
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Real- Genome 1.01 1.01 1.26 1.09 1.20 1.04 1.01 1.01 1.09 1.20 1.20 1.10 1.10 1.05
world Protein 1.01 1.16 1.29 1.12 1.23 1.03 1.01 1.08 1.11 1.21 1.19 1.10 1.04 1.02
Data English 1.01 1.50 1.22 1.08 1.31 1.01 1.01 1.04 1.05 1.16 1.16 1.07 1.01 1.00
Low- Genome-10 2.33 4.19 1.41 1.40 2.27 2.35 2.37 2.33 1.31 1.62 1.62 1.31 2.37 2.35
entropy Genome-20 3.84 7.27 1.42 1.47 3.41 3.86 3.88 3.84 1.38 2.15 2.15 1.38 3.88 3.86
Data Genome-40 6.62 12.88 1.43 1.53 5.52 6.64 6.65 6.62 1.45 3.17 3.17 1.45 6.65 6.64

Genome-80 11.72 23.12 1.44 1.57 9.42 11.74 11.75 11.72 1.50 5.09 5.09 1.50 11.75 11.74
Genome-160 21.13 41.96 1.44 1.61 16.59 21.14 21.15 21.13 1.55 8.67 8.67 1.55 21.15 21.14
Protein-10 1.63 4.72 1.39 1.37 2.42 2.62 2.63 2.64 1.30 1.70 1.38 1.23 1.65 1.64
Protein-20 2.49 8.37 1.40 1.43 3.71 4.41 4.43 4.43 1.37 2.33 1.67 1.29 2.51 2.50
Protein-40 4.14 15.09 1.41 1.48 6.13 7.76 7.77 7.77 1.42 3.53 2.25 1.35 4.15 4.15
Protein-80 7.22 27.56 1.42 1.52 10.60 13.97 13.98 13.99 1.47 5.79 3.39 1.40 7.24 7.23
Protein-160 12.99 50.74 1.42 1.56 18.88 25.55 25.56 25.56 1.51 10.01 5.54 1.45 13.01 13.00
English-10 1.54 8.06 1.36 1.29 3.67 2.40 2.41 2.41 1.25 1.64 1.36 1.21 1.55 1.54
English-20 2.31 14.62 1.37 1.36 6.02 4.01 4.01 4.02 1.32 2.21 1.61 1.27 2.32 2.31
English-40 3.79 26.78 1.38 1.41 10.38 7.02 7.02 7.02 1.37 3.30 2.14 1.32 3.79 3.79
English-80 6.58 49.41 1.40 1.46 18.63 12.65 12.65 12.65 1.42 5.37 3.17 1.38 6.59 6.59
English-160 11.85 91.74 1.41 1.50 33.81 23.21 23.21 23.22 1.47 9.26 5.15 1.42 11.85 11.85

(b) BWT of texts
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Real- Genome 1.01 1.01 1.08 0.94 1.07 0.95 1.02 1.01 0.94 1.07 1.07 0.95 1.03 0.96
world Protein 1.01 1.16 0.71 0.65 0.93 0.93 1.00 1.08 0.64 0.91 0.88 0.64 0.97 0.91
Data English 1.01 1.50 0.32 0.29 0.75 0.92 0.97 1.04 0.29 0.58 0.57 0.29 0.97 0.95
Low- Genome-10 2.33 4.19 1.42 1.41 2.27 2.35 2.37 2.33 1.32 1.63 1.63 1.32 2.37 2.35
entropy Genome-20 3.84 7.27 1.43 1.48 3.41 3.86 3.88 3.84 1.39 2.15 2.15 1.39 3.88 3.86
Data Genome-40 6.62 12.88 1.44 1.53 5.53 6.64 6.65 6.62 1.45 3.17 3.17 1.45 6.65 6.64

Genome-80 11.72 23.12 1.45 1.58 9.42 11.74 11.75 11.72 1.50 5.10 5.10 1.50 11.75 11.74
Genome-160 21.13 41.96 1.45 1.62 16.59 21.14 21.15 21.13 1.55 8.67 8.67 1.55 21.15 21.14
Protein-10 1.63 4.72 1.41 1.38 2.43 2.62 2.63 2.64 1.31 1.71 1.39 1.24 1.65 1.64
Protein-20 2.49 8.37 1.41 1.44 3.72 4.42 4.43 4.43 1.38 2.33 1.68 1.30 2.51 2.51
Protein-40 4.14 15.09 1.42 1.49 6.13 7.76 7.77 7.77 1.43 3.53 2.26 1.36 4.16 4.15
Protein-80 7.22 27.56 1.43 1.53 10.61 13.98 13.99 13.99 1.48 5.79 3.39 1.41 7.24 7.23
Protein-160 12.99 50.74 1.43 1.56 18.88 25.55 25.56 25.56 1.52 10.01 5.54 1.45 13.01 13.00
English-10 1.54 8.06 1.33 1.27 3.66 2.40 2.41 2.41 1.23 1.62 1.33 1.18 1.54 1.54
English-20 2.31 14.62 1.37 1.36 6.02 4.01 4.01 4.02 1.32 2.20 1.61 1.26 2.32 2.31
English-40 3.79 26.78 1.39 1.42 10.38 7.02 7.02 7.02 1.38 3.30 2.14 1.33 3.79 3.79
English-80 6.58 49.41 1.41 1.47 18.63 12.65 12.65 12.65 1.43 5.37 3.17 1.38 6.59 6.59
English-160 11.85 91.74 1.42 1.51 33.81 23.21 23.21 23.22 1.47 9.27 5.15 1.43 11.85 11.85

Table II
THE SIZE OF WAVELET TREES WITHOUT SEARCHING CAPABILITY EXCEPT THOSE RRR-COMPRESSED (OPTIONS 5, 10, 11) STILL BEING SEARCHABLE.

TREE SIZE IS EXPRESSED AS THE RATIO OF THE WAVELET TREE SIZE DIVIDED BY THE 0TH-ORDER EMPIRICAL ENTROPY SIZE OF THE TEXT.

compression (option 8).

As for the normal texts of the low-entropy data, the com-
pression performance of each option decreases as the entropy
of the data becomes smaller. This is reasonable because the
overhead caused by various auxiliary data structures in the
wavelet tree become relatively more significant. The run-
length γ coding again is more space efficient than the run-
length δ coding until the entropy of the data becomes very
small (option 3 and 4 for the low-entropy data in Table I(a)),
which is consistent with our analysis in Section II. Overall,
only the run-length encoding-based wavelet trees (options
3, 4, 9, 12) can achieve closely to the entropy of the data,
because the run-length encoding can effectively code the bit-
runs in the bit arrays regardless of the length of the runs.
However, the RRR coding (options 5, 10, 11) of a given-
length bit array has fixed sizes for the superblock and block
structures, introducing relatively higher overheads when the
bit-runs become much longer than the block size, which
is the case in the data of very low entropy; the Huffman
wavelet tree and AWWT (options 1, 8), which have to

use at least one bit for the most frequent character, also
make the coding very inefficient when the frequent character
dominates the text. Huffman and AWWT combined with
LP/* coding (options 6, 7, 13, 14) are not efficient because
the very long and sparse bit arrays that involve the most
frequent character are far away from the leaf nodes, making
them have no chance to be compressed in the LP/* coding,
which leads to an overall less efficient compression.

For the BWT of the texts, all the above observations
for the normal texts are valid except that the run-length
encoding-based wavelet trees (options 3, 4, 9, 12) turn out to
be the best for both the real-world data and the low-entropy
data, because the run-length-based encoding can capture and
effectively code the partitions of context and automatically
achieves high-order compression. This automatic high-order
compression becomes even more relevant in the real-world
English text, because English text has rich semantic corre-
lations between contexts.

For the wavelet trees that have search capabilities (Ta-
ble III), similar considerations hold except that more options

(a) normal texts
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Real- Genome 1.08 1.08 1.35 1.18 1.20 1.12 1.12 1.08 1.18 1.20 1.20 1.19 1.13 1.12
world Protein 1.07 1.23 1.40 1.23 1.23 1.10 1.11 1.15 1.22 1.21 1.19 1.22 1.09 1.10
Data English 1.07 1.60 1.32 1.17 1.31 1.08 1.09 1.11 1.15 1.16 1.16 1.17 1.07 1.07
Low- Genome-10 2.47 4.45 1.48 1.47 2.27 2.51 2.50 2.47 1.39 1.62 1.62 1.39 2.50 2.51
entropy Genome-20 4.08 7.73 1.48 1.54 3.41 4.11 4.10 4.08 1.46 2.15 2.15 1.46 4.10 4.11
Data Genome-40 7.03 13.69 1.50 1.59 5.52 7.06 7.05 7.03 1.52 3.17 3.17 1.52 7.05 7.06

Genome-80 12.46 24.57 1.51 1.64 9.42 12.48 12.47 12.46 1.57 5.09 5.09 1.57 12.47 12.48
Genome-160 22.45 44.58 1.50 1.67 16.59 22.47 22.46 22.45 1.61 8.67 8.67 1.61 22.46 22.47
Protein-10 1.74 5.02 1.48 1.46 2.42 2.79 2.79 2.81 1.40 1.70 1.38 1.34 1.74 1.75
Protein-20 2.66 8.90 1.49 1.51 3.71 4.70 4.70 4.72 1.46 2.33 1.67 1.40 2.67 2.67
Protein-40 4.41 16.05 1.49 1.56 6.13 8.26 8.25 8.27 1.51 3.53 2.25 1.45 4.42 4.42
Protein-80 7.69 29.30 1.50 1.60 10.60 14.86 14.86 14.87 1.55 5.79 3.39 1.49 7.69 7.70
Protein-160 13.82 53.92 1.49 1.63 18.88 27.16 27.16 27.17 1.59 10.01 5.54 1.53 13.82 13.83
English-10 1.65 8.58 1.45 1.39 3.67 2.56 2.56 2.57 1.35 1.64 1.36 1.31 1.65 1.65
English-20 2.47 15.55 1.46 1.45 6.02 4.27 4.27 4.28 1.41 2.21 1.61 1.37 2.47 2.47
English-40 4.04 28.47 1.47 1.50 10.38 7.47 7.47 7.48 1.46 3.30 2.14 1.42 4.04 4.04
English-80 7.01 52.51 1.48 1.54 18.63 13.45 13.45 13.46 1.51 5.37 3.17 1.47 7.01 7.01
English-160 12.60 97.49 1.49 1.58 33.81 24.67 24.67 24.68 1.55 9.26 5.15 1.51 12.60 12.61

(b) BWT of texts
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Real- Genome 1.08 1.08 1.16 1.02 1.07 1.02 1.05 1.08 1.02 1.07 1.07 1.02 1.06 1.03
world Protein 1.07 1.23 0.76 0.69 0.93 0.99 1.05 1.15 0.69 0.91 0.88 0.69 1.02 0.97
Data English 1.07 1.60 0.34 0.31 0.75 0.98 1.03 1.11 0.31 0.58 0.57 0.31 1.03 1.01
Low- Genome-10 2.47 4.45 1.50 1.48 2.27 2.51 2.50 2.47 1.40 1.63 1.63 1.40 2.50 2.51
entropy Genome-20 4.08 7.73 1.49 1.55 3.41 4.12 4.11 4.08 1.47 2.15 2.15 1.47 4.11 4.12
Data Genome-40 7.03 13.69 1.50 1.60 5.53 7.07 7.05 7.03 1.53 3.17 3.17 1.53 7.05 7.07

Genome-80 12.46 24.57 1.51 1.64 9.42 12.49 12.47 12.46 1.58 5.10 5.10 1.58 12.47 12.49
Genome-160 22.45 44.58 1.51 1.68 16.59 22.48 22.46 22.45 1.62 8.67 8.67 1.62 22.46 22.48
Protein-10 1.74 5.02 1.50 1.47 2.43 2.80 2.80 2.81 1.42 1.71 1.39 1.35 1.75 1.76
Protein-20 2.66 8.90 1.50 1.52 3.72 4.71 4.71 4.72 1.47 2.33 1.68 1.40 2.67 2.68
Protein-40 4.41 16.05 1.51 1.57 6.13 8.26 8.26 8.27 1.52 3.53 2.26 1.46 4.42 4.43
Protein-80 7.69 29.30 1.51 1.61 10.61 14.86 14.86 14.87 1.56 5.79 3.39 1.50 7.70 7.70
Protein-160 13.82 53.92 1.50 1.64 18.88 27.16 27.16 27.17 1.60 10.01 5.54 1.54 13.82 13.83
English-10 1.65 8.58 1.42 1.36 3.66 2.56 2.56 2.57 1.33 1.62 1.33 1.28 1.65 1.65
English-20 2.47 15.55 1.46 1.45 6.02 4.27 4.27 4.28 1.41 2.20 1.61 1.36 2.47 2.47
English-40 4.04 28.47 1.48 1.51 10.38 7.47 7.47 7.48 1.47 3.30 2.14 1.43 4.04 4.04
English-80 7.01 52.51 1.49 1.55 18.63 13.45 13.45 13.46 1.52 5.37 3.17 1.48 7.01 7.02
English-160 12.60 97.49 1.50 1.59 33.81 24.67 24.67 24.68 1.56 9.27 5.15 1.52 12.60 12.61

Table III
THE SIZE OF WAVELET TREES WITH SEARCHING CAPABILITY. TREE SIZE IS EXPRESSED AS THE RATIO OF THE WAVELET TREE SIZE DIVIDED BY THE

0TH-ORDER EMPIRICAL ENTROPY SIZE OF THE TEXT.

(1, 6, 7, 13, 14) can achieve comparable compression
performance for the normal texts of the real-world data,
while clearly the overall size of the wavelet tree is a bit
larger than those without searching capabilities.

Wavelet tree construction time. The distinction between
low-entropy and normal texts does not significantly affect
the wavelet tree construction time, so we move the results
regarding the low-entropy data into Table VIII in the Ap-
pendix. Table IV shows that pure AWWT (option 8) is the
fastest for both normal texts and BWTs. Normal wavelet
trees (option 2) and Huffman-shaped wavelet tree (option 1)
are also fast. AWWT+LP/RRR (option 7) is comparable.
The run-length encoding-based methods (options 3, 4, 9,
12, 14) take longer time than any other method as they
need γ or δ encoding for each run. AWWT+LP/(RLE+γ)
(option 6) is relatively faster than other run-length-based
options because it only encodes the wavelet tree nodes that
are close to leaf nodes and the construction of the pure
AWWT is already the fastest. It does not come to surprise
that run-length γ coding (option 4) is faster than run-length

δ coding (option 3) since the latter needs more computation
in the encoding and decoding of a same integer. On the
average, the RRR-based wavelet trees (options 5, 10, 11)
reach the median performance in construction. Overall, all
types of wavelet trees take less construction time for BWTs
than that for normal texts, because the longer bit-runs at the
nodes of the wavelet trees for BWTs makes the encoding of
the whole bit arrays faster.

Wavelet tree query time. Once again, the distinction be-
tween low-entropy and normal texts does not seem to play
a significant role in the performance of member, rank, and
select queries, so we move the results regarding the low-
entropy data into Table IX–XI in the Appendix. Tables V–
VII show that the Huffman wavelet tree, the normal wavelet
tree, and the AWWT (options 1, 2, 8) reach the best
performance. All RRR-compressed wavelet trees (options 5,
7, 10, 11, 13) are comparable in query performance with the
best options, because they are all based on block structures
and table lookups, while RRR-compressed wavelet trees are
a bit slower to pay for the gain in space efficiency. All

(a) normal texts
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Genome 67.91 59.90 191.34 182.13 111.36 120.45 84.83 59.88 178.41 110.51 118.84 186.81 94.37 127.67
Protein 60.07 55.02 172.23 164.47 101.37 72.96 61.54 51.87 157.66 98.25 104.48 164.33 71.30 86.05
English 147.27 152.04 403.19 389.41 265.55 137.71 123.47 112.48 329.06 205.20 241.50 367.92 153.14 161.73

(b) BWT of texts
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Genome 64.21 57.41 172.72 166.00 105.08 109.14 80.37 57.48 164.30 104.65 111.71 170.05 88.84 116.68
Protein 46.65 45.36 120.16 118.79 83.60 57.11 51.03 42.86 113.16 79.82 81.66 115.70 55.19 63.59
English 95.39 113.28 209.30 211.15 200.09 89.12 88.61 80.59 162.16 143.24 155.79 174.89 99.13 99.28

Table IV
THE CONSTRUCTION TIME (SECOND) OF WAVELET TREES

(a) normal texts
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Genome 0.46 0.46 12.01 10.87 0.80 5.45 0.63 0.46 10.90 0.80 0.80 10.58 0.62 5.60
Protein 0.94 1.08 24.64 22.51 1.88 5.87 1.18 1.01 20.68 1.77 1.66 18.76 1.10 4.81
English 1.26 1.94 45.04 42.32 3.19 4.54 1.43 1.32 26.57 2.29 2.23 25.21 1.32 2.64

(b) BWT of texts
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Genome 0.46 0.46 12.39 11.42 0.80 5.86 0.61 0.46 11.47 0.79 0.78 11.42 0.61 5.79
Protein 0.94 1.08 31.63 30.79 1.75 7.86 1.15 1.01 28.43 1.65 1.54 25.80 1.07 6.34
English 1.26 1.94 52.97 54.87 2.71 5.88 1.39 1.31 35.64 1.88 1.82 34.14 1.29 3.27

Table V
THE TIME COST (SECOND) FOR 1,000,000 MEMBERSHIP QUERIES.

(a) normal texts
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Genome 0.82 0.83 18.66 16.93 1.37 8.51 1.09 0.83 16.94 1.36 1.37 16.51 1.08 8.78
Protein 1.69 1.94 38.30 35.04 3.19 9.21 2.07 1.81 32.20 3.02 2.86 29.34 1.97 7.71
English 2.30 3.51 69.71 65.60 5.43 7.34 2.55 2.37 41.41 3.95 3.88 39.49 2.40 4.47

(b) BWT of texts
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Genome 0.82 0.83 19.18 17.68 1.33 9.08 1.06 0.83 17.72 1.34 1.34 17.67 1.07 9.04
Protein 1.68 1.94 48.45 47.25 2.97 12.17 2.03 1.81 43.72 2.81 2.64 39.75 1.93 9.96
English 2.26 3.43 79.98 82.71 4.53 9.09 2.43 2.31 53.99 3.17 3.13 51.91 2.32 5.26

Table VI
THE TIME COST (SECOND) FOR 1,000,000 RANK QUERIES.

run-length encoding based wavelet trees (options 3, 4, 6,
9, 12, 14) are much slower due to the γ or δ decoding
processes that are required for each query. The search
performance of all types of wavelet trees reduces when the
alphabet size increases, because the wavelet tree becomes
taller and more queries on bit arrays at tree nodes are
involved. We also conducted experiments on NORMAL+SC
and NORMAL+AC and observed that they are unacceptably
slow while SC can be a bit faster than AC for wavelet
trees with very skewed bit arrays. Both SC and AC based
wavelet tree can very precisely reach the 0th-order entropy
compressed size of the text.

REFERENCES

[1] G. Navarro and V. Mäkinen, “Compressed full-text indexes,”
ACM Computing Surveys, vol. 39, no. 1, p. article 2, 2007.

[2] R. Grossi, A. Gupta, and J. S. Vitter, “High-order entropy-

compressed text indexes,” in ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), 2003, pp. 841–850.

[3] R. Grossi and J. S. Vitter, “Compressed suffix arrays and
suffix trees with applications to text indexing and string
matching,” SIAM Journal on Computing, vol. 35, no. 32, pp.
378–407, 2005, (also in STOC2000).

[4] M. Burrows and D. Wheeler, “A block sorting data compres-
sion algorithm,” Digital Systems Research Center, Tech. Rep.,
1994.

[5] P. Ferragina and G. Manzini, “Indexing compressed text,”
Journal of the ACM, vol. 52, no. 4, pp. 552–581, 2005.

[6] P. Ferragina, R. Giancarlo, and G. Manzini, “The myriad
virtues of wavelet trees,” Information and Computation, vol.
207, no. 8, pp. 849 – 866, 2009, (also in ICALP2006).

[7] A. Brodnik and J. I. Munro, “Membership in constant time
and almost-minimum space,” SIAM Journal on Computing,
vol. 28, no. 5, pp. 1627–1640, Oct. 1999.

(a) normal texts
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Genome 1.43 1.42 29.47 27.09 2.19 13.78 1.81 1.42 27.17 2.19 2.18 26.38 1.78 14.19
Protein 3.16 3.74 56.78 52.28 5.40 14.24 3.80 3.45 47.72 5.02 4.67 43.23 3.55 12.14
English 3.19 5.47 87.17 82.71 7.82 8.86 3.52 3.32 47.86 4.99 4.83 45.00 3.32 5.52

(b) BWT of texts
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Genome 1.44 1.43 30.13 28.09 2.14 14.58 1.77 1.43 28.20 2.15 2.15 28.17 1.79 14.50
Protein 3.15 3.73 73.68 72.35 5.09 18.54 3.73 3.45 66.32 4.73 4.37 60.39 3.47 15.97
English 3.18 5.55 102.01 106.21 6.95 11.03 3.42 3.30 63.63 4.27 4.12 60.27 3.26 6.56

Table VII
THE TIME COST (SECOND) FOR 1,000,000 SELECT QUERIES.

[8] R. Raman, V. Raman, and S. S. Rao, “Succinct indexable
dictionaries with applications to encoding k-ary trees, prefix
sums and multisets,” ACM Transactions on Algorithms, vol. 3,
no. 4, p. 43, 2007, (also in SODA2002).

[9] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro, “Com-
pressed representations of sequences and full-text indexes,”
ACM Transactions on Algorithms, vol. 3, no. 2, 2007, (Also
in SPIRE2004).

[10] V. Mäkinen and G. Navarro, “Implicit compression boost-
ing with applications to self-indexing,” in the Proceedings
of String Processing and Information Retrieval Symposium
(SPIRE), 2007, pp. 229–241.

[11] W. K. Hon, R. Shah, and J. S. Vitter, “Compression, indexing,
and retrieval for massive string data,” in the Proceedings
of Annual Symposium on Combinatorial Pattern Matching
(CPM), 2010, pp. 260–274.

[12] W.-K. Hon, R. Shah, and J. S. Vitter, “Ordered pattern
matching: Towards full-text retrieval,” in Purdue University
Tech Rept, 2006.

[13] J. S. Vitter, Algorithms and Data Structures for External
Memory, ser. Foundations and Trends in Theoretical Com-
puter Science. Hanover, MA: now Publishers, 2008.

[14] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro, “An
alphabet-friendly FM-index,” in the Proceedings of String
Processing and Information Retrieval Symposium (SPIRE),
2004, pp. 150–160.

[15] L. Foschini, R. Grossi, A. Gupta, and J. S. Vitter, “When
indexing equals compression: Experiments with compressing
suffix arrays and applications,” ACM Transactions on Algo-
rithms (TALG), vol. 2, no. 4, pp. 611–639, 2006, (also in
DCC2004 and SODA2004).

[16] T. Gagie, S. J. Puglisi, and A. Turpin, “Range quantile
queries: Another virtue of wavelet trees,” in the Proceedings
of International Symposium on String Processing and Infor-
mation Retrieval (SPIRE), 2009, pp. 1–6.

[17] P. Ferragina, R. Giancarlo, G. Manzini, and M. Sciortino,
“Boosting textual compression in optimal linear time,” Jour-
nal of the ACM, vol. 52, no. 4, pp. 688–713, 2005, (also in
CPM2001 and SODA2004).

[18] P. Elias, “Universal codeword sets and representations of the
integers.” IEEE Transactions on Information Theory, vol. IT-
21, pp. 194–203, 1975.

[19] T. Gagie and G. Manzini, “Move-to-front, distance coding,
and inversion frequencies revisited,” Theoretical Computer
Science, vol. 411, pp. 2925–2944, 2010.

[20] G. Manzini, “An analysis of the Burrows-Wheeler transform,”
Journal of the ACM, vol. 48, no. 3, pp. 407–430, 2001, (also
in SODA1999).

[21] F. Claude and G. Navarro, “Practical rank/select queries
over arbitrary sequences,” in the Proceedings of International
Symposium on String Processing and Information Retrieval
(SPIRE), 2008, pp. 176–187.

[22] R. González, S. Grabowski, V. Mäkinen, and G. Navarro,
“Practical implementation of rank and select queries,” in
The 4th Workshop on Efficient and Experimental Algorithms
(WEA), 2005, pp. 27–38.

[23] J. Barbay and G. Navarro, “Compressed representations of
permutations, and applications,” in the Proceedings of In-
ternational Symposium on Theoretical Aspects of Computer
Science (STACS), 2009, pp. 111–122.

[24] D. E. Knuth, Sorting and Searching, 2nd ed., ser. The Art
of Computer Programming. Reading, MA: Addison-Wesley,
1998, vol. 3.

[25] P. G. Howard and J. S. Vitter, “Analysis of arithmetic coding
for data compression,” Information Processing & Manage-
ment, vol. 28, no. 6, pp. 749–764, 1992.

APPENDIX

Lemma 10. |Brle,γ | ≤ 2nH0(B) + 2 log n + 2

Proof:

|Brle,γ | = 1 +
mX

i=1

|γ(�i)| = 1 +
mX

i=1

(2�log �i� + 1) ≤ 1 +
mX

i=1

(2 log �i + 1) = 2
X
�i>1

log �i + m + 1 ≤ 2m′ log
n

m′ + m + 1

≤ 2(t + 1) log
n

t + 1
+ 2t + 2 ≤ 2(t + 1) log

n

t
+ 2t + 2 = 2

“
t + t log

n

t

”
+ 2 log

n

t
+ 2 ≤ 2nH0(B) + 2 log n + 2

The second and third inequalities are due to the Jensen’s inequality and the fact that m ≤ 2t + 1 and m′ ≤ t + 1 (Lemma 3) and
x log(n/x) increases over 1 ≤ x ≤ t + 1 ≤ �n/2�+ 1. The last inequality is due to the fact that t log(n/t) + t ≤ nH0(B) in Lemma 3.

(a) normal texts
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Genome-10 40.57 45.82 88.91 88.26 78.76 39.10 35.17 32.43 68.14 53.08 61.21 76.11 44.14 48.07
Genome-20 38.98 44.91 74.49 74.58 75.46 33.59 31.67 30.44 54.35 48.13 56.37 62.14 41.53 42.90
Genome-40 38.14 44.50 66.73 67.11 73.67 30.91 29.95 29.49 45.32 45.06 53.69 53.99 39.38 40.37
Genome-80 37.95 44.25 62.58 62.80 72.49 29.61 29.13 29.06 40.69 43.58 52.24 49.34 38.61 39.12
Genome-160 37.90 44.10 60.22 60.38 71.80 29.02 28.78 28.63 38.19 42.84 51.47 46.82 38.23 38.49
Protein-10 24.92 33.69 66.82 65.92 58.86 23.95 22.78 21.83 49.14 37.85 36.64 48.90 26.05 27.60
Protein-20 22.50 32.53 55.43 55.22 55.81 20.86 20.27 19.78 37.21 33.48 31.27 37.04 22.95 23.64
Protein-40 21.18 31.96 49.35 49.41 54.41 19.37 20.75 18.80 30.86 31.11 28.37 30.41 22.28 21.68
Protein-80 20.56 31.62 46.10 46.17 53.19 18.59 18.44 18.33 27.40 29.83 26.86 26.73 20.56 20.68
Protein-160 20.21 31.48 44.36 44.44 52.74 18.23 18.15 18.09 29.28 29.12 26.07 24.77 21.29 20.16
English-10 62.91 108.49 191.73 188.62 190.34 44.63 43.12 42.20 94.58 71.82 86.30 110.72 64.08 65.05
English-20 50.68 105.13 167.59 166.93 184.12 38.05 37.31 36.70 70.10 61.68 69.49 79.43 50.62 51.63
English-40 53.71 103.73 155.23 155.13 181.38 34.83 34.49 34.19 56.83 56.48 70.61 71.37 54.04 54.33
English-80 47.97 103.19 148.82 148.93 180.93 33.23 33.02 32.90 49.62 53.46 60.19 62.48 51.45 51.10
English-160 47.36 102.52 145.16 145.32 180.64 32.40 32.30 32.23 45.79 52.02 55.38 53.54 44.48 44.97

(b) BWT of texts
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Genome-10 40.60 45.80 89.12 88.42 78.77 39.15 35.22 32.50 68.26 56.79 61.20 76.18 44.13 48.25
Genome-20 38.81 44.91 74.55 74.72 75.53 33.65 31.74 30.45 53.70 48.03 56.39 62.18 40.97 42.98
Genome-40 37.98 44.47 66.87 67.13 74.70 30.96 29.98 29.49 45.37 45.29 53.77 54.02 39.41 40.38
Genome-80 37.51 44.21 62.55 62.81 72.53 29.61 29.13 29.07 40.69 43.59 52.23 49.35 38.62 39.35
Genome-160 37.49 44.23 60.26 60.48 72.01 29.03 29.04 28.72 38.21 43.02 51.49 46.92 38.24 38.51
Protein-10 25.07 34.68 67.01 65.90 58.95 24.08 22.86 21.88 48.98 37.95 36.83 49.14 26.23 27.75
Protein-20 22.55 32.56 55.47 55.30 55.95 20.95 20.35 19.82 37.33 33.46 31.33 37.16 22.99 23.76
Protein-40 21.22 31.97 49.41 49.40 54.11 19.37 19.07 18.85 30.87 31.08 28.39 30.48 23.00 21.71
Protein-80 20.58 31.64 47.33 46.19 53.18 18.61 18.48 18.33 27.44 29.84 26.87 26.75 20.58 20.98
Protein-160 20.25 31.50 44.37 44.44 52.74 18.23 18.15 18.09 25.54 29.20 26.33 24.79 20.19 20.30
English-10 62.56 108.12 190.67 190.46 190.03 44.46 42.87 41.70 93.52 71.35 85.68 109.26 63.64 64.49
English-20 50.62 105.14 167.50 166.86 184.12 38.01 37.26 36.70 69.97 61.64 67.11 79.23 50.54 51.53
English-40 53.66 103.54 155.31 155.37 181.45 34.90 34.57 38.92 56.89 56.31 68.21 71.42 54.11 54.35
English-80 47.94 102.91 149.02 149.08 180.56 33.24 33.07 32.90 49.66 53.49 60.25 60.14 49.03 49.11
English-160 44.88 102.54 145.23 147.88 179.62 32.40 32.31 32.26 45.79 52.02 55.38 53.55 44.50 44.97

Table VIII
THE CONSTRUCTION TIME (SECOND) OF WAVELET TREES FOR LOW-ENTROPY DATA.

(a) normal texts
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Genome-10 0.24 0.44 12.57 12.70 0.67 0.68 0.26 0.24 6.37 0.39 0.39 6.36 0.26 0.68
Genome-20 0.23 0.46 12.81 13.60 0.64 0.43 0.24 0.23 6.50 0.35 0.35 6.50 0.24 0.43
Genome-40 0.22 0.44 13.29 14.43 0.61 0.32 0.23 0.22 6.85 0.32 0.32 6.85 0.22 0.32
Genome-80 0.22 0.44 13.53 15.17 0.59 0.26 0.22 0.23 7.18 0.31 0.31 7.18 0.22 0.26
Genome-160 0.21 0.43 13.32 15.77 0.59 0.24 0.22 0.22 7.56 0.30 0.30 7.56 0.22 0.24
Protein-10 0.29 0.87 23.36 24.28 1.31 0.90 0.48 0.47 12.22 0.78 0.49 6.71 0.31 0.65
Protein-20 0.24 0.86 24.04 25.76 1.24 0.64 0.44 0.43 12.37 0.68 0.40 6.31 0.25 0.42
Protein-40 0.22 0.85 24.44 27.26 1.19 0.51 0.42 0.42 12.97 0.63 0.34 6.30 0.23 0.31
Protein-80 0.21 0.85 24.79 28.64 1.16 0.45 0.41 0.41 13.43 0.59 0.31 6.53 0.21 0.25
Protein-160 0.20 0.84 25.44 30.66 1.15 0.43 0.41 0.41 14.13 0.58 0.29 6.71 0.21 0.23
English-10 0.33 1.95 49.98 55.62 2.70 0.83 0.53 0.52 13.58 0.85 0.56 7.61 0.34 0.46
English-20 0.27 1.95 52.02 60.37 2.60 0.62 0.48 0.47 13.63 0.73 0.44 6.91 0.27 0.33
English-40 0.24 1.96 54.37 65.05 2.56 0.52 0.45 0.45 13.99 0.66 0.37 6.76 0.24 0.27
English-80 0.22 1.96 57.19 69.45 2.54 0.47 0.44 0.44 14.53 0.62 0.33 6.97 0.22 0.24
English-160 0.22 1.96 59.82 73.27 2.51 0.45 0.43 0.43 15.05 0.60 0.31 7.18 0.22 0.23

(b) BWT of texts
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Genome-10 0.24 0.44 12.52 12.66 0.69 0.68 0.26 0.24 6.36 0.39 0.39 6.33 0.26 0.68
Genome-20 0.23 0.44 12.78 13.57 0.65 0.43 0.24 0.23 6.51 0.35 0.35 6.49 0.24 0.43
Genome-40 0.23 0.45 13.29 14.41 0.61 0.32 0.22 0.22 6.86 0.32 0.32 6.85 0.22 0.31
Genome-80 0.22 0.44 13.52 15.18 0.62 0.26 0.22 0.22 7.18 0.31 0.31 7.18 0.22 0.26
Genome-160 0.22 0.44 13.31 15.79 0.59 0.24 0.22 0.22 7.58 0.30 0.30 7.56 0.22 0.24
Protein-10 0.29 0.87 23.33 24.25 1.32 0.90 0.48 0.47 12.22 0.78 0.49 6.71 0.30 0.64
Protein-20 0.24 0.85 24.06 25.76 1.23 0.63 0.44 0.43 12.37 0.68 0.39 6.31 0.25 0.42
Protein-40 0.22 0.85 24.41 27.18 1.19 0.51 0.42 0.42 12.95 0.63 0.34 6.28 0.23 0.31
Protein-80 0.21 0.84 24.74 28.62 1.16 0.45 0.41 0.41 13.43 0.59 0.31 6.52 0.21 0.25
Protein-160 0.20 0.84 25.39 30.63 1.15 0.43 0.41 0.40 14.12 0.58 0.29 6.70 0.21 0.23
English-10 0.33 1.95 51.29 58.81 2.67 0.83 0.53 0.52 13.66 0.84 0.56 7.63 0.33 0.47
English-20 0.27 1.96 52.97 62.91 2.60 0.62 0.48 0.47 13.62 0.73 0.44 6.91 0.27 0.33
English-40 0.24 1.95 54.93 66.97 2.57 0.52 0.45 0.45 14.00 0.66 0.37 6.75 0.24 0.27
English-80 0.22 1.95 57.28 70.75 2.53 0.47 0.44 0.44 14.55 0.62 0.33 6.96 0.22 0.24
English-160 0.22 1.95 59.63 73.94 2.51 0.45 0.43 0.43 15.09 0.60 0.31 7.19 0.22 0.22

Table IX
THE TIME COST (SECOND) FOR 1,000,000 MEMBERSHIP QUERIES OVER LOW-ENTROPY DATA.

(a) normal texts
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Genome-10 0.43 0.81 19.34 19.44 1.10 1.14 0.46 0.43 9.77 0.65 0.65 9.77 0.46 1.12
Genome-20 0.41 0.79 19.62 20.72 1.03 0.72 0.42 0.41 9.93 0.58 0.57 9.94 0.43 0.73
Genome-40 0.40 0.79 20.28 21.95 0.98 0.54 0.41 0.40 10.42 0.52 0.52 10.41 0.41 0.55
Genome-80 0.39 0.79 20.57 23.04 0.96 0.46 0.40 0.39 10.92 0.49 0.49 10.93 0.40 0.47
Genome-160 0.39 0.79 20.21 23.86 0.94 0.42 0.39 0.39 11.47 0.48 0.48 11.48 0.39 0.43
Protein-10 0.53 1.57 35.81 37.12 2.15 1.50 0.87 0.84 18.71 1.28 0.82 10.32 0.55 1.08
Protein-20 0.45 1.54 36.69 39.24 2.00 1.09 0.80 0.79 18.84 1.11 0.65 9.65 0.46 0.72
Protein-40 0.41 1.53 37.19 41.36 1.91 0.90 0.77 0.76 19.74 1.01 0.56 9.57 0.42 0.54
Protein-80 0.39 1.53 37.61 43.35 1.85 0.81 0.75 0.74 20.45 0.95 0.50 9.93 0.39 0.45
Protein-160 0.38 1.53 38.52 46.23 1.83 0.77 0.74 0.73 21.38 0.92 0.47 10.19 0.38 0.41
English-10 0.60 3.55 76.31 84.63 4.41 1.40 0.96 0.94 20.87 1.40 0.95 11.74 0.62 0.81
English-20 0.49 3.55 79.26 91.53 4.25 1.08 0.86 0.85 20.78 1.19 0.73 10.59 0.50 0.59
English-40 0.44 3.56 82.54 98.27 4.15 0.92 0.82 0.81 21.31 1.07 0.61 10.30 0.44 0.49
English-80 0.41 3.56 86.59 104.66 4.10 0.84 0.79 0.79 22.10 1.00 0.54 10.61 0.41 0.44
English-160 0.40 3.56 90.40 110.32 4.08 0.80 0.78 0.77 22.79 0.96 0.50 10.93 0.40 0.41

(b) BWT of texts
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Genome-10 0.44 0.80 19.28 19.39 1.10 1.10 0.46 0.43 9.75 0.65 0.65 9.73 0.46 1.10
Genome-20 0.41 0.80 19.56 20.69 1.02 0.72 0.42 0.41 9.93 0.57 0.57 9.92 0.43 0.72
Genome-40 0.40 0.81 20.27 21.91 0.98 0.54 0.40 0.40 10.40 0.52 0.53 10.42 0.41 0.55
Genome-80 0.39 0.79 20.57 23.03 0.95 0.46 0.40 0.39 10.93 0.49 0.50 10.92 0.40 0.47
Genome-160 0.39 0.79 20.20 23.88 0.94 0.42 0.39 0.39 11.47 0.48 0.48 11.48 0.39 0.43
Protein-10 0.53 1.57 35.76 37.08 2.16 1.50 0.87 0.84 18.72 1.28 0.83 10.31 0.55 1.06
Protein-20 0.45 1.54 36.72 39.25 1.99 1.09 0.80 0.78 18.83 1.11 0.66 9.64 0.46 0.72
Protein-40 0.41 1.53 37.15 41.29 1.90 0.90 0.76 0.75 19.71 1.01 0.55 9.56 0.42 0.54
Protein-80 0.39 1.52 37.55 43.29 1.86 0.81 0.75 0.74 20.42 0.95 0.50 9.90 0.39 0.46
Protein-160 0.38 1.52 38.47 46.20 1.83 0.77 0.74 0.73 21.36 0.92 0.47 10.19 0.38 0.41
English-10 0.60 3.55 78.36 89.34 4.40 1.41 0.96 0.94 20.96 1.40 0.95 11.80 0.61 0.81
English-20 0.49 3.56 80.67 95.33 4.25 1.08 0.86 0.85 20.81 1.19 0.73 10.60 0.50 0.59
English-40 0.44 3.56 83.42 101.16 4.14 0.92 0.81 0.81 21.31 1.06 0.61 10.30 0.44 0.49
English-80 0.41 3.55 86.77 106.60 4.11 0.84 0.79 0.78 22.12 1.00 0.54 10.62 0.41 0.44
English-160 0.40 3.55 90.14 111.31 4.07 0.80 0.78 0.78 22.85 0.96 0.50 10.92 0.40 0.41

Table X
THE TIME COST (SECOND) FOR 1,000,000 RANK QUERIES OVER LOW-ENTROPY DATA.

(a) normal texts
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Genome-10 0.62 1.15 30.14 31.02 1.60 1.37 0.65 0.62 15.14 0.89 0.90 15.04 0.65 1.38
Genome-20 0.57 1.11 30.82 33.20 1.50 0.85 0.58 0.57 15.61 0.79 0.79 15.62 0.59 0.86
Genome-40 0.56 1.11 32.11 35.38 1.46 0.68 0.56 0.55 16.62 0.73 0.73 16.63 0.57 0.68
Genome-80 0.55 1.10 32.88 37.36 1.44 0.60 0.56 0.55 17.63 0.71 0.71 17.63 0.56 0.61
Genome-160 0.55 1.10 32.56 38.86 1.43 0.57 0.55 0.55 18.69 0.69 0.70 18.69 0.55 0.58
Protein-10 0.61 2.13 54.17 57.55 3.07 1.63 1.13 1.11 27.68 1.63 0.93 13.97 0.63 1.05
Protein-20 0.55 2.13 57.10 62.25 2.98 1.30 1.09 1.07 29.12 1.49 0.79 14.21 0.56 0.75
Protein-40 0.52 2.13 58.78 66.56 2.91 1.16 1.07 1.06 31.26 1.42 0.71 14.80 0.53 0.62
Protein-80 0.51 2.13 60.30 70.39 2.88 1.10 1.06 1.05 32.98 1.37 0.67 15.76 0.51 0.56
Protein-160 0.50 2.13 62.38 75.74 2.87 1.07 1.05 1.05 34.78 1.36 0.64 16.51 0.50 0.53
English-10 0.69 4.91 116.25 131.86 6.78 1.58 1.23 1.22 30.21 1.79 1.05 15.23 0.70 0.84
English-20 0.60 4.94 124.01 145.61 6.72 1.34 1.17 1.17 31.95 1.61 0.87 15.28 0.61 0.67
English-40 0.57 4.98 131.44 159.13 6.68 1.22 1.15 1.15 33.76 1.52 0.79 15.78 0.57 0.61
English-80 0.55 4.96 139.05 171.14 6.69 1.17 1.13 1.14 35.56 1.47 0.73 16.78 0.55 0.57
English-160 0.55 4.96 145.35 180.59 6.60 1.15 1.13 1.15 37.00 1.45 0.70 17.63 0.54 0.55

(b) BWT of texts
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Genome-10 0.63 1.18 29.99 30.86 1.62 1.35 0.65 0.62 15.05 0.90 0.90 14.93 0.65 1.36
Genome-20 0.57 1.14 30.73 33.11 1.51 0.85 0.58 0.57 15.61 0.78 0.79 15.58 0.59 0.85
Genome-40 0.56 1.14 32.12 35.34 1.47 0.67 0.56 0.55 16.60 0.73 0.74 16.62 0.57 0.68
Genome-80 0.56 1.12 32.85 37.37 1.44 0.61 0.56 0.55 17.62 0.70 0.71 17.62 0.56 0.61
Genome-160 0.55 1.12 32.55 38.88 1.43 0.58 0.55 0.55 18.67 0.70 0.69 18.68 0.56 0.58
Protein-10 0.61 2.16 54.14 57.50 3.06 1.63 1.13 1.11 27.67 1.62 0.93 13.97 0.63 1.04
Protein-20 0.55 2.14 57.19 62.30 2.97 1.30 1.08 1.07 29.10 1.49 0.81 14.20 0.56 0.74
Protein-40 0.52 2.14 58.75 66.50 2.90 1.16 1.06 1.06 31.23 1.42 0.71 14.77 0.53 0.62
Protein-80 0.51 2.14 60.16 70.27 2.88 1.10 1.06 1.05 32.96 1.37 0.67 15.76 0.51 0.56
Protein-160 0.50 2.12 62.35 75.72 2.86 1.09 1.06 1.05 34.78 1.36 0.64 16.53 0.51 0.53
English-10 0.69 5.07 119.83 139.69 6.80 1.58 1.23 1.22 30.44 1.77 1.05 15.25 0.70 0.84
English-20 0.60 5.09 126.48 151.92 6.76 1.33 1.17 1.17 31.81 1.61 0.87 15.29 0.61 0.67
English-40 0.57 5.08 132.97 163.44 6.71 1.22 1.15 1.14 33.58 1.52 0.78 15.79 0.57 0.60
English-80 0.55 5.01 139.07 173.05 6.72 1.18 1.14 1.14 35.38 1.47 0.73 16.80 0.55 0.57
English-160 0.54 4.99 144.79 181.59 6.60 1.15 1.13 1.13 36.97 1.46 0.70 17.63 0.55 0.55

Table XI
THE TIME COST (SECOND) FOR 1,000,000 SELECT QUERIES OVER LOW-ENTROPY DATA.

