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Abstract

The large decline in output volatility experienced by most industrialized countries in the last
decades has been thoroughly analyzed using standard time and frequency domain methods. In
this paper we investigate the issue of moderation of volatility in G-7 economies and its sources,
applying a multi-scaling approach to the industrial production indices of G-7 countries between
1961:1-2006:10. Using the MODWT estimates of wavelet variance we provide a scale-based anal-
ysis of variance that allows us to characterize the decline in volatility and to detect the importance
of the various explanations of the moderation. The main scale-by-scale results stemming from
multi scale analysis of variance are: i) a reduction in volatility which, although displayed by all
the G-7 countries, is not uniform across time scales (as the decline is larger at short-term scales
than at business cycle scales for France and Italy, and quite uniform across scale for the UK and
the US) nor countries (as the decline is significant for a subset of countries only, i.e. France, Italy,
the UK and the US); and ii) the moderation has to be attributable to the decline in the variance of
both common (in the 1970s) and country-specific (in the 1960s) exogenous disturbances hitting
the economy.
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1. Introduction

There is actually a large number of recent papers documenting, with the sup-
port of strong evidence, the reduction in the variance of output for the US and
other industrialized countries over the past forty years.1 Although there is lit-
tle disagreement about whether a decline in volatility occurred, the better way
to characterize this reduction in volatility (the “Great Moderation”as defined
by Stock and Watson, 2002) is still controversial. In particular, two alterna-
tive views have been suggested to explain the nature of this moderation: the
first states that the reduction of the volatility may be best characterized by
a sharp break in the mid 1980s, and thus implicitly consider the last twenty
years mainly as the results of the absence of large adverse shocks (see Mc Con-
nell and Perez Quiros, 2000, and Stock and Watson, 2002). The latter states
that the evolution of output volatility is nothing else than the result of a large
underlying trend of decline which started in the late 1950s and temporarily
interrupted only in the 1970s and early 1980s (see Blanchard and Simon, 2001).

In addition, there is also little consensus about the causes of this mod-
eration. The most commonly proposed explanations for the decline in the
volatility of overall economic activity fall into three categories: i) changes in
the structure of the economies and improved inventory management (“good-
practices”),2 ii) improvements in the conduct of (monetary) policies (“good-
policies”),3 and iii) a reduction in the magnitude and frequency of macroe-
conomic shocks (“good-luck”). Two main results characterize the empirical
evidence on the nature and the causes of the great moderation for the G-7
countries: i) the magnitude of the decline in output volatility is similar, but
the timing is not, and ii) there is no favored single cause for this moderation.

In order to distinguish among these three sources of volatility reduction
standard time and frequency domain methods have been used.4 Transform-
ing a (stationary) time series into the frequency domain may help to detect
the contribution of each frequency component to the overall variance through
the estimates of the spectral density function (i.e. the periodogram), as it
decomposes the variance by frequency. Thus, the frequency-by-frequency de-
composition may be useful to detect the sources of the changes in volatility if
each explanation of the moderation can be associated to the shift pattern of

1See Kim and Nelson (1999), Mc Connell and Perez Quiros (2000), Simon (2000), Blan-
chard and Simon (2001), Chauvet and Potter (2001), Stock and Watson (2002, 2003), van
Dijk et al. (2002), Doyle and Faust (2002), Herrera and Pesavento (2005).

2See Mc Connell and Perez Quiros (2000) and Kahn et al. (2001).
3See Taylor (1999) and Cogley and Sargent (2001).
4Examples of the first approach are Stock and Watson (2002) and Summers (2005), while

examples of the latter are Ahmed et al. (2002) and Fritsche and Kouzine (2005).
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the spectrum at a particular frequency.5

Given the potential time-varying nature of output fluctuations, analyzing
them using a transform which may capture events both locally in time and
frequency may be appealing. Wavelets are particular types of function f(x)
that are localized both in time and frequency domain and used to decompose
a function f(x), i.e. a signal, a surface, a series, etc.., in more elementary func-
tions which include information about f(x). In particular, wavelet variance
analysis allows for a scale-based analysis of variance of a time series which is
different, but related, to spectral analysis. Indeed, while Fourier coefficients
are associated with a single frequency, wavelet coefficients are associated with
a specific time scale and thus, since each scale may be related to a certain
range of frequencies in the data, with a specific band of frequencies. Several
applications of wavelet analysis in economics and finance have been first pro-
vided by Ramsey and Lampart (1998a, 1998b), Ramsey (2002), but, despite
its growing popularity, no attempt has been made, at least to our knowledge,
to apply time-frequency analysis to the issue of volatility moderation. Thus, in
this paper we apply the wavelet methodology to the analysis of the industrial
production series of G-7 countries between 1961:1 and 2006:10. In particular,
through the maximal overlap discrete wavelet transform (MODWT) estima-
tor of the wavelet variance (Percival, 1995) we try to distinguish among the
competing explanations on moderation examining whether the reduction in
volatility is uniform or not across time scales.

The analysis of the variance at different scales derived using wavelet method
calls into question the idea that there may be a sort of reference country.
Indeed, wavelet variance analysis indicates that the reduction in volatility,
although displayed by all the G-7 countries, is not uniform across time scales
nor countries. The only regularity, apart from the decline in output volatility,
is that there are no regularities. For some countries the decline in volatility is
significant (France, Italy, the UK and the US), for some others not. And among
these countries, there are some which display larger reductions at short-term
scales than at business cycle scales (France and Italy), and some others (the
UK and the US) in which the reduction is quite uniform across scales. These
results, after isolating periods of major supply disruptions, are consistent with
the view that the moderation has to be attributable to the decline in the
variance of both common, in the 1970s, and country-specific, in the 1960s,
exogenous disturbances hitting the economies.

The structure of the paper is as follows. The main properties of the wavelets
and the analytical differences from other filtering methods are dealt with in
Section 2, where the characteristics of our data set are also illustrated. In

5See Ahmed et al. (2002).
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section 3 we present the results from wavelet variance analysis, while section
4 concludes the paper.

2. Methodology and implementation

Wavelets are particular types of function ω(x) that are localized both in time
and frequency domains and are used to decompose a function f(x), i.e. a
signal, a surface, a series, etc.., in more elementary functions which include
information about f(x). The main advantage of wavelet analysis is its ability
to decompose macroeconomic time series, and data in general, into their time
scale components. Moreover, because of the translation and scale properties,
nonstationarity in the data is not a problem when using wavelets and pre-
filtering is not needed. Finally, as wavelets are constructed over finite intervals
of time and are not necessarily homogeneous over time, they are localized in
both time and scale.6 Thus, two interesting features of wavelet time scale
decomposition for economic variables are that, i) since the base scale does not
include any non-stationary components, the data need not be detrended or
differenced, and ii) the nonparametric nature of wavelets takes care of potential
nonlinear relationships without losing detail (Schleicher, 2002).7

In this section we first present the basic concepts of wavelet analysis and
wavelet transform, then describe the standard discrete wavelet transform and
the maximal overlap discrete wavelet transform, and finally introduce the
method for calculating wavelet variance.

2.1 Introductory considerations

The wavelet transform maps a function f(t)8 from its original representation
in the time domain into an alternative representation in the time-scale do-
main w(t, j) applying the transformation w(t, j) = ψ(.)f(t), where t is the
time index, j the scale (i.e. a specific frequency band) and ψ(.) the wavelet

6These properties of wavelet analysis may overcome the two main limitations of the
Fourier transform, that is i) the loss of time information in the transformation to the fre-
quency domain, and ii) the requirement that the moments of the signals do not appreciably
change over time (represented by the assumption of covariance-stationarity).

7As many economic and financial time series are non-stationary and, moreover, exhibit
changing frequencies over time, much of the usefulness of wavelet analysis has to do with
its flexibility in handling a variety of non-stationary signals.

8The function may be continuous or discrete. As time series are observed at regular
intervals and thus are constituted by a finite-length vector of observations, we restrict our
presentation exclusively to the discrete wavelet transformation.
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filter.9 There are two basis wavelet filter functions: the father and the mother
wavelets, φ and ψ, respectively. The first integrates to 1 and reconstructs the
smooth and low frequency parts of a signal, whereas the latter integrates to
zero and describes the detailed and high-frequency parts of a signal.10 The
wavelet filter ψ(tk − ti, j), given by

ψ(tk − ti, j) =
1√
j
ψ0

(
tk − ti
j

)
is a (normalized) stretched and translated version of a basis wavelet func-

tion called mother wavelet ψ where 1√
j

is the normalization factor.

The wavelet function in equation (1) depends on two parameters, scale (or
frequency) and time, that provide the time and frequency information simul-
taneously, hence providing the so-called time-scale or time-frequency represen-
tation of the signal.11 The scale or dilation factor j controls the length of the
wavelet (window), while the translation or location parameter k refers to the
location.12 The basis wavelet function is stretched (or compressed) according
to the scale parameter to extract frequency information (a narrow window
yields information on low frequency movements, while a wide window yields
information on high frequency movements), and moved on the time line (from
the beginning to end) to extract time information from the signal in question.

2.2 Discrete wavelet transform

The wavelet transform decomposes a signal into sets of coefficients where each
set of coefficients is associated with a spatial scale and each coefficient in a set
is associated with a particular location.13 The wavelet coefficients, the output
of the wavelet transform, are obtained through a projection of the signal onto
shifted and translated versions of mother and father wavelets and represent,
respectively, the underlying smooth behavior of the data at the coarsest scale
(the scaling coefficients) and the coarse scale deviations from it (the wavelet
coefficients).

9The wavelet transform may be considered as an extension of the Fourier transform
in the sense that, with respect to the Fourier transform which concentrates on frequency
resolution only, it gives up frequency resolution in order to gain time resolution and replaces
the periodic exponential exp(ωti) with a localized wavelet ψ(tk − ti, j) which is located
around ti and stretched according to the scale j.

10The mother wavelet integrates to zero as it reflects the fact that it is used to represent
differences in the data that average out to zero (Schleicher, 2002).

11Note that the scale factor is inversely related to the frequency of the wavelet.
12The location index k indicates the nonzero portion of each wavelet basis vector.
13In wavelet terminology each single coefficient is called an ”atom” and the set of coeffi-

cients for each scale a ”crystal”.
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Given a stochastic process {X}, if we denote with H = (h0, ..., hL−1) and
G = (g0, ..., gL−1) the impulse response sequence14 of the wavelet and scaling
filters hl, and gl, respectively, of a Daubechies compactly supported wavelet
(with L the width of the filters), when N = L2 we may apply the orthonor-
mal discrete wavelet transform (DWT) and obtain the wavelet and scaling
coefficients at the jthlevel defined as15

wj,t =
L−1∑
l=0

hj,lXt−l

vJ,t =
L−1∑
l=0

gj,lXt−l,

where hj,l and gj,l are the level j wavelet and scaling filters and, due to
downsampling by 2J , we have N

2J scaling and wavelet coefficients.16

The DWT is implemented via a filter cascade where the wavelet filter hl

is used with the associated scaling filter gl
17 in a pyramid algorithm (Mal-

lat, 1989) consisting in an iterative scheme in which, at each iteration, the
wavelet and scaling coefficients are computed from the scaling coefficients of
the previous iteration.18

However the orthonormal discrete wavelet transform (DWT), even if widely
applied to time series analysis in many disciplines, has two main drawbacks:
the dyadic length requirement (i.e. a sample size divisible by 2J),19 and the
fact that the wavelet and scaling coefficients are not shift invariant due to
their sensitivity to circular shifts because of the decimation operation. An
alternative to DWT is represented by a non-orthogonal variant of DWT: the

14The impulse response sequence is the set of all filter coefficients. The filter coefficients

must satisfy three properties: zero mean (
L−1∑
l=0

hl = 0), unit energy (
L−1∑
l=0

h2
l = 1) and orthog-

onal to its even shifts (
L−1∑
l=0

hlhl+2k = 0).
15The expressions used for DWT (and MODWT) wavelet and scaling coefficients refer to

functions defined over the entire real axis, that is t ∈ < as in this case Xt=XtmodN when
t<0.

16At the jth level the inputs to the wavelet and scaling filters are the scaling coefficients
from the previous level (j−1) and the output are the jth level wavelet and scaling coefficients.

17The wavelet and scaling filter coefficients are related to each other through a quadrature
mirror filter relationship, that is hl = (−1)lgL−1−l for l = 0, ...., L− 1.

18The only exception is at the unit level (j = 1) in which wavelet and scaling filters are
applied to original data.

19This condition is not strictly required if a partial DWT is performed.
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maximal overlap DWT (MODWT).20

In the orthonormal Discrete Wavelet Transform (DWT) the wavelet coeffi-
cients are related to nonoverlapping differences of weighted averages from the
original observations that are concentrated in space. More information on the
variability of the signal could be obtained considering all possible differences
at each scale, that is considering overlapping differences, and this is precisely
what the maximal overlap algorithm does.21 Thus, the maximal overlap DWT
coefficients may be considered the result of a simple modification in the pyra-
mid algorithm used in computing DWT coefficients through not downsampling
the output at each scale and inserting zeros between coefficients in the wavelet
and scaling filters.22 In particular, the MODWT wavelet and scaling coeffi-
cients w̃j,t and w̃j,t are given by

w̃j,t =
1

2j/2

L−1∑
l=0

h̃j,lXt−l

ṽJ,t =
1

2j/2

L−1∑
l=0

g̃J,lXt−l,

where the MODWT wavelet and scaling filters h̃j,l and g̃j,l are obtained by
rescaling the DWT filters as follows:23

h̃j,l =
hj,l

2j/2

g̃j,l =
gj,l

2j/2
.

The MODWT wavelet coefficients w̃j,t are associated with generalized changes
of the data on a scale λj = 2j−1. With regard to the spectral interpretation of
MODWT wavelet coefficients, as the MODWT wavelet filter hj,l at each scale

20The MODWT goes under several names in the wavelet literature, such as the ”non-
decimated DWT”, ”stationary DWT” (Nason and Silverman, 1995), ”translation-invariant
DWT” (Coifman and Donoho, 1995) and ”time-invariant DWT”.

21Indeed, the term maximal overlap refers to the fact that all possible shifted time intervals
are computed. As a consequence, the orthogonality of the transform is lost, but the number
of wavelet and scaling coefficients at every scale is the same as the number of observations.

22The DWT coefficients may be considered a subset of the MODWT coefficients. Indeed,
for a sample size power of two the MODWT may be rescaled and subsampled to obtain an
orthonormal DWT.

23Whereas DWT filters have unit energy, MODWT filters have half energy, that is
L−1∑
l=0

h̃2
j,l =

L−1∑
l=0

g̃2
j,l = 1

2j .
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j approximates an ideal high-pass with passband f ∈ [1/2j+1, 1/2j],24 the λj

scale wavelet coefficients are associated to periods [2j, 2j+1].
MODWT provides the usual functions of the DWT, such as multiresolu-

tion decomposition analysis and variance analysis based on wavelet transform
coefficients, but unlike the classical DWT it

• can handle any sample size;

• is translation invariant, as a shift in the signal does not change the
pattern of wavelet transform coefficients;

• provides increased resolution at coarser scales.25

In addition, MODWT provides a larger sample size in the wavelet variance
and correlation analyses and produces a more asymptotically efficient wavelet
variance estimator than the DWT.26

2.3 Wavelet variance analysis

In addition to the features stated above wavelet transform is able to analyze
the variance of a stochastic process and decompose it into components that are
associated to different time scales. In particular, given a stationary stochastic
process {X} with variance σ2

X and defined the level j wavelet variance σ2
X(λj),

the following relationship holds

∞∑
j=1

σ2
X(λj) = σ2

X

where σ2
X(λj) represent the contribution to the total variability of the pro-

cess due to changes at scale λj. This relationship says that wavelet variance
decomposes the variance of a series into variances associated to different time
scales.27 By definition, the (time independent) wavelet variance for scale λj,
σ2

X(λj), is defined to be the variance of the j -level wavelet coefficients

24On the other hand at scale λJ the scaling filter gJ,l approximates an ideal low-pass filter
with passband f ∈ [0, 1/2j+1].

25Unlike the classical DWT which has fewer coefficients at coarser scales, it has a number
of coefficients equal to the sample size at each scale, and thus is over-sampled at coarse
scales.

26Wavelet variance is defined in subsection 2.3.
27The wavelet variance decomposes the variance of certain stochastic processes with re-

spect to the scale λj = 2j−1 just as the spectral density decompose the variance of the
original series with respect to frequency f , that is
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σ2
X(λj) = var{w̃2

j,t}.

As shown in Percival (1995), provided that N − Lj ≥ 0, an unbiased
estimator of the wavelet variance based on the MODWT may be obtained,
after removing all coefficients affected by the periodic boundary conditions,28

using

σ̃2
X(λj) =

1

Ñj

N∑
t=LJ

w̃2
j,t

where Ñj = N − Lj + 1 is the number of maximal overlap coefficients at
scale j and Lj = (2j − 1)(L − 1) + 1 is the length of the wavelet filter for
level j.29 Thus, the j th scale level j wavelet variance is simply the variance of
the nonboundary or interior wavelet coefficients at that level (Percival, 1995,
and Serrouck et al., 2000). Both DWT and MODWT can decompose the
sample variance of a time series on a scale-by-scale basis via its squared wavelet
coefficients, but the MODWT-based estimator has been shown to be superior
to the DWT-based estimator (Percival, 1995).

Starting from the spectrum SwX,j of the scale j wavelet coefficients it
is possible to determine the asymptotic variance Vj of the MODWT-based
estimator of the wavelet variance (covariance) and construct a random interval
which forms a 100(1− 2p)% confidence interval.30

∞∑
j=1

σ2
X(λj) = varX =

∫ 1/2

−1/2

SX(f)df

where σ2
X(λj) is wavelet variance at scale λj and S(.) is the spectral density function.

28As MODWT employs circular convolution, the coefficients generated by both begin-
ning and ending data could be spurious. Thus, if the length of the filter is L, there are(
2j − 1

)
(L− 1) coefficients affected for 2j−1-scale wavelet and scaling coefficients, while(

2j − 1
)
(L− 1)− 1 beginning and

(
2j − 1

)
(L− 1) ending components in 2j−1-scale details

and smooths would be affected (Percival and Walden, 2000).
29The quantity estimated in equation (2) is time-independent even in case of nonstation-

ary processes but with stationary dth-order differences, provided that the length L of the
wavelet filter is large enough to make the wavelet coefficients w̃j,t a sample of stationary
wavelet coefficients (Serrouck et al., 2000). This is because Daubechies wavelet filters may
be interpreted as generalized differences of adjacent averages and are related with difference
operator (Whitcher et al., 2000).

30For a detailed explanation of how to construct the confidence intervals of wavelet vari-
ance, see Gençay et al. (2002, p.254-6).

8 Studies in Nonlinear Dynamics & Econometrics Vol. 11 [2007], No. 3, Article 6

http://www.bepress.com/snde/vol11/iss3/art6



The formulas for an approximate 100(1−2p)% confidence intervals MODWT
estimator robust to non-Gaussianity for σ̃2

X,j are provided in Gençay et al.
(2002).31

3. Empirical results

In order to perform a wavelet analysis of a time series, a number of decisions
must be made: which family of wavelet filters to use, what type of wavelet
transform to apply, and how boundary conditions at the end of the series are
to be handled.

There are several families of wavelet filters available, such as Haar (dis-
crete), symmlets and coiflets (symmetric), daublets (asymmetric), etc, differ-
ing by the characteristics of the transfer function of the filter and by filter
lengths.32 Different wavelet families make different trade-offs between the de-
gree of localization and the degree of approximation of high-pass filters (Lind-
say et al., 1996). Daubechies (1992) has developed a family of compactly
supported33 wavelet filters of various lengths, the least asymmetric family of
wavelet filters (LA), which is particularly useful in wavelet analysis of time
series because it allows the most accurate alignment in time between wavelet
coefficients at various scales and the original time series.

In order to calculate wavelet coefficient values near the end of the series
boundary conditions are to be assumed. According to the two main assump-
tions the series may be extended in a periodic fashion (periodic boundary
condition) or in a symmetric fashion (reflecting boundary condition). We ap-
ply for wavelet variance analysis the reflecting boundary condition, where the
original signal is reflected about its end point to produce a series of length 2N
which has the same mean and variance as the original signal. The wavelet and
scaling coefficients are then computed by using a periodic boundary condition
on the reflected series, resulting in twice as many wavelet and scaling coeffi-
cients at each level. Finally, we perform the time scale decomposition analysis
using the maximum overlap discrete wavelet transform (MODWT) because of
the practical limitations of the DWT, i.e. the dyadic length requirement and
non shift-invariance.

31The empirical evidence from the wavelet variance suggest that Nj = 128 is a large
enough number of wavelet coefficients for the large sample theory to be a good approximation
(Whitcher et al., 2000).

32In particular, the choice of the filter length depends on a trade-off between leakage and
boundary-affected coefficients: a longer length makes the filter closer to an ideal high-pass
filter, but reduces the number of boundary-unaffected coefficients.

33Wavelet filters with compact support are those in which the mother wavelet filters and
scaling filters have finite length.
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3.1 Time-scale decomposition

Different variables may be used as a proxy for aggregate output. Even if GDP
is the most employed measure, its availability on a quarterly basis makes
the industrial production index the variable commonly used as a proxy of
aggregate output when a large number of observations is needed, as is the
case of the wavelet methodology.34 Thus, we choose to use the industrial
production index monthly data between 1961:1-2006:10 for Canada, France,
Germany, Italy, Japan, the UK and the US. The data are taken from the
OECD database, seasonally adjusted, and expressed in natural logarithm.35

We perform a J-level decomposition36 applying the maximal overlap dis-
crete wavelet transform (MODWT ) to the aggregate monthly industrial pro-
duction series and using the Daubechies least asymmetric (LA) wavelet filter
of length L = 8, denoted as LA(8), which is a fourth order filter based on four
non-zero coefficients (Daubechies, 1992) as the order of the filter is equal to the
number of vanishing moments (half the length of the filter).37 The application
of the MODWT with a number of scales J = 6 produces seven wavelet and
scaling filter coefficients: v6, w6, w5, w4, w3, w2, w1, where each wavelet scale
is associated to a particular time period.

As the MODWT wavelet filter belongs to high-pass filter with passband
given by the frequency interval [1/2j+1, 1/2j] for scales 1 ≤ j ≤ J , inverting
the frequency range to produce a period of time we obtain, with monthly
data, that wavelet coefficients associated to scale λj = 2j−1 are associated to
periods [2j, 2j+1].38 Thus, scale 1 represents frequencies corresponding to 2-4
month period dynamics, and scales 2, 3, 4, 5 and 6 correspond to 4−8, 8−16,
16−32, 32−64, and 64−128 month period dynamics, respectively.39 The first
three time scales represent the short-run dynamics of a signal (corresponding
to the very high- and high-frequency components), scales 4 through 6 roughly
correspond to the standard business cycle time period (Stock and Watson,

34We are aware of the fact that, because of the shift in output from goods to services,
the industrial production may not be the most reliable indicator of real economic activity
in industrial countries. But in contrast to GDP series, the industrial production index is
statistically more reliable than GDP in analyzing the decline in volatility, as the result will
not be affected by the change in the structure of the economy.

35There are many analysis indicating that the results obtained using the industrial pro-
duction index are qualitatively similar to those obtained using real GDP (see, for example,
Stock and Watson, 2002).

36J is the maximum integer such that 2j = log2N .
37Thus, it has the ability to generate stationary series from a series integrated up to level

4 included.
38See Serroukh et al., 2000, and Whitcher et al., 2000.
39See Whitcher et al., 2000, and Gençay et al., 2003.
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2000),40 while the trend is associated to the low-frequency components of a
signal corresponding to the long-run elements. Figure 1 shows the time series
of the US industrial production index and the MODWT coefficient sequences
w̃j,t for levels j = 1 to j = J = 6.

3.2 Wavelet variance analysis

In this section we apply wavelet variance analysis to the industrial production
series of G-7 countries. The wavelet variance decomposes the variance of a
time series on a scale-by-scale basis through a wavelet multiresolution analysis.
Table 1 reports the estimated wavelet variances of industrial production at
different wavelet scales, σ̃2

X(λj), for each G-7 country over the whole sample,
as well as the upper and lower bounds for the approximate 95% confidence
interval assuming a non-Gaussian process.41

In figure 2 we show the plot of σ̃2
X(λj) against λj on a log-log scale, as it

indicates which scales provide the most important contribution to the variance
of the process.42 The evidence indicates that, at the finest scales, wavelet
variance tends to be approximately constant, while, at business cycle scales,
it tends to increase as the wavelet scale increases.43 Two other aspects of
the results from wavelet variance are worth mentioning: the first is the wide
dispersion of the wavelet variance values among countries at the finest scales,
i.e. scales 1 to 3, with France and Italy displaying the highest values at all
these scales, and the US the lowest values of wavelet variance; the latter is the
high contribution of the last two scales to the overall variance.

The wavelet variance estimated values let us investigate some basic proper-
ties of the data generation process of a series. In particular, we can determine
the relationship between wavelet variance and scale by σ2

X(λj) ∝ λ−α−1
j , where

an estimate of α, the scaling parameter in a pure power law process, may be
obtained from the OLS regression of log(σ2

X(λj)) on log(λ−α−1
j ) (see Gençay et

al., 2001). As the estimated scaling parameters α̂ range from −1.30 (France)
and −2.52 (the US), according to the relationship between the value of the
scaling parameter in a pure power law process and the type of the process
(see Percival and Walden, 2000), all industrial production indices of the G-7

40According to the modern definition of business cycle, fluctuations in business cycles
consist of frequencies between 1.5 to 8 (10) years (18 and 96 (120) months), so that they
roughly correspond to scales 4, 5 and 6, as the scales in wavelet filters are dyadic.

41The level j wavelet variance is obtained using the wavelet scaling coefficients w1 to w6

not affected by the boundary (Gençay et al., 2002).
42Note that lower scales correspond to higher frequencies and vice versa.
43In Figure 2 symbols C, G, F, I, J, U and S refer to Canada, Germany, France, Italy,

Japan, the UK and the US, respectively.
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Table 1: Multi scale wavelet variance coefficients of G-7 countries with upper
and lower bound for the approximate 95% confidence interval assuming a non-
Gaussian process.

scale w1 w2 w3 w4 w5 w6

Canada 2.4e-05 1.6e-05 2.8e-05 1.5e-04 5.3e-04 9.9e-04
lower 1.9e-05 1.4e-05 2.2e-05 9.3e-05 2.8e-04 4.9e-04
upper 2.7e-05 1.8e-05 3.4e-05 2.0e-04 7.8e-04 1.5e-03

France 1.4e-04 1.4e-04 9.9e-05 1.4e-04 2.5e-04 3.9e-04
lower 1.3e-04 1.2e-04 8.0e-05 9.1e-05 1.5e-04 1.8e-04
upper 1.6e-04 1.6e-04 1.2e-04 1.9e-04 3.4e-04 6.2e-04

Germany 6.5e-05 3.6e-05 4.0e-05 1.1e-04 3.9e-04 7.6e-04
lower 5.6e-05 2.9e-05 3.2e-05 7.1e-05 2.2e-04 3.2e-04
upper 7.5e-05 4.2e-05 4.8e-05 1.4e-04 5.8e-04 1.2e-03
Italy 1.0e-04 8.3e-05 9.0e-05 2.4e-04 4.7e-04 5.7e-04
lower 8.6e-05 6.9e-05 7.0e-05 1.5e-04 2.7e-04 2.8e-04
upper 1.2e-04 9.7e-05 1.1e-04 3.2e-04 6.7e-04 8.7e-04
Japan 3.6e-05 1.8e-05 3.5e-05 2.6e-04 7.4e-04 1.1e-03
lower 2.8e-05 1.5e-05 2.7e-05 1.4e-04 4.1e-04 5.2e-04
upper 4.3e-05 2.0e-05 4.3e-05 3.7e-04 1.1e-03 1.7e-03
UK 3.9e-05 3.9e-05 4.9e-05 9.8e-05 2.7e-04 4.2e-04
lower 3.4e-05 3.3e-05 3.8e-05 6.3e-05 1.3e-04 2.1e-04
upper 4.5e-05 4.5e-05 5.9e-05 1.3e-04 3.9e-04 6.3e-04
US 6.0e-06 9.5e-06 3.1e-05 1.2e-04 4.3e-04 8.9e-04

lower 5.3e-06 8.0e-06 2.3e-05 8.1e-05 2.3e-04 4.5e-04
upper 6.8e-06 1.1e-05 3.9e-05 1.5e-04 6.2e-04 1.3e-03
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Figure 2: Multiscale wavelet variance coefficients of G-7 countries
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countries may be considered as nonstationary long memory processes.44

In recent years there has been a renewed interest in the issue of volatility in
economic activity following the articles by Mc Connel and Perez Quiros (2000)
and Kim and Nelson (1999) who point out a reduction in output volatility in
the US in the mid-1980’s. Following their independent findings, many empir-
ical studies have analyzed the decline in volatility by comparing changes in
volatility in the post-mid-1980’s period relative to the pre-mid-1980’s period
(Stock and Watson, 2003). Thus, in order to further explore the issue of a
moderation in output volatility we perform the multiscale wavelet variance
analysis splitting the overall sample into two distinct selected sub-periods:
period I, the pre-1984 period, and period II, the post-1984 period.45

In Ahmed et al. (2002) frequency domain methods are used to investigate
the sources of the decline in US growth volatility. In particular, given that
the spectrum may decompose the variance by frequency, each competing ex-
planation is associated with a specific shift pattern in the spectrum according
to the frequency at which the spectrum itself is expected to shift.

Analogously, wavelet analysis, given its ability to decompose the variance
of a series on a scale-by-scale basis, may be a suitable instrument to detect the
relative importance of the various explanations for the moderation of volatility.
Indeed, once such explanations have been associated to specific time scales on
the basis of the inverse relationship between frequency and scale, an informal
test about the different explanations for the ”moderation” of volatility may be
carried out. In particular,

• improvements in inventory management are expected to be associated to
smallest scales (highest frequencies), as they help to smooth production
within the month or the quarter (Stock and Watson, 2002);

• improvements in (monetary) policy management, in the form of a more
aggressive response to inflation, are likely to be associated to business-
cycle scales, given the lags in the effects of monetary policy on output;

• exogenous shocks are likely to be associated to different scales depending
on their impact, temporary or permanent, and on their nature, demand
or supply-side. For example, temporary shocks like strikes and other
temporary influences in aggregate production are likely to be associated
to short-term scales; on the other hand the effects of permanent shocks,

44Long-memory processes are characterized by autocorrelation values decaying at a very
slow rate such that the effects may persist over long time scales (Beran, 1994).

45In order to meet the requirement of a sufficient number of wavelet coefficients unaffected
by the periodic boundary condition we restrict the estimation of wavelet variance up to scale
5.
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like permanent increases in oil prices or productivity shocks, are likely to
be associated to all scales. This is because, demand-side effects (such as
those on consumers’ spending) are likely to be associated to short-term
scales, while supply-side effects (such as those on production and capital
investment decisions) are likely to be associated to longer scales.46

Figure 3 reports the MODWT estimated G-7 multiscale variance over sub-
samples 1961-1983 (solid lines) and 1984-2006 (dotted lines) where the (.)’s
are estimated variances for each scale. Lines with ”U” and ”L” denote, re-
spectively, the upper and lower bound for the approximate 95% confidence
interval assuming a non-Gaussian process We may examine whether a decline
in output volatility over time occurred on a scale-by-scale basis, with the de-
cline represented by a downward shift of the line joining the estimated wavelet
variance values. Moreover, as each explanation is associated to a specific scale
range, determining if the downward shift is concentrated at particular scales
or uniform across scales may provide some insight on the cause of the decline
in volatility.

The comparison of the plots, reported in figure 3, confirms the general
consensus about the occurrence of this moderation in overall economic activity,
as in all G-7 countries (except Japan at the first two scales) the estimated
wavelet variance values of period II, σ̃2

I (λj), lie below those of period I, σ̃2
I (λj).

Approximate confidence intervals of estimated wavelet variance values σ̃2
I (λj)

and σ̃2
I (λj) may be considered as a visual method to statistically testing the

hypothesis of equality of wavelet variance across different time periods, that is

H0 : σ2
I (λj) = σ2

II(λj).

In particular, when 95% approximate confidence intervals are non-overlapping,
the hypothesis of variance equality may be rejected (Gençay et al., 2002).
Thus, the analysis of multiscale variance reported in figure 3 indicates that we
can reject the hypothesis of variance equality for France, Italy, the UK and
the US.

But this decline is not uniform across scales nor countries. In particular,
the moderation is generally larger at the finest scales, i.e. 1 to 3, than at
business cycle scales. As regards the countries displaying a drop in output
volatility, the evidence in figure 3 indicates that for the UK and the US the
moderation of volatility is quite uniform over all scales. On the contrary, in
the case of France and Italy the decrease in volatility is larger at short-term
scales than at business cycle scales.

46Similarly, in Ahmed et al. (2002) the assumption of covariance-stationarity for output
growth (required by spectral analysis) implies that the good-luck hypothesis is represented
by a parallel downward shift in the spectrum, as it affects all frequencies.
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Figure 3: MODWT estimated G-7 multiscale variance over sub-samples 1961-1983 (solid lines) and 1984-2006 (dotted
lines).
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The choice to break down the overall sample into two sub-samples only, as
the result of a one-break case, could be too restrictive for a forty-year sample
characterized by the occurrence of both common international shocks, such as
the oil price shocks of the 1970s,47 and domestic shocks, such as the French
May of the late 1960s or the German reunification process of the late 1980s.
Following this line of reasoning Doyle and Faust (2002), after performing the
analysis up to the three-break case for G-7 countries over a similar time span,
focused on a three-break case, where the break dates fall in the early 1970s
(1972:2), 1980s (1981:1) and 1990s (1992:2). As a consequence, we perform
the multiscale wavelet variance analysis splitting the overall sample into four
distinct selected sub-periods corresponding roughly to the decades: period 1
before Bretton Woods collapse (1961-1971), period 2 the oil shocks (1972-1982),
period 3 the slow recovery (1983-1993) and period 4 the irrational euphoric
years (1994-2006).48

In figure 4 we plot the estimated wavelet variances of G-7 countries at
different time scales for the four sub-samples.49 A simple eyeballing at the
estimated wavelet variance values in Figures 4 shows that each G-7 coun-
try displays an individual pattern.50 As a consequence, they cannot be easily
grouped in terms of behavior and, moreover, may be inappropriate to consider
the US as the reference country in the scheme of interpretation for the decline
in output volatility. Nonetheless, some regularities seems to emerge both over
scales and across countries.

The main regularity refers to the oil price shocks period51 which displays
the highest values of the estimated wavelet variance in all G-7 countries at
all scales (the only exceptions are Japan, at almost any scale, and Germany
at scale 1). For the Euro-zone countries also the pre-Bretton Woods collapse
period is one characterized by high volatility. Indeed, Germany and Italy
present values of the wavelet variance which are similar to those of period

47Sharp increases in oil prices occurred in correspondence of the Arab-Israeli war in 1973,
the Iranian revolution in 1978 and the Iran-Iraq war in 1980. These oil price shocks represent
examples of what Hamilton (2003) identifies as major oil supply disruptions, the only ones
that matter for macroeconomic stability.

48The choice of the sub-periods is dictated by considering the main shocks, both common
and country-specific, affecting G-7 countries over the last forty-five years.

49Again, in order to the meet the requirement of a sufficient number of wavelet coefficients
unaffected by the periodic boundary condition we restrict the estimation of wavelet variance
up to scale 4.

50In figure 4 the numbered lines 1, 2, 3 and 4 represent the estimated multiscale wavelet
variances of the corresponding sub-periods. Confidence intervals here are omitted in order
to facilitate the readability of the results.

51There is a wide empirical literature regarding the importance of the impact of oil shocks
on economic activity (see Hamilton, 1983, 2003; Hamilton and Herrera, 2004).
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Figure 4: MODWT estimated multiscale wavelet variance over sub-samples 1961-1971 (period 1), 1972-1982 (period 2), 1983-1993
(period 3) and 1994-2006 (period 4) represented by solid lines 1, 2, 3 and 4, respectively.
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2, while France displays the highest values of the estimated wavelet variance
in absolute terms. At the other extreme, in period 4 the values of the esti-
mated wavelet variances are the lowest ones everywhere, with the exception of
Japan whose variance values are similar to that of the oil price shocks period.
As regards the slow recovery, the values of the estimated wavelet variance
are generally intermediate between the highest and lowest volatility periods
(exceptions are Germany, whose variance at the shortest scales is also higher
than those of the first two decades, and, again, Japan which displays the lowest
values in the third decade).

Again, when we use confidence intervals as a visual method to test the
hypothesis of equality of wavelet variance across sub-periods within each G-7
country, we are able to reject the hypothesis of equality of wavelet variance
in many cases: between periods 1 and 2 versus periods 3 and 4 for France,
between period 2 versus periods 3 and 4 for Italy and between period 2 versus
all other periods for the UK.52

The results from the informal statistical test on wavelet variance suggest
that the volatility reduction of the last decades has to be attributed to a fall
in the variance of exogenous common structural disturbances hitting interna-
tional economies from the 1980s.53 In addition, the large decline in volatility
displayed by France and Italy at the finest scales (i.e. higher frequencies) may
be associated, consistently with the hypothesis proposed in this paper about
the sources of the moderation in volatility, to the occurrence of large transitory
country-specific exogenous disturbances impacting the labor markets of these
countries in the 1960s.

4. Conclusions

In this paper we apply a multi-scaling approach to investigate the occurrence
and the sources of the decline in output volatility using data on the industrial
production index of the G-7 countries between 1961:1-2006:10. The analysis is
performed using the MODWT estimator of wavelet variance as it decomposes
the variance of a series on a scale-by-scale basis, and thus may be a suitable
instrument to detect the relative importance of the various explanations for the

52The rise in standard deviation that characterized France in the late 1960s (French May),
Germany in the late 1980s (German reunification), Italy in the late 1960s (Hot Autumn) and
Japan in the late 1990s has been well documented in the empirical literature investigating
breaks in the variability in the G-7 economies (Doyle and Faust, 2002).

53Similar conclusions are also reached in Stock and Watson (2002), Blanchard and Simon
(2001) and Ahmed et al., (2001) who state that ”our results support the good-luck hypothesis
as the leading explanations [...] although good-practices and good-policy are also contributing
factors”.
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moderation of volatility. Indeed, looking at wavelet variance we may examine
whether there is a decline in output volatility over time on a scale-by-scale
basis, with the decline represented by a downward shift of the line joining
the estimated wavelet variance values. Moreover, as each explanation may
be associated to a specific scale range, determining if the downward shift is
concentrated at particular scales or uniform across scales may provide some
insight on the nature of the decline in volatility.

The evidence from wavelet variance analysis indicates that the reduction in
variance, although common to all G-7 countries, is not uniform across countries
(as the decline is significant for a subset of countries only, i.e. France, Italy, the
UK and the US) nor scales (as the decline is larger at short-term scales than at
business cycle scales for France and Italy, and quite uniform across scale for the
UK and the US). Moreover, when we perform the multiscale wavelet variance
analysis splitting the overall sample into four distinct selected sub-periods
corresponding roughly to the decades, the results from the informal statistical
test based on the wavelet variance provide evidence of the importance for the
moderation in output volatility of the common (in the 1970s) and and country-
specific (in the 1960s) exogenous disturbances hitting international economy
.
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