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Wavelet-Variance-Based Estimation for Composite

Stochastic Processes

Stéphane GUERRIER, Jan SKALOUD, Yannick STEBLER, and Maria-Pia VICTORIA-FESER

This article presents a new estimation method for the parameters of a times series model. We consider here composite Gaussian processes that

are the sum of independent Gaussian processes which, in turn, explain an important aspect of the time series, as is the case in engineering and

natural sciences. The proposed estimation method offers an alternative to classical estimation based on the likelihood, that is straightforward

to implement and often the only feasible estimation method with complex models. The estimator furnishes results as the optimization of a

criterion based on a standardized distance between the sample wavelet variances (WV) estimates and the model-based WV. Indeed, the WV

provides a decomposition of the variance process through different scales, so that they contain the information about different features of the

stochastic model. We derive the asymptotic properties of the proposed estimator for inference and perform a simulation study to compare

our estimator to the MLE and the LSE with different models. We also set sufficient conditions on composite models for our estimator to

be consistent, that are easy to verify. We use the new estimator to estimate the stochastic error’s parameters of the sum of three first order

Gauss–Markov processes by means of a sample of over 800,000 issued from gyroscopes that compose inertial navigation systems.
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1. INTRODUCTION

Let Fθ , θ ∈ 2 ⊆ R
p be the model associated to the univariate

Gaussian time series {Yt ; t ∈ Z} that is stationary or nonstation-

ary but with stationary backward differences of order d, and20

let {yt , t = 1, . . . , T } be the corresponding observed outcome.

In this article, we propose a new estimation method for the

parameter’s vector θ that is based on the matching between the

empirical and model-based wavelet variances (WV). We also set

the conditions on Fθ under which our estimator is consistent.25

In particular, we consider for the empirical WV the Maximal

Overlap Discrete Wavelet Transform (MODWT) WV estima-

tor (Greenhall 1991; Percival and Guttorp 1994) based on Haar

wavelet filters for which d = 1. In this case, we show that for

a model made of the sum of independent Gaussian white-noise30

(WN), drift, quantization noise (QN), random walk (RW), and a

finite number of autoregressive models of order 1 (AR(1)), our

estimator is consistent (see Corollaries 2 and 3 in the supple-

mentary materials, Section F). This model encompasses most of

the stochastic models used in engineering and natural sciences35

applications.

The processes can be represented without loss of generality,

Q1

by a state-space model of the form

xt+1 = 8xt + wt+1 + ut+1 (1)

with measurements

yt+1 = hxt+1 + vt+1, (2)
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Pia Victoria-Feser are partially supported by a Swiss National Fund Grant (no.
100018-131906). Yannick Stebler was partially supported by the European FP7-
GALILEO-2007-GSA-1 grand CLOSE-SEARCH as well as by the project no.
103010.2 of the Swiss Commission for Technology and Innovation (CTI). The
authors are grateful to two anonymous reviewers for their comment that helped
to improve the content and the presentation of the article.

where xt is a q × 1 system state vector at time t, 8 is a q × 40

q coefficient or state-transition matrix from t to t + 1, wt is

a q × 1 multivariate WN vector, that is, wt ∼ N (0, Q), ut is

a q × 1 deterministic input vector, yt is the one-dimensional

output variable, h is a 1 × q design vector which maps the state

vector xt into the output yt , and vt is a one-dimensional noise 45

such that vt ∼ N (0, σ 2
WN ).

The books by Harvey (1989) and Durbin and Koopman

(2001) contain extensive accounts of state-space models and

their applications. For linear and/or Gaussian state-space

models, the Maximum Likelihood Estimator (MLE) is a natural 50

choice for the estimation of the model’s parameters. The

Kalman filter, MCMC, or other simulation smoother, together

with the specification of a prior to start the latent process, are

typically used for computing predictors of the state-variables

and one-step-ahead predictors of the observations which are 55

then used in an Expectation-Maximization (EM) algorithm of

Dempster, Laird, and Rubing (1977) to compute the MLE (see

also, e.g., Shumway and Stoffer 1982). The MLE is based on

the density fθ (y) = ∂Fθ (y)/∂y, with θ the p × 1 vector of

parameters containing the unknown elements of 8, Q, h and 60

possibly also ut+1 together with σ 2
WN . The maximization step

can be very complex and finding the MLE is not always a simple

task. Moreover, even if new smoothers are regularly proposed

(see, e.g., Durbin and Koopman 2002; McCausland, Miller,

and Pelletier 2011) that improve the computational efficiency, 65

the task becomes even more challenging when the observed

process size is large and the model is, for example, a mixture

of three first-order Gauss–Markov (GM) random processes (a

reparameterization of AR(1) processes) with different param-

eters, a model that is used in the case study Section 5. We also 70

found in a simulation exercise in Section 4 that our estimator,

unlike the classical MLE or the least squares estimator (LSE),

is importantly less biased when the roots of an AR(1) process
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lie near the unit circle. However, a formal and more general

treatment of the unit root problem is left for future research.75

An important useful tool for understanding underly-

ing features of a process is the Power Spectral Density

(PSD), which for stationary processes, is given by SFθ
(f ) =

1t
∑∞

τ=−∞ CFθ
(τ )e−i2πf τ1t for |f | ≤ fN = 1/(21t) (fN is

the Nyquist frequency) with CFθ
(τ ) = covFθ

[Yt+τ , Yt ] be-80

ing the Auto-Covariance Function (ACF) of {Yt } such that∑∞
τ=−∞ C2

Fθ
(τ ) < ∞. The WV are related to the PSD since

they decompose the variance process varFθ
[yt ] =

∫ fN

−fN
SFθ

(f )df

as thoroughly described in Percival and Walden (2000) (see

also Section 2). The WV can be estimated from the sample85

{yt , t = 1, . . . , T } using, for example, the maximal-overlap dis-

crete wavelet transform estimator defined in Serroukh, Walden,

and Percival (2000) (see also Percival 1995 and Equation (6)

next), and for the matching of these empirical estimates to the

WV implied by the model, we propose an optimization criterion90

based on a standardized distance between both WV estimates,

as is done, for example, with the Generalized Method of Mo-

ments (GMM) (Hansen 1982). We call the new estimator the

Generalized Method of Wavelet Moments (GMWM) estimator.

We provide, among others, sufficient conditions on the model95

Fθ for the GMWM estimator to be consistent and asymptoti-

cally normal. Moreover, it can be computed using simulations

as is done with indirect inference (Gourieroux, Monfort, and

Renault 1993; Smith 1993; Gallant and Tauchen 1996), so that

it is very straightforward to implement in practice.100

While in this article we use wavelets (through their variances)

for parametric estimation, wavelets have been used in many dif-

ferent statistical problems mainly for nonparametric estimation.

To cite only a few, wavelets have been used in nonparametric

density estimation (see, e.g., Doukhan and Leon 1990; Kerky-105

acharian and Picard 1992; Walter 1992; Donoho et al. 1996),

inverse problems (see, e.g., Donoho 1995), nonparametric re-

gression or curve fitting (see, e.g., Donoho and Johnstone 1994

and Donoho et al. 1995) also with correlated errors (see, e.g.,

Johnstone and Silverman 1997), or with locally stationary noise110

(see, e.g., Von Sachs and Macgibbon 2000).

This article is organized as follows. In Section 2, we introduce

the WV and explain how it is used mainly in the engineering

literature. In Section 3, we present the estimator based on the

WV and derive its statistical properties. A simulation study is115

then presented in Section 4 that compares the finite sample per-

formance of the GMWM estimator to the MLE and the LSE. In

Section 5, we apply the new methodology to estimate parame-

ters for the stochastic error models in inertial sensors with a real

dataset of size 833,685.120

2. THE WAVELET VARIANCE

Basically, as pointed out by Percival and Guttorp (1994),

the WV can be interpreted as the variance of a process after

it has been subject to an approximate bandpass filter. WV can

be built using wavelet coefficients issued from a modified Dis-125

crete Wavelet Transform (DWT) (Mallat 1999; Percival and

Walden 2000) called the Maximal Overlap DWT (MODWT);

see Greenhall (1991), Percival and Guttorp (1994). The wavelet

coefficients are built using wavelet filters {h̃j,l}, j = 1, . . . , J

which for j = 1 and for the MODWT satisfy 130

L1−1∑

l=0

h̃1,l = 0,

L1−1∑

l=0

h̃2
1,l =

1

2
and

∞∑

l=−∞

h̃1,l h̃1,l+2m = 0,

where h̃1,l = 0 for l < 0 and l ≥ L1, L1 is the length of h̃1,l , and

m is a nonzero integer. Let also H̃1(f ) =
∑L1−1

l=0 h̃1,le
−i2πf l be

the transfer function of h̃1,l . To obtain the jth-level wavelet filters

{h̃j,l} of length Lj = (2j − 1)(L1 − 1) + 1, one computes the

inverse discrete Fourier Transform of 135

H̃j (f ) = H̃1(2j−1f )

j−2∏

l=0

ei2π2lf (L1−1)H̃1

(
1

2
− 2lf

)
. (3)

The MODWT filter is actually a rescaled version of the DWT

filter hj,l , that is, h̃j,l = hj,l/2j/2. Filtering an infinite sequence

{Yt ; t ∈ Z} using the wavelet filters {h̃j,t } yields the MODWT

wavelet coefficients

W j,t =
Lj −1∑

l=0

h̃j,lyt−l, t ∈ Z. (4)

We define the WV at dyadic scales τj = 2j−1, as the variances 140

of {W j,t }, that is

ν2(τj ) = var(W j,t ).

Notice that the WV are assumed not to depend on time. The

condition for this property to hold is that the integration order d

for the series {Yt } has to be stationary such that d ≤ L1/2 and

{h̃j,l} is based on a Daubechies (Daubechies 1992) wavelet fil- 145

ter; see Percival and Walden (2000), chapter 8. This is because

Daubechies wavelet filters of width L1 contain an embedded

backward difference filter of order L1/2. In such a case, the

series of wavelet coefficients {W j,t } is stationary with PSD

SWj
(f ) = |H̃j (f )|2SFθ

(f ), | · | denoting the modulus. Hence 150

(see Serroukh, Walden, and Percival 2000)

ν2(τj ) =
∫ 1/2

−1/2

SWj
(f )df =

∫ 1/2

−1/2

|H̃j (f )|2SFθ
(f )df. (5)

There is therefore an implicit link between the WV and the pa-

rameters of the data generating model Fθ . We exploit this con-

nection when defining an estimator for θ , namely by matching

a sample estimate of the WV ν2(τj ) together with the model- 155

based expression of the WV given by the left side of Equa-

tion (5). For WV based on Haar wavelet filters (see Equation (9)

next) and for the WN, RW, Drift, QN, AR(1), ARMA(1,1), and

ARIMA(0,1,1) models, the integral in Equation (5) is solved

and given in the supplementary materials (see Section A), based 160

on the results of Zhang (2008). WV for other models can be

computed using the same methodology.

For a finite (observed) process {yt ; t = 1, . . . , T }, the

MODWT is given by

ν̂2(τj ) =
1

Mj

T∑

t=Lj

W 2
j,t (6)

with Wj,t =
∑Lj −1

l=0 h̃j,lyt−l, t ∈ (Lj ; T ) and Mj = T − Lj + 165

1, is a consistent estimator for ν2(τj ); see Serroukh, Walden,

and Percival (2000) who also show that under suitable con-

ditions (see also Theorem 3 in the supplementary materials),
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√
Mj (ν̂2(τj ) − ν2(τj )) is asymptotically normal with mean 0

and variance170

SWj
(0) = 2

∫ 1/2

−1/2

S2
Wj

(f )df = 2

∫ 1/2

−1/2

|H j (f )|4S2
Fθ

(f )df. (7)

Equation (7) can be estimated by means of

ŜWj
(0) =

Mj∑

τ=−Mj


 1

Mj

T∑

t=Lj

Wj,tWj,t+|τ |




2

(8)

and the asymptotic properties of Equation (8) are given in Per-

cival and Walden (2000), p. 312.

A particular choice for the wavelet filter is the Haar wavelet

filter whose first DWT filter (j = 1) is175

{h1,0 = 1/
√

2, h1,1 = −1/
√

2} (9)

with length L1 = 2. If the process is stationary with back-

ward differences of order d > 1, then other wavelet filters such

as Daubechies wavelet filters can be used (Daubechies 1992).

When the WV is evaluated with Haar wavelet filters, it is actu-

ally equal to half the Allan variance (AV) (Allan 1966). In 1998,180

the IEEE Standard 1293 (1998) introduced the AV technique

as a noise identification method which can be used for deter-

mining the characteristics of underlying stochastic processes

affecting signals. AV and WV are often used in engineering

disciplines and physical sciences as a graphical approach for185

model building purposes. In the supplementary materials (see

Section B), we provide an example of the graphical use of WV.

For a more detailed description, see, for example, Percival and

Walden (2000).

When a graphical representation is suitable, with Haar WV,190

the parameters of stochastic processes are sometimes estimated

by means of linear regression on preidentified linear regions in

a log–log plot of scale τj versus WV ν2(τj ). For example, this

approach has been used for over 30 years as a standard routine

measure of frequency stability in lasers (Fukuda, Tachikawa, and195

Kinoshita 2003) or atomic clocks (Allan 1987). More recently,

the WV has also been used with optical sensors (Kebabian,

Herndon, and Freedman 2005), various types of gas monitoring

spectrometers (Werle, Mücke, and Slemr 1993; Bowling et al.

2003; Skrı́nskı et al. 2009), sonic anemometer-thermometers200

(Loescher et al. 2005), inertial sensors (El-Sheimy, Hou, and

Niu 2008; Guerrier 2009), and radio-astronomical instrumen-

tation (Schieder and Kramer 2001). The WV was also used

in Percival and Guttorp (1994) to analyze vertical ocean shear

measurements. In Fadel et al. (2004), it was employed to study205

the variability in heart-beat intervals. In Whitcher (2004), dis-

crete wavelet packet transforms are used to estimate one of the

parameters of a seasonal long memory process for the analysis

of atmospheric and economic time series. In Gebber, Orer, and

Barman (2006), WV is exploited to study nerve activities. WV210

has also been applied in Earth orientation metrology in Gambis

(2002) and with other types of (geo)physical data. However, the

linear regression on identified linear regions of the WV plots

provides reasonably estimated parameters only for a limited

number of processes and is often biased (Stebler et al. 2011). In215

our simulated example presented in Figure 4, the graphical esti-

mation of first-order GM process parameters mixed with other

processes like a WN is not suitable.

In the following section, we propose instead a criterion based

on a standardized distance between sample and model-based 220

WV that provides consistent estimators of the model’s parame-

ters for a wide range of models.

3. GMWM ESTIMATOR

We propose to estimate the model’s parameters using an esti-

mator which combines on the one hand the WV and on the other 225

hand the Generalized Least Squares (GLS) principle, using the

relationship given in Equation (5). More precisely, we propose

to find θ̂ such that the WV implied by the model, say φ(θ),

matches the empirical WV, say φ̂, and solves the following GLS

optimization problem 230

θ̂ = argmin
θ∈2

(φ̂ − φ(θ ))T Ä(φ̂ − φ(θ )) (10)

in which Ä, a positive-definite weighting matrix, is chosen in a

suitable manner (see next). Equation (10) defines the GMWM

estimator. φ(·) = [φj (·)]j=1,...,J is a binding function between θ

and ν2 = [ν2(τj )]j=1,...,J such that φ(θ ) = ν2, and φ̂ = ν̂2 and

φ(θ̂ ) are two estimators. 235

In Theorem 3 given in the supplementary materials (see Sec-

tion C), we use the results of Giraitis and Taqqu (1997) on limit

theorems for bivariate Appell polynomials to set the conditions

for φ̂ to be asymptotically multivariate normal. In particular,

SFθ
(f ) ≤ C|f |−α, f ∈ [−1/2, 1/2], α < 1/2. This result gen- 240

eralizes the results of Serroukh, Walden, and Percival (2000)

to the multivariate case, while Serroukh and Walden (2000a,

2000b) generalize the results of Serroukh, Walden, and Percival

(2000) to wavelet covariances.

In Theorem 1 next, we state the conditions on Ä̂, φ̂, and φ(θ) 245

(hence on Fθ ) under which θ̂ is a consistent estimator of θ . For

that, we follow the methodology used for GMM (see, e.g., Harris

and Mátyás 1999) and use the results of Komunjer (2012). Let

φ(θ ) = (φ1(θ),φ2(θ)) with dim(φ1(θ )) = p (and dim(φ2(θ )) =
J − p), and let also g(θ ) = E[φ̂ − φ(θ )] = (g1(θ), g2(θ )) (i.e., 250

the same split as with φ(θ)). Consider the following conditions:

(C.1) If Ä is estimated by Ä̂, then Ä̂
P→ Ä, that is, the weight-

ing matrix converges to a population weighting matrix.

(C.2) φ̂ is a consistent estimator of the WV ν2 =
[ν2(τj )]j=1,...,J . 255

(C.3) Let θ ∈ 2 with 2 being an open subset of R
p.

Then, there exists a bijective, twice continuous dif-

ferentiable function k : R
p → 2, such that γ =

k−1(θ) ∈ R
p, k(γ ) = [kj (γj )]j=1,...,p, |(∂/∂γ )k(γ )| =∏p

j=1(∂/∂γj )kj (γj ) > 0 (i.e., the determinant of the 260

Jacobian matrix is nonnegative) and if p = 2,

(∂/∂γj )kj (γj ) > 0,∀j (i.e., the Jacobian matrix is

positive-definite definite).

(C.4) g1(θ) is twice continuously differentiable.

(C.5) |(∂/∂θ)g1(θ)| is nonnegative. 265

(C.6) ||g1(θ)|| → ∞ whenever ||θ || → ∞.

(C.7) For every c ∈ R
p, the equation g1(θ) = c has count-

ably many (possibly zero) solutions in R
p.

(C.8) For p = 2, (∂/∂θ)g1(θ ) is positive definite, and

for p > 2, the set of points θ s for which 270

rank[(∂/∂θ)g1(θ)] < p − 1 is bounded.
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Theorem 1. For Ä satisfying (C.1), under (C.2), for g(θ ) or

−g(θ ) satisfying (C.4)–(C.8), and if there exists a function f

satisfying (C.3), then θ̂ defined in Equation (10) is consistent.

The proof is given in the supplementary materials (see275

Section D). Condition (C.3) defines a reparameterization from

θ ∈ 2 to γ ∈ R
p. Hence, in practice, for a given model Fθ

one has first to check that a function k = [kj ]j=1,...,p exists that

satisfies (C.3). For variance parameters 0 < σ 2, the kj ’s are the

logarithm, and for other restricted parameters with restrictions280

of the form a < θj < b, one can use the logit function on (θj −
a)/(b − a), that is, kj (γj ) = (b − a) exp(γj )((1 + exp(γj )) + a.

Condition (C.3) is convenient but actually too restrictive.

The following corollary actually extends the conditions of

Theorem 1.285

Corollary 1. If the bijective, twice continuous differentiable

function k does not satisfy the conditions on the Jacobian matrix

in (C.3), then θ̂ defined in (10) is consistent under conditions

(C.1), (C.2), and (C.4)–(C.8) in which (∂/∂θ)g1(θ ) is replaced

by (∂/∂θ)g1(θ)(∂/∂γ )k(γ ).290

The proof follows directly from the proof of Theorem 1.

In Theorem 2 below, we provide the consistency conditions

of the GMWM when Fθ is made of the sum of L independent

processes. Let their respective WV be φ
(l)
j (θ (l)) and partition θ

as θ = [θ (l)]l=1,...,L, we need the following set of conditions:295

(C.9) The functions φ
(l)
j (θ (l)) are linearly independent with

all linear combinations of the other φ
(l′)
j (θ (l′)), l 6= l′,

l, l′ = 1, . . . , L, and for all τj , that is, one cannot

find am, bm ∈ R,m = 1, . . . , L such that φ
(l)
j (θ (l)) =∑L

m = 1

m 6= l

amφ
(m)
j (θ (m)) + bm.300

(C.10) For all j, φ
(l)
j (θ (l)) = φ

(l)
j (θ

(l)
⋆ ) if and only if θ (l) = θ

(l)
⋆

for all l.

(C.11) Each element of ∂
∂θ (l,m) φ

(l)
j (θ (l)), where θ (l) =

[θ (l,m)], m = 1, . . . , dim(θ (l)) depends on τj for at

least L − 1 of the l = 1, . . . , L.305

Theorem 2. Let Fθ be the stochastic process associated to

{Yt , t ∈ Z} made of the sum of L independent processes with

respective WV φ
(l)
j (θ (l)), θ̂ be the GMWM estimator of θ , then

for Ä satisfying (C.1), φ̂ satisfying (C.2), and φ
(l)
j (θ (l)) satisfying

conditions (C.9)–(C.11), θ̂ is a consistent estimator of θ .310

The proof is given in the supplementary materials (see Sec-

tion E). Condition (C.10) can be verified for each subprocess

WV using the conditions of Theorem 1. We do that in the sup-

plementary materials (see Section F) for some of the processes

presented in Table 3, and for the composite processes treated315

in this article, we show the consistency using the conditions in

Theorem 2.

Obviously, the number of scales J should be J ≥ p but at the

same time, as discussed in Section 4, a too large J introduces

variability in the estimator. The study of a possible optimal value320

for J is out of the scope of the present article. However, we

may notice that in Guerrier et al. (2013), the authors investigate

through simulation studies different choices for the number of

scales J for mixtures of WN, QN, drift, RW, and AR(1) models,

and found out that from a given number of scales, the variability 325

of the GMWM does not really improve. This suggests that one

could choose a number J ⋆ such that J ⋆ = min(J, a · p), with a

a bounded (positive) integer.

Then, under the conditions of Theorem 1 (or possibly Corol-

lary 1) or Theorem 2 as well as Theorem 3, we have that 330√
T (θ̂ − θ ) is asymptotically normal, with asymptotic covari-

ance matrix Vθ̂ given by

Vθ̂ = BVφ̂BT , (11)

where

B = (DT ÄD)−1DT Ä (12)

and where D = ∂φ(θ)/∂θT , and Vφ̂ is the asymptotic covari-

ance matrix of φ̂ with elements given in (A-3). When Ä = I, 335

then Vθ̂ = (DT D)−T DT Vφ̂D(DT D)−1. The most efficient

estimator is obtained by choosing Ä = V−1

φ̂
, leading then to

Vθ̂ = (DT V−1

φ̂
D)−1. In practice, the matrix D is computed

at θ̂ .

The estimation of the WV covariance σ 2
kl of Vφ̂ given in 340

(A-3) is in general not straightforward. In the supplementary

materials (see Section G), we show that under the assumption

of a Gaussian process for Yt , a suitable estimator is given by

σ̂ 2
kl =

1

2

Mkl∑

τ=−Mkl


 1

Mkl

T∑

t=max(Lj ,Lk )

Wk,tWl,t+τ




2

+
1

2

Mkl∑

τ=−Mkl


 1

Mkl

T∑

t=max(Lj ,Lk)

Wk,t−τWl,t




2

, (13)

where Mkl = min(Ml,Mk) (see Equation (6)). Alternatively,

when the process is not Gaussian or when the sample size is 345

very large as is the case with the dataset analyzed in Section

4 so that the computation of Equation (13) is infeasible, one

can use a parametric bootstrap to estimate cov(ν̂2(τk), ν̂2(τl)). Q

samples of size T are simulated from Fθ̂ on which Q WV ν̂2
q (τk)

and ν̂2
q (τl), q = 1, . . . , Q, are computed and σ 2

kl is estimated by 350

their empirical covariance.

When J > p, that is, the number of WV is greater than the

dimension of the parameter vector θ , one can assess the good-

ness of fit of the model Fθ to the data by testing the hypotheses

H0 : E[φ̂ − φ(θ)] = 0, H1 : E[φ̂ − φ(θ)] 6= 0 using the χ2-test 355

statistic

T (φ̂ − φ(θ̂))T V−1

φ̂
(φ̂ − φ(θ̂ )) (14)

which is asymptotically χ2
J−p under H0 (see Hansen 1982). It

will be used to assess the fit of the postulated model in the

case study in Section 5. The investigation of the finite sample

properties of Equation (14) is left for future research. 360

As a possible extension of the GMWM when analytical ex-

pressions for φ(θ) in Equation (10) are too complicated to

compute, one can resort to simulations to compute φ(θ) and

hence place the GMWM in the framework of indirect infer-

ence (Gourieroux, Monfort, and Renault 1993; Smith 1993; 365

Gallant and Tauchen 1996). Basically, given a sample of ob-

servations {yt , t = 1, . . . , T } and a hypothetical model Fθ , φ̂j
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is defined as the WV ν̂2(τj ) estimated from the sample us-

ing Equation (6). Let also φ̂⋆
j (θ) = 1

R

∑R
r=1 φ̂⋆

j,r (θ ) with φ̂⋆
j,r (θ)

being the WV estimates ν̂2
⋆ (τj ) computed on simulated series370

{y⋆(r)
t (θ), t = 1, . . . , T }, r = 1, . . . , R. Then, φ̂ = [φ̂j ]j=1,...,J

and φ̂
⋆
(θ) = [φ̂⋆

j (θ)]j=1,...,J are used in Equation (10) to obtain

an estimate θ̂ of θ , whose properties are described in, for ex-

ample, Gourieroux, Monfort, and Renault (1993). In particular,

for R sufficiently large, Vθ̂ ≈ BVφ̂BT . In that case, B can be375

computed numerically.

A step-by-step algorithm for computing the GMWM estima-

tor (10) given a dataset of size T and a choice for Fθ , is given

by the following steps:

Step 1. Compute the empirical WV φ̂ for a suitable number380

of scales J ≥ dim(θ ) using Equation (6).

Step 2. Construct the matrix Ä. We recommend using for

Ä the inverse of a diagonal matrix whose elements

are ŜWj
(0) given in Equation (8) for the considered

scales. This choice ensures that condition (C.1) is385

satisfied.

Step 3. Compute the model-based WV φ(θ).

Step 4. Minimize the quadratic form defined in Equation (10)

in θ to obtain the GMWM estimator θ̂ .

Step 5. Compute confidence intervals for θ̂ by parametric390

bootstrap or using Equation (11) with θ replaced

by θ̂ .

Hence, the method is rather easy to implement in practice. As-

suming that we have a time series, say yt of length T and a

model Fθ made of the sum of processes satisfying Corollary 3,395

the estimation of θ starts with the computation (only once) of the

empirical WV using Equation (6) and their estimated variances

using Equation (8) (that are used in Ä). The model-based WV

is then analytically built using the sum of the model-based WV

(in Table 3) of the independent subprocesses in Fθ . Given all400

these ingredients, the quadratic form defined in Equation (10)

is then optimized. This optimization problem is very simple.

Confidence intervals for θ̂ are, however, generally computed by

parametric bootstrap. This task is quite easy to implement, but

of course implies simulating data and repeating several times405

Steps 1–4. This can take in practice about a minute with massive

datasets such as the one considered in the case study section.

If a simulation-based approach (indirect inference) is pre-

ferred, then Step 3 is not necessary and Step 4 is replaced by the

following steps:410

Step 4a. Choose a sufficiently large value for R (R = 100 is

usually a sensible choice)

Step 4b. Minimize the quadratic form defined in Equation

(10) in which φ(θ) is replaced by φ⋆(θ), each ele-

ment being computed using Equation (6) in which415

the observations are replaced by a simulated sam-

ple from Fθ (for a given current value of θ ) of size

R · T .

Step 5 can be then used for inference, for sufficiently large R

(see, e.g., Genton and Ronchetti 2003).420

4. SIMULATION STUDY

This section is dedicated to the finite sample performance

evaluation of the GMWM estimator compared to the MLE and

the LSE. For the GMWM estimator, one has to make a choice

about Ä in Equation (10). The choice is not straightforward 425

in practice, as it is the case for the moment-based estimator

GMM or Indirect-Inference-based estimators. Asymptotically,

it is well known that the optimal choice for Ä is any matrix pro-

portional to V−1

φ̂
. This does not mean that this choice is better

in finite samples, especially because the asymptotic covariance 430

matrix needs to be estimated. A simple choice is the identity ma-

trix, and in our case an intermediate solution is the inverse of the

diagonal matrix made of the variance estimates of the MODWT

using Equation (8). Indeed, in our simulations, we found that

choosing Ä=V−1

φ̂
may lead in some cases to numerical insta- 435

bility, probably due to the estimation of the covariances using

Equation (13). Anyway, asymptotically these three choices for

Ä lead to a consistent GMWM (provided the other conditions

are also satisfied). When optimizing Equation (10), we use a

quasi-Newton optimization method. For the MLE, we use the 440

EM algorithm together with the Kalman smoother (EM-KF)

as proposed by Shumway and Stoffer (1982) (see also Holmes

2010).

An important engineering application is sensor calibration

in which the behavior of the errors affecting signals has to be 445

well understood and modeled. In particular, gyroscopes and ac-

celerometers which are part of inertial navigation systems used

for space, aeronautical, ground, and underwater applications are

subject to random errors that largely affect the quality of the po-

sitioning and navigation solution over time. A widely accepted 450

model for the error behavior of an inertial sensor is given by the

following state-space model

xt+1 = e−β1txt + wt+1 + ut+1

yt+1 = xt+1 + vt+1,

(15)

where 1t is the time interval between two consecutive measure-

ments, ut = ω1t , wt ∼ N (0, q) with q = σ 2
GM(1 − e−2β1t ),

and vt ∼ N (0, σ 2
WN). The observed series is hence made up 455

of the sum of a first-order GM process with correlation time

β−1 and variance σ 2
GM, a drift with slope ω, and a WN with

variance σ 2
WN. Even with such a relatively simple model, the

estimation task is nontrivial.

For our simulation study, we consider simulated processes 460

{yt , t = 1, . . . T } from model (15) as well as an AR(1)

with autocorrelation parameter near the boundary value of

1. From model (15), we actually generate three types of

samples which correspond to three different (sub)models.

In Model 1, we set σ 2
WN = ω = 0, hence we have only a 465

first-order GM, in Model 2, we set ω = 0, hence we remove

the drift only from the complete model (15) (Model 3). We

generate 100 processes of size T = 6000 with 1t = 1 and

θ = (σ 2
WN, σ 2

GM, β, ω) = (4, 16, 0.05, 0.005) at the complete

model. For the submodels, the parameters are constrained 470

accordingly and they are not estimated.

For both the GMWM (simulation based or not) and the EM-

KF, the initial values for the optimizations were set to θ (start) =
(1.0, 1.0, 1.0, 0.0), which is relatively far away from the true

simulation values. We found that the choice for the starting 475
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Table 1. RMSE and relative RMSE (R-RMSE) of the GMWM and

EM-KF estimators for 100 simulated processes of size T = 6000

from model (15) (Model 3) with 1t = 1 and

θ = (σ 2
WN, σ 2

GM, β, ω) = (4, 16, 0.05, 0.005) and from submodels

with σ 2
WN = ω = 0 (Model 1) and with ω = 0 (Model 2)

GMWM EM-KF

RMSE R-RMSE RMSE R-RMSE

Model 1 σ 2
GM 2.00 0.13 1.26 0.08

β 8.14 · 10−3 0.16 4.09 · 10−3 0.08

Model 2 σ 2
GM 1.92 0.12 1.55 0.10

β 1.05 · 10−2 0.21 4.94 · 10−3 0.10

σ 2
WN 0.13 0.03 0.14 0.04

Model 3 σ 2
GM 0.96 0.06 74.57 4.66

β 4.63 · 10−3 0.09 0.04 0.85

σ 2
WN 0.11 0.03 0.16 0.04

ω 2.79 · 10−4 0.06 0.12 23.58

values is not a serious issue for the computation of the GMWM.

The root mean-squared errors (RMSE) as well as the relative

RMSE (relative to the true parameter value) are presented in

Table 1 for Models 1–3, and for the GMWM and the EM-

KF. We also tried a simulation-based version of the GMWM480

with R = 100 and found out that the RMSE are of the same

order as for the GMWM with analytical WV (results not pre-

sented here). The sample WV were computed for J = 12(<

log(6000)/ log(2) ≈ 12.55) scales for all models. The results

show that for the smaller models 1 and 2, the RMSE is smaller485

for the EM-KF than for the GMWM estimator, while the RMSE

of the EM-KF explodes for the complete model 3. This last fea-

ture is actually well known with models with a drift component.

For example, Hinrichsen and Holmes (2009) consider a multi-

variate state-space model composed of a drift with unknown rate490

and a random walk process to model the growth of an ecological

population with observations that are subject to measurement er-

ror. They actually use a two-step estimation procedure by which

the drift is first estimated by linear regression and then removed

from the state equation leading to a simpler model that is well495

estimated by means of the EM-KF (see also Stebler et al. 2011).

When the EM-KF behaves well (models 1 and 2), it has a

better performance in terms of RMSE than the GMWM esti-

mator. However, one can further improve the efficiency of the

latter by decreasing the number of scales J at which the WV are500

estimated. Indeed, in this example, J = 12 scales are used to

estimate two or three parameters, and if more scales are added

(supposing a larger T), this only introduces more variability in

the GMWM estimator. An optimal choice (in terms of GMWM

estimator’s efficiency) of the scales and their number is beyond505

the scope of the present article. The number of scales is obvi-

ously a function of the number of parameters p, but their choice

(among the possible ones) depends on the model that is consid-

ered. For example, with model (15) without the drift element

(i.e., Model 2), according to the WV graph in Figure 4, if the510

last three to four scales are ignored, then the WV are still able to

capture information about the other model components. Actu-

ally, removing the last four scales improves the efficiency of the

GMWM estimator in the simulation study for Model 2 (results

not shown here).515

An important feature of the GMWM estimator is that it can

be used for models for which the MLE (or other classical esti-

mators) is seriously biased. For example, maximum likelihood

estimation of ARMA processes, and/or least squares estimation

(based on the Yule–Walker equations) of AR processes, when 520

the roots lie near the unit circle, provide estimators that can be

seriously biased (see, e.g., Andrews 1993). With the GMWM

estimator with Haar coefficients for the WV, we do not have

this boundary problem, since, for example, with an AR(1) pro-

cess, with autocorrelation parameter ρ, when the latter tends to 525

the value of 1, we get a random walk which is a nonstation-

ary process. However, the wavelet coefficients Wj,t actually are

backward differences of order at least 1, so that the problem of

nonstationarity disappears. Note also that taking first differences

of a stationary AR(1) process is known to lead to the problem 530

of overdifferencing, since the resulting series is not invertible

(it becomes an ARMA(1,1)) which has more parameters than

the original one. Consequently, its parameters will be difficult

to estimate, and it will tend to degrade the quality of forecasts,

so differencing is not always a suitable method to overcome the 535

estimation problem.

As an illustration, we simulated 1000 AR(1) processes of size

T = 5000 with ρ ranging from 0.8 to 1 (and with residual vari-

ance σ 2 = 4) and estimated the LSE based on the Yule–Walker

equations together with the GMWM (J = 12). Figure 1 presents 540

the relative RMSE of the LSE and GMWM estimator for both

parameters. The GMWM estimator of ρ is less precise than

the LSE, except when ρ is close to 1. For σ 2, the RMSE of

both estimators are quite similar for ρ smaller than 0.9 but for

higher values the bias and variance of the LSE explodes showing 545

that there is a boundary effect that affects the LSE. The MLE

provides RMSE that are sensibly smaller than the LSE (not pre-

sented here) but for values of ρ larger than 0.95 the MLE is

difficult if not impossible to compute.

Figure 1. Relative RMSE based on 1000 simulations from AR(1)

processes with ρ ranging from 0.8 to 1 and with residual variance

σ 2 = 4, of the LSE relative to the GMWM estimator of ρ (“2”) and of

σ 2 (“o”).
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5. CASE STUDY: INERTIAL SENSORS550

An inertial navigation system exploits observation from usu-

ally an orthogonal triad of gyroscopes and accelerometers mea-

suring angular rates and specific forces, respectively. Once ini-

tialized, the navigation is a dead-reckoning process (i.e., the

solution at one epoch is computed from current observations as555

well as from the solution of the previous epoch) in which gy-

roscope signals (after suppressing Earth rotation) are integrated

once to yield orientation, and accelerometers (after accounting

for gravity and apparent forces) are integrated twice to get the

velocity, and finally the position in three-dimensional space.560

The advantage of inertial navigation is in the autonomy (i.e.,

no external infrastructure is needed) and the large sensor band-

width (unlike satellite positioning system), while its weakness

lies in the time-dependent error behavior (due to the integration

process). Indeed, the sensor signals are corrupted by random565

errors, making the resulting positioning and attitude (or ori-

entation) error increase rapidly with time. To bound the error

growth, inertial sensors are combined with other sensors (e.g.,

GPS, odometer, and altimeter) through optimal (e.g., Kalman)

filtering. Such combined navigation systems are not only the570

base for manned and unmanned vehicle (e.g., spacecrafts, air-

crafts, cars, and robots) trajectory and orientation determination,

but also for pedestrian and indoor localization devices. The gy-

roscope and accelerometer error behavior is modeled through

state augmentation in the system where the augmented states ac-575

count for sensor errors usually modeled as stochastic processes.

This requires that the parameters of the stochastic processes

in the state-space model are carefully set up prior to filtering.

The quality of this setup (or estimation) strongly influences the

quality of the predicted trajectory. Traditionally, the Allan vari-580

ance with ad hoc graphical estimation (see, e.g., IEEE Standard

1293 1998), or the KF-Self-Tuning approach (see Niu et al.

2007; Waegli 2009; Stebler et al. 2012), or even the MLE on

state-space models (with simple models) (Stebler et al. 2011)

are used to both determine the error’s model structure and to585

estimate their parameters. The GMWM estimator offers an al-

ternative approach that is especially suitable when the stochastic

error process is rather complex.

In this section, we consider the angular rate signal issued from

a real Micro-Electro-Mechanical System (MEMS) gyroscope590

where the spectral structure of errors is often complex. Such

sensors have a great potential in navigation due to ergonomic

(smaller and lighter equipment) and economical considerations

(El-Sheimy and Niu 2007). Therefore, MEMS sensors are in-

creasingly used in a very wide range of applications such as 3D595

input devices, robotic, virtual reality, vehicle stability control

and so forth, and research focuses on modeling and compensat-

ing for their large and variable measurement errors. To validate

the use of the GMWM for modeling the MEMS’ errors, we first

analyze the signal produced in static conditions at a frequency600

of 100 Hz (833, 685 measurements). We provide GMWM es-

timates on a rather complex model that cannot be estimated

by an alternative standard method. To show the impact of the

importance of model structure and estimation precision of its

parameters in positioning, we then present an emulation study605

in which the trajectory of a helicopter performing airborne laser

scanning is used and for which a nearly perfect (i.e., reference)

trajectory can be computed. The emulated measurements along

the real trajectory are corrupted with an error signal observed in

static condition, and the three methods (AV, the KF-Self-Tuning 610

Approach, and GMWM) are used to model the error signal. The

predicted trajectories based on the corrupted measurements and

estimated error model, together with GPS measurements, are

then compared to determine the positioning error.

After removing the mean in the signal made of 833, 685 mea- 615

surements produced in static conditions at a frequency of 100

Hz, the time-varying part of the sensor errors is directly available

and is presented in the time domain in Figure 3 (upper panel),

together with the Haar WV of this process with 95% confidence

intervals (lower panel). The WV computed on the original signal 620

give an indication of the underlying stochastic processes that are

summed up to build up a composite process. A possible model

is a mixture of three different first-order GM processes xt+1 =
e−β1txt + wt , wt ∼ N (0, q), with q = σ 2

GM(1 − e−2β1t ) and

1t = 0.01 s, the sampling interval. In such a case, the param- 625

eters to be estimated are θ = {σ 2
1 , β1, σ

2
2 , β2, σ

2
3 , β3} and the

GMWM is identifiable since a first order-Markov random pro-

cess is a one-to-one reparameterization of an AR(1) process

whose sum allows identifiable GMWM (see Corollaries 2 and

3). The GMWM estimates of the parameter set θ and its corre- 630

sponding 95% confidence intervals using the WV covariances

estimated by means of a parametric bootstrap (400 samples)

are given in Table 2. The suitability of the estimated model for

the data at hand can be judged graphically by a matching of

the empirical WV and the parametric WV using the estimates 635

in Table 2, as it is done in Figure 3 (lower panel). It can be

seen that the estimated process matches the observed one very

well across WV scales, yielding an indication of a suitable fit.

Moreover, one can also compute the goodness of fit test statistic

in Equation (14) for competing models and test to what extent 640

the chosen one yields a suitable fit. For that, we also considered

a single GM process and the sum of two GM processes. The

test statistics and corresponding p-values are 384363.9 (on 17

df) and p-value < 10−5 for the single GM process, 84787.01

(on 15 df) and p-value < 10−5 for a sum of two GM processes, 645

and 16.81637 (on 13 df) and p-value = 0.208 for a sum of

three GM processes, respectively, clearly indicating that the last

model is suitable. The corresponding estimated WV are drawn

in Figure 3 (lower panel).

It should be noted that the sum of three first-order GM ran- 650

dom processes can be reparameterized as an ARMA(3,2) pro-

cess (see, e.g., Granger and Morris 1976; Terasvirta 1977), so

that one could, in principle, estimate the latter instead of the

Table 2. Estimated parameters with associated 95% confidence

intervals for the mixture of three first-order GM random processes

with the Gyroscope signal data

Estimates IC(·,0.95)

β1 2.1720 · 102 (2.1465 · 102 ; 2.1906 · 102)

σ1 7.4521 · 10−3 (7.4477 · 10−3 ; 7.4688 · 10−3)

β2 6.0693 · 10−1 (2.7890 · 10−1 ; 7.8655 · 10−1)

σ2 2.9691 · 10−4 (2.9494 · 10−4 ; 2.9870 · 10−4)

β3 3.5563 · 10−3 (1.5333 · 10−3 ; 3.9086 · 10−3)

σ3 5.5127 · 10−4 (5.4038 · 10−4 ; 5.6223 · 10−4)
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former. However, one should then be able to invert the esti-

mated ARMA since very often, and in particular in the example655

at hand, a sum of first-order GM random processes is the one that

we believe explains the real underlying process, which for gy-

roscopes reflect the short- and long-term correlated noise due to

quantization and mechanical thermal noise phenomena present

in MEMS sensors (see Kittel 1958; Drexler 1992). To recover660

the sum of GM processes’ parameters from an estimated ARMA

process, and also their standard errors, several conditions need

to be satisfied. First, the roots of the processes must lie outside

the unit circle. Second, the Jacobian matrix of the transforma-

tion between the two parameterizations must be invertible to665

apply the delta method (Rao 1973; Benichou and Gail 1989).

With the inertial sensor data, the estimated processes have roots

that are near the unit circle, and moreover, the Jacobian matrix

of the transformation evaluated at the estimated parameters is

not invertible. In that case at least, estimating an ARMA process670

and converting the estimated model and inference to the sum of

first-order GM processes is infeasible.

To illustrate the impact of the importance of model structure

and estimation precision in device positioning, we also per-

formed an emulation study that was presented in Stebler et al.675

(2012). Using extremely reliable equipments, the trajectory of a

helicopter performing airborne laser scanning can be precisely

determined. From this trajectory, we computed the theoretical

perfect inertial measurements (i.e., accelerations and angular

rotations) that should be observed along this trajectory. These680

perfect measurements were then corrupted with a real static

error signal acquired such as the one analyzed above. Then,

these “pseudo” measurements were used together with the real

GPS measurements to compute a trajectory. At one point, we

4C/Art

Figure 2. Comparison between a reference trajectory (black dotted

line) issued from a mapping flight in which a GPS outage was intro-

duced, with estimated error model based on the AV (light-gray line),

the KF-Self-Tunning (dark gray line), and the GMWM (black dashed

line).

Figure 3. Gyroscope-observed error process (top panel) and graph-

ical comparison (log–log scale) between the Haar WV (line “o”) com-

puted from the observed signal and the analytical signal using the

estimated parameters of, respectively, the sum of three GM processes

(line “ ”), the sum of two GM processes (line ), and one GM process

(line ).

introduced relatively short artificial gaps in GPS observations 685

of 1 min duration (note that, in practice, such gaps are very

common) and compared the deviations of the trajectories ob-

tained with different inertial error models estimated from the

data. The two first estimated models are based on the AV and

on the KF-Self-Tuning approach. A detailed discussion on these 690

methods can be found for example in Stebler et al. (2012). The

GMWM was also used as an alternative estimator and model

building approach. The trajectories are depicted in Figure 2

(adapted from Stebler et al. 2012) along with the “true” trajec-

tory. It can be seen that the GMWM-based model (black-dashed 695

line) limits significantly the error growth during the GPS-signal

outage compared with the other two benchmark methods which

diverged from the “true” trajectory by several thousand of me-

ters! The poor performances of the standard methods explains

the recent explosion of the research conducted to determine the 700

stochastic modeling of MEMS-type inertial sensors.

6. CONCLUDING REMARKS

In this article, we present a new estimator for the parameters

of composite stochastic processes which is shown to be consis-

tent for the class made of the sum of independent white-noise, 705

drift, quantization noise, random walk, and k < ∞ AR(1). As

demonstrated in Stebler et al. (2012), the GMWM has many

advantages over existing alternative methods for applications in

engineering or natural sciences. The enlargement of the class of

models for which the GMWM is consistent involves verifying 710

the conditions provided in Theorem 2 and more generally in

Theorem 1 (with Corollary 1) and is left for future research.

Also, one could use in principle another consistent estimator for
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the Haar WV, such as the one proposed in Nason, von Sachs,

and Kroisandt (2000).715

As an anonymous referee pointed out, one could wonder

why to use wavelets instead of making inference directly on

the spectral density for which a similar estimation procedure

could be used. We believe that our approach is more suitable

for the following reasons. First, inference on the PSD would720

make the optimization of a least-squares-type measure (between

the empirical and model-based PSD) more difficult to solve

when the PSD has large variability over very narrow frequency

bands. As shown in Percival and Walden (2000), the wavelet

coefficients at scale τj are associated with frequencies in the725

interval [1/2j+1, 1/2j ] and relation (5) can be approximated by

ν2
Y (τj ) ≈ 2

∫ 1/2j

1/2j+1

SY (f )df. (16)

This means that the WV summarizes the information in the PSD

using just one value per octave frequency band. Thus, it is partic-

ularly useful when the PSD is relatively featureless within each

octave band. In the case of the widely used pure power law pro-730

cesses (SY (f ) ∝ |f |α), for example from Equation (16) one gets

ν2
Y (τj ) ∝ τ−α−1

j , meaning that no information is lost in using the

PSD summary given by the WV. Second, the computation of em-

pirical WV is more straightforward than nonparametric PSD; for

example, the periodogram is an inconsistent estimator of SY (f )735

and can be badly biased even for large samples sizes (because

of frequency leakage effects) so that more sophisticated PSD

estimators and/or smoothing techniques such as prewhitening

or tapering should be used. Third, the PSD of two important

processes in sensor error models, namely the drift and the ran-740

dom walk, cannot be distinguished (both have slope of −2 in

a log–log representation of the PSD). Finally, the MODWT on

which the WV computation is based requires a number of mul-

tiplications of order T log2 T , which is the same order as the

widely used fast Fourier transform algorithm, so that the use of745

WV does not increase the computational burden.

SUPPLEMENTARY MATERIALS

NOTES

A C++ program for computing the GMWM for the models

treated in this article is available upon request from the authors.750

[Received March 2012. Revised March 2013.]

REFERENCES

Allan, D. (1966), “Statistics of Atomic Frequency Standards,” in Proceedings
of the IEEE, 54, 221–230. [3]

——— (1987), “Time and Frequency (Time-Domain) Characterization, Esti-
mation, and Prediction of Precision Clocks and Oscillators,” IEEE Trans-755
actions on Ultrasonics, Ferroelectrics, and Frequency Control, 34, 647–
654. [3]

Andrews, D. W. (1993), “Exactly Median-Unbiased Estimation of First Order
Autoregressive/Unit Root Models,” Econometrica, 61, 139–165. [6]

Benichou, J., and Gail, M. H. (1989), “A Delta Method for Implicitly Defined760
Random Variables,” The American Statistician, 43, 41–44. [8]

Bowling, D. R., Sargent, S. D., Tanner, B. D., and Ehleringer, J. R. (2003),
“Tunable Diode Laser Absorption Spectroscopy for Stable Isotope Studies

of Ecosystem–Atmosphere CO2 Exchange,” Agricultural and Forest Mete-
orology, 118, 1–19. [3] 765

Daubechies, I. (1992), Ten Lectures on Wavelets, Philadelphia: SIAM. [2,3]
Dempster, A. P., Laird, N. M., and Rubing, D. B. (1977), “Maximum Likeli-

hood From Incomplete Data via the EM Algorithm,” Journal of the Royal
Statistical Society, Series B, 39, 1–38. [1]

Donoho, D. L. (1995), Nonlinear Solution of Linear Inverse Problems by 770
Wavelet-Vaguelette Decomposition, Applied and Computational Harmonic
Analysis, 2, 101–126. [2]

Donoho, D. L., and Johnstone, I. M. (1994), “Ideal Spatial Adaptation by
Wavelet Shrinkage,” Biometrika, 81, 425–455. [2]

Donoho, D. L., Johnstone, I. M., Kerkyacharian, G., and Picard, D. (1995), 775
“Wavelet Shrinkage: Asymptopia?,” Journal of the Royal Statistical Society,
Series B, 57, 301–369. [2]

——— (1996), “Density Estimation by Wavelet Thresholding,” The Annals of
Statistics, 24, 508–539. [2]

Doukhan, P., and Leon, J. (1990), “Déviation Quadratique D’Estimateur De 780
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