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Abstract. In this paper we present an study which shows the possibility
of using wavelets and wavelet packets to detect transients produced by
termites. Identification has been developed by means of analyzing the
impulse response of three sensors undergoing natural excitations. De-
noising exhibits good performance up to SNR=-30 dB, in the presence
of white Gaussian noise. The test can be extended to similar vibratory
or acoustic signals resulting from impulse responses.

1 Introduction

In acoustic emission (AE) signal processing a customary problem is to extract
some physical parameters of interest in situations which involve join variations of
time and frequency. This situation can be found in almost every nondestructive
AE tests for characterization of defects in materials, or detection of spurious
transients which reveal machinery faults [1]. The problem of termite detection
lies in this set of applications involving nonstationary signals [2].

When wood fibers are broken by termites they produce acoustic signals which
can be monitored using ad hoc resonant AE piezoelectric sensors which include
microphones and accelerometers, targeting subterranean infestations by means
of spectral and temporal analysis. The drawbacks are the relative high cost and
their practical limitations due to subjectiveness [2].

Second order methods (spectra) failure in low SNR conditions even with
ad hoc piezoelectric sensors. Bispectrum have proven to be a useful tool for
characterization of termites in relative noisy environments using low-cost sensors
[3],[4]. The computational cost could be pointed out as the main drawback of
the technique. This is the reason whereby diagonal bispectrum have to be used.

Numerous wavelet-theory-based techniques have evolved independently in
different signal processing applications, like wavelets series expansions, multires-
olution analysis, subband coding, etc. The wavelet transform is a well-suited
technique to detect and analyze events occurring to different scales [5]. The idea
of decomposing a signal into frequency bands conveys the possibility of extracting
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subband information which could characterize the physical phenomenon under
study [6].

In this paper we show an application of wavelets’ de-noising possibilities for
the characterization and detection of termite emissions in low SNR conditions.
Signals have been buried in Gaussian white noise. Working with three different
sensors we find that the estimated signals’ spectra match the spectra of the
acoustic emission whereby termites are identified.

Thepaper is structuredas follows: Section 2 summarizes theproblemof acoustic
detection of termites; Section 3 remembers the theoretical background of wavelets
and wavelet packets. Experiments and conclusions are drawn in Section 4.

2 Acoustic Detection of Termites

2.1 Characteristics of the AE Signals

Acoustic Emission(AE) is defined as the class of phenomena whereby transient
elastic waves are generated by the rapid (and spontaneous) release of energy from
a localized source or sources within a material, or the transient elastic wave(s)
so generated (ASTM, F2174-02, E750-04, F914-03 1).

Figure 1 shows one impulse in a burst produced by termites and its power
spectrum. Significant drumming responses are produced over the range 200 Hz-
10 kHz. The carrier (main component) frequency of the drumming signal is
around 2600 Hz. The spectrum is not flat as a function of frequency as one would
expect for a pulse-like event. This is due to the frequency response of the sensor
(its selective characteristics) and also to the frequency-dependent attenuation
coefficient of the wood and the air.

2.2 Devices, Ranges of Measurement and HOS Techniques

Acoustic measurement devices have been used primarily for detection of termites
(feeding and excavating) in wood, but there is also the need of detecting termites
in trees and soil surrounding building perimeters. Soil and wood have a much
longer coefficient of sound attenuation than air and the coefficient increases with
frequency. This attenuation reduces the detection range of acoustic emission to
2-5 cm in soil and 2-3 m in wood, as long as the sensor is in the same piece of
material [7]. The range of acoustic detection is much greater at frequencies <10
kHz, and low frequency accelerometers have been used to detect insect larvae
over 1-2 m in grain and 10-30 cm in soil [8].

It hasbeen shownthatICAsucce in separating termite emissions with small
energy levels in comparison to the background noise. This is explained away by

1 American Society for Testing and Materials. F2174-02: Standard Practice for Ver-
ifying Acoustic Emission Sensor Response. E750-04: Standard Practice for Char-
acterizing Acoustic Emission Instrumentation. F914-03: Standard Test Method for
Acoustic Emission for Insulated and Non-Insulated Aerial Personnel Devices With-
out Supplemental Load Handling Attachments

eded
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Fig. 1. Normalized power spectrum of a single pulse

statistical independence basis of ICA, regardless of the energy associated to each
frequency component in the spectra [4]. The same authors have proven that the
diagonal bispectrum can be used as a tool for characterization purposes [3].
With the aim of reducing computational complexity wavelets transforms have
been used in this paper to de-noise corrupted impulse trains.

3 Wavelet Packets (WP)

3.1 Wavelet Bases

The WP method is a generalization of wavelet decomposition that offers more
possibilities of reconstructing the signal from the decomposition tree. If L is the
number of levels in the tree, WP methods yields more than 22L−1

ways to encode
the signal. The wavelet decomposition tree is a part of the complete binary tree.

When performing a split we have to look at each node of the decomposition
tree and quantify the information to be gained as a result of a split. An entropy
based criterion is used herein to select the optimal decomposition of a given
signal. We use an adaptative filtering algorithm, based on the work by Coifman
and Wickerhauser [9].

Any finite energy signal s(t) can be decomposed over a wavelet orthogonal
basis [5] 2 of L2(�) according to:

s(t) =
+∞∑

j=−∞

+∞∑

k=−∞
〈s, ψj,k〉ψj,k (1)

2
{

ψj,k(t) = 1√
2j

ψ
(

t−2jk
2j

)}

(j,k)∈Z2
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Each partial sum can be interpreted as the details variations at the scale a = 2j :

dj(t) =
+∞∑

k=−∞
〈s, ψj,k〉ψj,k s(t) =

+∞∑

j=−∞
dj(t) (2)

The approximation of the signal s(t) can be progressively improved by obtain-
ing more layers or levels, with the aim of recovering the signal selectively. For
example, if s(t) varies smoothly we can obtain an acceptable approximation by
means of removing fine scale details, which contain information regarding higher
frequencies or rapid variations of the signal. This is done by truncating the sum
in 1 at the scale a = 2J :

sJ(t) =
+∞∑

j=J

dj(t) (3)

3.2 Multiresolution and Tree Decomposition

We consider the resolution as the time step 2−j , for a scalej, as the inverse of
the scale 2j . The approximation of a function s at a resolution 2−j is defined as
an orthogonal projection on a space Vj ⊂ L2(�). Vj is called the scaling space
and contains all possible approximations at the resolution 2−j .

Let us consider a scaling function φ. Dilating and translating this function
we obtain an orthonormal basis of Vj :

{
φj,k(t) =

1√
2j

φ

(
t − 2jk

2j

)}

(j,k)∈Z2

. (4)

The approximation of a signal s at a resolution 2−j is the orthogonal projection
over the scaling subspace Vj , and is obtained with an expansion in the scaling
orthogonal basis {φj,k}k∈Z:

PVj
s =

+∞∑

k=−∞
〈s, φj,k〉φj,k (5)

The inner products
aj [k] = 〈s, φj,k〉φj,k (6)

represent a discrete approximation of the signal at level j (scale 2j). This ap-
proximation is low-pass filtering of s sampled at intervals 2−j .

A fast wavelet transform decomposes successively each approximation PVj−1s
into a coarser approximation PVj

s (local averages) plus the wavelet coefficients
carried by PWj

s (local details). The smooth signal plus the details combine into
a multiresolution of the signal. Averages come from the scaling functions and
details come from the wavelets.

{φj,k}k∈Z and {ψj,k}k∈Z are orthonormal bases of Vj and Wj , respectively,
and the projections in these spaces are characterized by:

aj [k] = 〈s, φj,k〉 dj [k] = 〈s, ψj,k〉 (7)
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Fig. 2. Cascade of filters and subsampling

A space Vj−1 is decomposed in a lower resolution space Vj plus a detail space
Wj , dividing the orthogonal basis of Vj−1 into two new orthogonal bases:

{φj(t − 2jk)}k∈Z and {ψj(t − 2jk)}k∈Z (8)

Wj is the orthogonal complement of Vj in Vj−1, and Vj ⊂ Vj−1, thus:

Vj−1 = Vj ⊕ Wj . (9)

The orthogonal projection of a signal s on Vj−1 is decomposed as the sum of
orthogonal projections on Vj and Wj .

PVj−1 = PVj + PWj . (10)

The recursive splitting of these vector spaces is represented in the binary tree.
This fast wavelet transform is computed with a cascade of filters h and g, followed
by a factor 2 subsampling, according with the scheme of figure 2.

Functions that verify additivity-type property are suitable for efficient search-
ing of the tree structures and node splitting. The criteria based on the entropy
match these conditions, providing a degree of randomness in an information-
theory frame. In this work we used the entropy criteria based on the p-norm:

E(s) =
N∑

i

‖si‖p; (11)

with p≤1, and where s = [s1, s2, . . . , sN ] in the signal of length N . The results
are accompanied by entropy calculations based on Shannon’s criterion:

E(s) = −
N∑

i

s2
i log(s2

i ); (12)

with the convention 0 × log(0) = 0.

4 Experiments and Conclusions

Two accelerometers (KB12V, seismic accelerometer; KD42V, industrial ac-
celerometer, MMF) and a standard microphone have been used to collect data
(alarm signals from termites) in different places (basements and subterranean
wood structures and roots) using the sound card of a portable computer and a



Wavelets and Wavelet Packets Applied to Termite Detection 905

0.02 0.04 0.06 0.08 0.1 0.12 0.14

-2

0

2

buried burst

0.02 0.04 0.06 0.08 0.1 0.12 0.14

-1

0

1
de-noised signal at level 4

0.02 0.04 0.06 0.08 0.1 0.12 0.14

-1

0

1
de-noised signal at level 5

Fig. 3. Limit situation of the de-noising procedure using wavelets (SNR=-30 dB). From

top to bottom: a buried 4-impulse burst, estimated signal at level 4, estimated signal

at level 5

sampling frequency of 96000 (Hz), which fixes the time resolution. These sensors
have different sensibilities and impulse responses. This is the reason whereby we
normalize spectra.

The de-noising procedure was developed using a sym8, belonging to the
family Symlets (order 8), which are compactly supported wavelets with least
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Fig. 5. Limit situation of the de-noising procedure using WP (SNR=-30 dB). From

top to bottom: original signal, a buried 4-impulse burst, estimated signal at level 5

asymmetry and highest number of vanishing moments for a given support width.
We also choose a soft heuristic thresholding.

We used 15 registers (from reticulitermes grassei), each of them comprises a
4-impulse burst buried in white gaussian noise. De-noising performs successfully
up to an SNR=-30 dB. Figure 3 shows a de-noising result in one of the registers.
Figure 4 shows a comparison between the spectrum of the estimated signal at
level 4 and the spectrum of the signal to be de-noised, taking a register as an
example. Significant components in the spectrum of the recovered signal are
found to be proper of termite emissions.

The same 15 registers were processed using wavelet packets. Approximation
coefficients have been thresholded in order to obtain a more precise estimation of
the starting points for each impulse. Stein’s Unbiased Estimate of Risk (SURE)
has been assumed as a principle for selecting a threshold to be used for de-
noising. A more thorough discussion of choosing the optimal decomposition can
be found in [5]. Figure 5 shows one of the 15 de-noised signals using wavelets
packets. It can be see the result of reconstructing progressively each aj by the
filter banks.
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