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A B S T R A C T

Analysis and denoising of cosmic microwave background (CMB) maps are performed using

wavelet multiresolution techniques. The method is tested on 12:8 � 12:8 deg2 maps, with the

resolution resembling the experimental one expected for future high-resolution space

observations. Semi-analytic formulae of the variance of wavelet coefficients are given for the

Haar and Mexican Hat wavelet bases. Results are presented for the standard cold dark matter

(CDM) model. Denoising of simulated maps is carried out by removal of wavelet

coefficients dominated by instrumental noise. CMB maps with a signal-to-noise ratio,

S=N , 1, are denoised with an error improvement factor between 3 and 5. Moreover, we

have also tested how well the CMB temperature power spectrum is recovered after

denoising. We are able to reconstruct the C`s up to l , 1500 with errors always below 20 per

cent in cases with S=N > 1.

Key words: methods: data analysis ± cosmic microwave background.

1 I N T R O D U C T I O N

Future CMB space experiments will provide very detailed all-sky

maps of CMB temperature anisotropies; NASA MAP Mission

(Bennett et al. 1996) and the ESA Planck Mission (Mandolesi et

al. 1998; Puget et al. 1998). The high sensitivity of these

experiments will result in unique data to constrain fundamental

cosmological parameters. Moreover, future CMB maps will

enable a distinction to be made between competing theories of

structure formation in the early Universe and will provide very

fruitful data on astrophysical foregrounds.

The cosmological signal in CMB maps is hampered by

instrumental noise and by foreground emissions. Therefore, a

necessary step in analysing CMB maps is to separate the

foreground emissions from the CMB signal. Several linear and

non-linear methods have already been tested on simulated data

(Bouchet, Gispert & Puget 1996; Tegmark & Efstathiou 1996;

Hobson et al. 1998b, 1999). An alternative method can be one

based on wavelets. Wavelets are known to be very efficient in

dealing with problems of data compression and denoising. The

development of wavelet techniques applied to signal processing

has been very fast in the last 10 yr (see Jawerth & Sweldens 1994

for an overview). These techniques have already been applied to

a variety of astrophysical problems. For example, regarding

cosmology, Slezak, de Lapparent & Bijaoui (1993) have applied

wavelet analysis to the detection of structures in the CfA redshift

survey. They have also been introduced to study the Gaussian

character of CMB maps (Pando et al. 1998; Hobson, Jones &

Lasenby 1998a). A study using spherical Haar wavelets to denoise

CMB maps has just appeared (Tenorio et al. 1999).

We consider small patches of the sky where a flat 2D approach

is valid. We apply wavelet multiresolution techniques, known to

be computationally very fast, taking only O(N) operations to

reconstruct an image of N pixels. In the 2D flat wavelet analysis a

single scale and two translations are usually introduced, where the

basis is generated by 4 tensor products of wavelets and scaling

functions. Therefore, three detail images plus an approximation

image appear at each level of resolution. Different wavelet bases

are characterized by their location in space. The bases considered

in this work are Mexican Hat, Haar and Daubechies. The first one

is the most localized though, as unlike the other two, it does not

have a compact support. As a first approach to the application of

these techniques to CMB data we only consider maps with

cosmological signal plus instrumental Gaussian noise. CMB

experiments are contaminated by galactic (dust, free±free and

synchrotron emission) and extragalactic foregrounds (infrared and

radio galaxies, S±Z effects from clusters,¼) in addition to noise.

Obviously in view of this, the contents of this paper only cover a
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small fraction of the work to be done. Our aim is to shed light on

the wavelet characterization of the different components, the late

phase being to build up a wavelet-based framework to disentagle

all of them. In this line, a Bayesian method (maybe incorporating

entropy or other constraints) dealing with wavelet components at

different scales and integrating the different channels will be the

final goal. Knowing the efficiency of wavelets in removing noise

as shown by many works in other fields, the first step to take in the

application of wavelet techniques to the CMB is to study the

denoising of temperature maps.

The outline of the paper is as follows. A theoretical continuous

wavelet analyis of CMB data is presented in Section 2. General

semi-analytical formulae are given for the variance of the detail

wavelet coefficients as a function of the temperature power

spectrum C`. Section 3 introduces the discrete wavelet technique,

which is applied to denoising of simulated CMB maps in Section

4. Discussion and conclusions are presented in Section 5.

2 C O N T I N U O U S WAV E L E T A N A LY S I S

2.1 One-dimensional transform

The Fourier transform is a powerful tool in many areas but in

dealing with local behaviour shows a tremendous inefficiency. For

instance, a large number of complex exponentials must be

combined in order to produce a spike. The wavelet transform

solves this problem, introducing a good space-frequency localiza-

tion. It is conceptually simple and it constitutes a fast algorithm.

Let c (x) be a one-dimensional function satisfying the following

conditions: (a)
�1

21 dxc�x� � 0, (b)
�1

21 dxc2�x� � 1 and (c)

Cc ;
�1

21 dk jkj21c�k� , 1, where c (k) is the Fourier transform

of c (x). So, according to condition (a), the wavelet must have

oscillations. Condition (b) is a normalization and (c) represents an

admissibility condition in order to reconstruct a function f(x) with

the basis c [see equation (2) for such a synthesis].

We define the analysing wavelet as C�x;R; b� ;
R21=2c x 2 b� �/R; dependent on two parameters: dilation (R) and

translation (b). It operates as a mathematical microscope of

magnification R21 at the space point b. The wavelet coefficients

associated to a one-dimensional function f(x) are:

w�R; b� �
�

dx f �x�C�x;R; b�: �1�

It is clear from the above definition that such coefficients

represent the analysing wavelet at xo for a delta distribution

peaked at this point, i.e. for f �x� � d�x 2 xo�. For R � 1, w(R,b) is

the convolution of the function f with the analysing wavelet c .

The reconstruction of the function f can be achieved in the form

f �x� � �2pCc�21

� �
dR db R22w�R; b�C�x;R; b�: �2�

Examples of wavelet functions are: (i) Haar, c � 1�21� for

0 , x , 1=2 �1=2 , x , 1�, (ii) Mexican hat, c � 2/�9p�1=4

�1 2 x2�e2x2=2.

2.2 Two-dimensional transform

Regarding the two-dimensional case, we introduce a one-

dimensional scaling function f normalized in the form:�1
21 dxf�x� � 1. Examples of scaling functions are: (i) Haar, f �

1�0� for 0 , x , 1 �x , 0; x . 1�, (ii) Mexican Hat,

f � �2/�9p�1=4�e2x2=2. The analysing scaling function

F�x;R; b� ; R21=2f(x 2 b)/R, allows the definition of details of

an image, f(x), with respect to the tensor products

Gd�x;R; b� ; C�x1;R; b1�C�x2;R; b2�; �3�
Gh�x;R; b� ; F�x1;R; b1�C�x2;R; b2�; �4�
Gv�x;R; b� ; C�x1;R; b1�F�x2;R; b2�: �5�
The diagonal, horizontal and vertical wavelet coefficients are

defined by �a ; d; h; v�

wa�R; b� �
�

dx f �x�Ga�x;R; b�: �6�

Scaling functions act as low-pass filters whereas wavelet functions

single out one scale. Therefore, detail coefficients provide local

information about symmetrical (diagonal) and elongated/filamen-

tary structure (vertical and horizontal).

Let us now assume an homogeneous, isotropic random field

f(x), i.e. the correlation function C�r� ; kf �x�f �x� r�l; r ; jrj,
where kl denotes an average value over realizations of the field.

The Fourier transform of the field f(k) satisfies

kf �k�f �k 0�l � P�k�d2�k 2 k 0�, where k ; jkj and P(k) is the

power spectrum [the Fourier transform of C(r)]. In this case we

can calculate the correlation and variance of the wavelet

coefficients: Ca�r;R� ; kwa�R; b�wa�R; b� r�l;s2
a�R� ; Ca�0;R�

and we find the following equations

C�0� ; s2 � C21
Ga

�
dR R23s2

a�R�;

CGa ; �2p�2
�

dk k22j ~Gaj2�k�; �7�

where GÄa (k) is the Fourier transform of RGa .

On the other hand, we calculate the Fourier transform of the

wavelet coefficients wa (R, b) with respect to the b parameters:

kwa�R; k�wa 0 �R 0; k 0�l � waa 0 �R;R 0; k�d2�k 2 k 0�; �8�
waa 0 � �2p�2RR 0P�k� ~G*

a�Rk� ~Ga 0 �R 0k�; �9�
which allows us to get the detail wavelet variances as

s2
a�R� �

�
dk P�kR21�j ~Ga�k�j2: �10�

The diagonal variance corresponds to the tensor product of two

one-dimensional wavelets. If jc�k�j2 is a function that is strongly

peaked near k . 1 then s2
d�R� . P�k . R21�, taking into account

the normalization of the wavelet function, which allows an

estimation of the power spectrum in terms of the diagonal

component. This is what happens for the Mexican Hat:

jc�k�j2 / k4e2k2

, with a maximum at k � 221=2, whereas the

Haar wavelet is not localized in Fourier space:

jc�k�j2 / �k=4�22 sin4�k=4�. We can also deduce that Ch � Cv

and s2
h � s2

v taking into account the symmetry of the equations.

Moreover, the temperature power spectrum P(k) can be obtained

from the detail wavelet power spectrum waa (R, R; k) as follows

P�k� � 1

CGa

�
dR

R23

�
duwaa�R;R; kn�; n � �cos u; sin u�:

�11�
For the Haar and Mexican wavelets we can calculate:

Haar : j ~Gdj2 � 1

�2p�2
k1k2

4

� �22

sin
k1

4
sin

k2

4

� �4

; �12�
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j ~Ghj2 � 1

�2p�2
k1k2

4

� �22

sin
k2

4

� �4
1

4
sin2 k1; �13�

Mexhat : j ~Gdj2 � 16

9p
�k1k2�4 e2k2

;

j ~Ghj2 � 4

3p
k2

2 e2k2

; (14)

where k2 � k2
1 � k2

2 and GÄ v can be obtained from GÄ h, swapping k1

and k2. The variance of the detail wavelet coefficients for the Haar

and Mexican Hat systems, assuming the standard CDM model, is

presented in Fig. 1. As one can see, the acoustic peaks can be

clearly noticed, being more pronounced for the Mexican Hat basis.

This last result is a consequence of being a more localized wavelet

system. For a more detailed discussion see Sanz et al. (1998, in

preparation).

3 D I S C R E T E WAV E L E T A N A LY S I S

3.1 One-dimensional multiresolution analysis

An orthonormal basis of L2(R) can be constructed from a wavelet

c through dyadic dilations j and translations k

cj;k�x� � 2j=2c�2jx 2 k�: �15�
In addition, a scaling function f can be defined associated to the

mother wavelet c . Such a function gives rise to the so called

multiresolution analysis. A multiresolution analysis of L2(R) is

defined as a sequence of closed subspaces Vj of L2(R), j [ Z.

Properties can be seen in Ogden (1997).

Subspaces Vj are generated by dyadic dilations and translations

of the scaling function f (this function forms an orthonormal

basis of Vo, {fo;k�x� � f�x 2 k�}). Moreover, each Vj can be

expressed as the orthogonal sum Vj � Vj21 % Wj21, where Wj21

is created from wavelets c j21,k. Taking into account the properties

of the scaling function, together with this last expression, we can

construct approximations at increasing levels of resolution. These

approximations are linear combinations of dilations and transla-

tions of a scaling function f . The difference between two

consecutive approximations, i.e. the detail at the corresponding

resolution level, is given by a linear combination of dilations and

translations of a wavelet function c .

3.2 Two-dimensional multiresolution analysis

The analysis performed in this work assumes equal dilations in the

two dimensions involved. At a fixed level of resolution, subspaces

in a 2D multiresolution analysis are the tensor products of the

corresponding 1D ones Vj�1 � Vj�1 ^ Vj�1. The 2D basis is

therefore built by the product of two scaling functions (approx-

imation), the product of wavelet and scaling functions (horizontal

and vertical details) and the product of two wavelets (diagonal

details):

Vj�1 � �Vj % Wj� ^ �Vj % Wj� (16)

� �Vj ^ Vj� % ��Vj ^ Wj� % �Wj ^ Vj� % �Wj ^ Wj��:(17)

Horizontal, vertical and diagonal detail coefficients represent the

variations in these directions relative to a weighted average at a

lower resolution level (given by the approximation coefficients).

A discrete orthonormal basis, Ga (x; j, k), can be defined by

setting R � 22j and b � 22jk in equations (3)±(5), then

�Ga�x; j; k�Ga 0 �x; j 0; k 0�� � daa 0djj 0dkk 0 , where () denotes the scalar

product in L2(R2). If we define the discrete wavelet coefficients

associated to any detail by equation (6)

wa�j; k� �
�

dx f �x�Ga�x; j; k�; �18�

we can thus reconstruct the image with all the details

f �x� �
X
a; j; k

wa�j; k�Ga�x; j; k�: �19�

In particular, we get the following expression for the second-order

moment of the image

�f 2�x�� �
X
a; j; k

w2
a�j; k�; �20�

which expresses how the energy of the field is distributed locally

at any scale and detail.

For a finite image, Rmax � Rmax, in order to reconstruct it

we must add to equation (19) an approximation wa(k)Ga(x;k) with

Ga�x; k� ; F�x1;Rmax; k1� F(x2;Rmax,k2) and wa�k� ;�
dx f �x�Ga�x; k�, representing the field at the lower resolution. If

f(x) represents the temperature fluctuation field then the variance is

given by k�DT=T�2l � ��DT=T�2�=Np, Np being the number of

pixels.

The orthonormal bases that we are going to use are the standard

Daubechies N (Haar corresponds to N � 1), which have been

extensively used in the literature because of their special

properties: they are defined in a compact support, have increasing

regularity with N and vanishing moments up to order N 2 1

(Daubechies 1988). On the contrary, the Mexican Hat wavelet is

not defined in a compact support and it is not appropriate for this

multiresolution analysis.

For discrete wavelet analysis of the CMB maps we use the

q 1999 RAS, MNRAS 309, 672±680

Figure 1. Variance of diagonal (solid lines) and horizontal/vertical (dotted

lines) detail wavelet coefficients Cd, Ch versus scale R. A standard CDM

cosmological model is assumed. Thin lines outline the result obtained for

the Haar wavelet system and the thick lines correspond to the Mexican Hat

wavelet basis.
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Matlab Wavelet Toolbox (Misiti et al. 1996). This toolbox is an

extensive collection of programs for analysing, denoising and

compressing signals and 2D images. Discrete Wavelet decom-

position is performed as described above to obtain the approxima-

tion and detail coefficients of the 2D CMB maps at several levels.

4 D E N O I S I N G O F C M B M A P S

Future CMB space experiments will provide maps with resolution

scales of a few arcmin. In this work we analyse simulated maps of

12:8 � 12:8 deg2 with pixel size of 1.5 arcmin. Simulations are

made assuming the standard CDM, V � 1 and

Ho � 50 km s21 Mpc21. The maps are filtered with a 4.5-arcmin

full width at half-maximum (FWHM) Gaussian beam to reproduce

approximately the filtering scale of the High Frequency Channels

of the Planck Mission. Simulated maps have a rms signal of

DT=T � 3:7 � 1025. Gaussian noise is added to these maps at

different S/N levels between 0.7 and 3. A non-uniform noise is

also considered to account for the non-uniform sampling

introduced in satellite observations. As an extreme case, we

have assigned the signal-to-noise ratio at each pixel from a

truncated (at the 2s level) Gaussian distribution with a mean value

of 2 and a dispersion of 0.5. We use the set of Matlab Wavelet 2D

programs with the corresponding graphical interface to analyse

and denoise those maps. Suitable bases of wavelets are studied.

Daubechies' four wavelets are the ones used in this analysis. No

significant changes are observed when the analysis is carried out

using other higher order Daubechies bases. On the other hand, the

Haar system is not so efficient for denoising CMB maps since it

produces reconstruction errors much larger than when using high-

order Daubechies systems.

First of all, three wavelet decompositions are performed

obtaining wavelet coefficients corresponding to the CMB original

map, to the signal plus noise map and to the pure noise map.

Decompositions are carried out up to the fourth resolution level.

Denoising of the signal plus noise maps is based on subtraction of

certain sets of coefficients affected by noise. White noise is the

most common in CMB experiments. The dispersion of wavelet

coefficients of that type of noise is constant as can be seen from

equation (10). On the contrary, CMB detail wavelet dispersions go

to zero as R goes to zero. Therefore, first-level wavelet

coefficients are dominated by noise and then, for a given signal

plus noise map, it is possible to know the noise and consequently

the CMB wavelet coefficient dispersions at all levels. CMB maps

produced by typical experiments with a ratio between antenna and

pixel size of < 3 will have wavelet coefficients containing the

relevant information on the signal at level 3 and above. As shown

below, level 3 is the critical one for performing denoising as the

noise can still be at a level comparable to the signal. Fig. 2 shows

rms deviations and corresponding ratios for two simulations with

S=N � 0:7 and S=N � 2. Detail coefficient numbering corre-

sponds to the three directions, diagonal, vertical and horizontal at

the three consecutive levels, i.e. numbers 1, 2, 3 correspond to

diagonal, vertical and horizontal cofficients at the first resolution

level, 4, 5, 6 to the second-level coefficients in the same order and

7, 8, 9, 10, 11, 12 to levels 3 and 4, respectively. As it can be seen,

the first two levels are entirely dominated by noise as pointed out

before. Therefore, all these coefficients can be removed to

reconstruct a denoised map. This is equivalent to using a hard

thresholding, assuming a threshold above all these coefficients. On

the other side, level 4 is completely dominated by the CMB signal

and is left untouched. Ratios between rms deviations of the signal

and noise maps at the third resolution level are not always clearly

dominated by noise or signal. Ratios of < 1 are treated with a soft-

thresholding technique (in practice we consider ratios in the range

q 1999 RAS, MNRAS 309, 672±680

Figure 2. Rms deviation of wavelet detail coefficients obtained from CMB maps (signal maps, dashed-dotted lines), CMB plus noise maps (signal plus noise

maps, solid lines) and pure noise (dashed lines) are presented in the left-hand panels. The right-hand panels show the ratio of the rms deviation of the detail

coefficients from signal maps divided by the rms deviation of the detail coefficients from noise maps. Top panels correspond to simulated maps with

S=N � 0:7; bottom panels correspond to S=N � 2.

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/309/3/672/974364 by guest on 20 August 2022



676 J. L. Sanz et al.

0.3±1.5, although changes in this interval do not significantly

affect the results). Soft thresholding consists of removing all

coefficients with absolute values smaller than the threshold

defined in terms of the noise dispersion (sn). Coefficients with

absolute values above the defined threshold are rescaled by

subtracting the threshold to the positive ones and adding it to the

negative ones. To define these thresholds we use the so-called

SURE thresholding technique introduced by Donoho & Johnstone

(1995). This technique is based on finding an estimator of the

signal that will minimize the expected loss or risk defined as the

mean value of �1=Np�
PNp

i�1�Tdi
2 Ti�2, where Ti is the temperature

at pixel i in the original signal map and Tdi
is the estimator at pixel

i (temperature in the final denoised map). The minimization is

finally achieved in the wavelet domain by choosing a threshold

value that minimizes the risk at each wavelet level (see for

instance Ogden 1997).

Results of the errors in the map reconstruction are shown in

Table 1. The map error is defined as:

Pnpixels

i�1

�Ti 2 Tdi
�2

Pnpixels

i�1

T2
i

0BBB@
1CCCA

1=2

: �21�

Performing 20 simulations (proved to be enough as the results

reached stable values) at each S/N level we have also calculated

the 1s error. The error improvement achieved with the denoising

technique applied goes from factors of 3 to 5 for S=N � 3 to

S=N � 0:7.

It is also interesting to see how well the denoising method

performs at reconstructing the temperature power spectrum. Mean

values and 1s errors of the relative errors, jDC`=C`j, are shown

in Fig. 3 for three S/N ratios and the case of non-uniform noise

considered in this work. The C`s are reconstructed from the

denoised maps with jDC`=C`j < 10 per cent up to l , 1000 in

cases S=N > 1. This error can only be achieved up to an l , 700

in the S=N � 0:7 case. Higher order multipoles �` < 1500� are

reconstructed with jDC`=C`j < 20 per cent. Absolute relative

errors and reconstructed C`s for a given map are presented in Figs

4 and 5, respectively.

In order to check the performance of the SURE thresholding

technique, knowing the original maps we can find the optimal

threshold to get a reconstructed map with a minimum error (as

defined above). In S=N � 1 maps the optimal threshold is found to

be 0.6±0.7sn. Thresholds between 0.3±1sn do not make

substantial changes in the reconstructed map (see Table 2). The

hard case included in this table stands for a case where all the

coefficients below a signal-to-noise dispersion ratio of 1.5 are

removed, leaving the others untouched. For comparison, the error

q 1999 RAS, MNRAS 309, 672±680

Figure 3. Mean value (solid line) and 1s error (dashed-dotted lines) of the absolute value of the relative errors, DC`/C`. Top-left panel corresponds to

S=N � 1:0, top-right to S=N � 2, bottom-left to S=N � 2 with non-uniform noise and bottom-right to S=N � 3.

Table 1. Reconstruction errors vs S/N.

S/N Per cent map error ^1s

0.7 26:3 ^ 0:4
1.0 20:7 ^ 0:4
2.0 13:3 ^ 0:2
2.0 (n.u.) 14:3 ^ 0:3
3.0 10:3 ^ 0:2

Table 2. Reconstruction errors vs
threshold, S=N � 1.

Threshold Per cent map error

hard 23.5
1.5 sn 21.7
1.0 sn 20.7
0.7 sn 20.5
0.6 sn 20.6
0.5 sn 20.7
0.4 sn 21.0
0.3 sn 21.3

signal� noise 100.0
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obtained comparing the signal plus noise map with the original

signal map is also presented in Table 2. We can see that the error

reconstruction achieved with the SURE technique equals the one

obtained with the optimal threshold.

A comparison of wavelet techniques with a Wiener filter (see,

for instance, Press et al. 1994) has also been performed. In relation

to map reconstruction the error affecting the Wiener reconstructed

maps is comparable to the error for the wavelet reconstructed

q 1999 RAS, MNRAS 309, 672±680

Figure 4. Absolute value of the relative errors, DC`/C`, of the CMB power spectrum obtained from signal-plus-noise maps (solid lines), wavelet denoised

maps (short dashed lines) and Wiener denoised maps (dashed lines). Top-left panel corresponds to S=N � 1 (wavelet denoised maps removing all coefficients

at levels 1, 2, 3d and 3h is included as long dashed lines), top-right to S=N � 2, bottom-left to S=N � 2 with non-uniform noise and bottom-right to S=N � 3.

Figure 5. Power spectrum obtained from signal-plus-noise maps (dashed lines), signal maps (solid lines) and denoised maps (dashed-dotted lines). Top-left

S=N � 0:7, top-right S=N � 1, bottom-left S=N � 2 and bottom-right S=N � 3.
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q 1999 RAS, MNRAS 309, 672±680

Figure 6. 12:8 � 12:8 deg2 maps of the cosmological signal (top left), signal plus noise with S=N � 1 (top right), denoised map using a soft thresholding as

explained in the text (middle left) and residual map obtained from the CMB signal map minus the denoised one (middle right). For comparison a denoised

map using Wiener filter is presented in the bottom-left panel together with the residuals in the bottom-right panel.
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maps, in all cases. However, in order to apply the Wiener filter,

previous knowledge of the signal power spectrum is required.

Reconstructed and residual maps using both, wavelets and the

Wiener filter, are shown in Fig. 6. Regarding the C`s, the

performance of the Wiener filter is clearly worse than wavelets for

` � 1000±1500, as can be seen in Fig. 4. For example, for

S=N � 1, the C`s are recovered using a Wiener filter with an error

between 20 and 70 per cent for `s between 1000 and 1500, this

error being smaller by a factor of 2±4 for the wavelet

reconstruction. The error is also clearly larger for Wiener

reconstruction than for wavelet reconstruction, up to ` , 2000

in cases with S=N . 1.

We have checked for non-Gaussian features possibly introduced

by the non-linearity of the soft thresholding used in the wavelet

methods applied for denoising. Distributions of skewness and

kurtosis have been obtained for the original signal maps as well as

for the denoised ones. No significant differences can be

appreciated between both distributions. However, this method

could not be good enough to detect non-Gaussian features. As

recently claimed by Hobson et al. (1998a), the analysis of the

distribution of wavelet coefficients is one of the most efficient

methods to detect them. We have performed a similar analysis

using the Daubechies 4 multiresolution wavelet coefficients.

These coefficients are Gaussian-distributed in the case of a

temperature Gaussian random field. The application of soft

thresholding to the wavelet coefficients at a certain level clearly

changes the Gaussian distribution by removing all coefficients of

which the absolute values are below the imposed threshold and

shifting the remaining ones by that threshold. As an example, in

the previous case S=N � 1, the kurtosis of the diagonal level 3

distribution changes from 3:3 ^ 0:1 to 34 ^ 10! (notice that the

change strongly depends on the threshold imposed). This result is

not surprising as any non-linear method used for denoising or

foreground separation will introduce non-Gaussinity at different

levels in the reconstructed map. Fortunately there are two ways of

overcoming the question of determining the Gaussianity of the

CMB signal. One way would be to check the Gaussian character

of the data before applying denoising to maps affected by

Gaussian noise. We have checked this by looking at the

multiresolution wavelet coefficient distributions in the case of

S=N � 1. The addition of white noise did not change the mean

value and error bar of the kurtosis. The second way would be to

apply a linear denoising method. We have used a simple one

consisting of removing all detail coefficients at levels with signal-

to-noise dispersion ratio , 1:5 (notice that 1.5 corresponds to the

upper value of the threshold interval where soft thresholding was

applied). This method is equivalent to applying hard thresholding

with a threshold above all the coefficients. The errors of the

reconstructed map and its corresponding Cls increase slightly

compared with the SURE thresholding method (see Table 2 and

top-left panel of Fig. 4). The same hard thresholding linear

method will give even better results using 2D wavelets with two

scales of dilation (Sanz et al., in preparation) instead of the one-

scale multiresolution techniques, because the former works with

many more resolution levels being therefore more selective in

removing the coefficients.

5 D I S C U S S I O N A N D C O N C L U S I O N S

A wavelet multiresolution technique has been presented and used

to analyse and denoise CMB maps. This method has been proved

to be one of the best for reconstructing observed CMB maps as

well as power spectra by removing a significant percentage of the

noise. The analysis has been carried out assuming a uniform

Gaussian noise as would be expected in a small sky patch, e.g.

12:8 � 12:8 deg2, observed by satellite scans. Analysis of whole

sky CMB maps using wavelets will be performed in a future work.

As these data are affected by non-uniform noise, the use of

wavelet techniques to localize map features is highly suitable.

A semi-analytical calculation of the variance of the wavelet

coefficients has been presented. The behaviour of the variance of

the detail coefficients is given for a standard CDM model in the

case of Haar and Mexican Hat bases. The acoustic peaks can be

noticed in the wavelet coefficient variance represented in Fig. 1.

Moreover, these peaks are better defined for the Mexican Hat

wavelet system because these wavelets are more localized than the

Haar ones.

Denoising of CMB maps has been carried out by using a signal-

independent prescription, the SURE thresholding method. The

results are model-independent depending only on the observed

data. However, a good knowledge of the noise affecting the

observed CMB maps is required. For a typical case of S=N , 1

the high-order detail coefficients are dominated by the signal,

whereas the lowest ones are noise-dominated. This behaviour is

due to the expected dependence of the temperature power

spectrum, C` / l22. The applied wavelet method is able to

reconstruct maps with an error improvement factor between 3 and

5, and the CMB power spectrum of the denoised maps carries

relative errors below 20 per cent up to l , 1500 for S=N > 1. We

have also checked that SURE thresholding methods are providing

thresholds in agreement with the optimal ones.

For comparison a Wiener filter has also been applied to the

simulations considered in this paper. This method reconstructs

CMB maps after denoising with errors comparable to the wavelet

method we propose, as shown in Fig. 6. However, the C`s of the

denoised maps obtained applying Wiener filter have relative errors

larger than a factor of 2 than the relative errors of the C`s obtained

from the wavelet reconstructed maps in the range ` � 1000±1700.

In addition we have applied a Maximum Entropy Method (MEM)

to the maps used in this work, with the definition of entropy given

by Hobson & Lasenby (1998). This method provides reconstruc-

tion errors at the same level as multiresolution wavelet methods.

However, the latter are easier (not requiring iteractive processes)

and faster [0(N)] to apply than MEM.

A possible handicap of denoising methods based on soft

thresholding of wavelet coefficients as well as other non-linear

methods are the non-Gaussian features introduced in the

reconstructed map. However, one can still detect the possible

intrinsic non-Gaussianity of the CMB signal by studying it in the

signal plus noise map using the wavelet coefficient distribution.

Moreover, a valid reconstruction can be obtained by applying a

`hard' thresholding linear method as discussed in the text.

In a different work, we are studying the case of using a wavelet

method based on two scales of dilation (Sanz et al., in

preparation). Although this method has the advantage of keeping

information on two different scales, for the purpose of denoising,

both methods give comparable results. The linear hard threshold-

ing method is expected to perform better for 2D wavelets than for

multiresolution ones as the former works with many more

resolution levels.

Summarizing, the main advantages of the wavelet method are:

providing local information of the contribution from different

scales, being computationally very fast 0(N), the absence of tuning
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parameters, and most importantly, the good performance on

denoising CMB maps. The best reconstruction is achieved using

soft thresholding techniques. Concerning the Gaussianity of the

signal one can apply the suggested linear method for denoising.

Moreover, the soft thresholding technique will provide a good

reference map and power spectrum for the signal, that can be used

to check the quality of other reconstructions based on linear

methods. Wavelets are also expected to be a very valuable tool for

analysing future CMB maps such as those that will be provided by

future missions like MAP and Planck.

AC K N OW L E D G M E N T S

We acknowledge helpful discussions with B. Dugnol, C.

FernaÂndez, J. M. GutõÂerrez, A. W. Jones and L. Tenorio. This

work has been supported by the Spanish DGES Project no. PB95-

1132-C02-02, Spanish CICYT AccioÂn Especial no. ESP98-1545-

E. JLS, LC, EMG and RBB acknowledge finantial support from

the USA-Spain Science and Technology Program, ref. 98138.

RBB has been supported by a Spanish MEC fellowship. LT

acknowledges partial financial support from the Italian ASI and

CNR.

R E F E R E N C E S

Bennett C. et al., 1996, MAP homepage http://map.gsfc.nasa.gov

Bouchet F. R., Gispert R., Puget J. L., 1996, in Dwek E., ed., AIP Conf.

348, Unvealing the Cosmic Infrared Background. AIP Press, New

York, p. 255

Daubechies I., 1988, Comm. Pure Appl. Math., 41, 909

Donoho D. L., Johnstone I. M., 1995, J. Am. Statistical Assoc., 90, 1200

Hobson M. P., Lasenby A. N., 1998, MNRAS, 298, 905

Hobson M. P., Jones A. W., Lasenby A. N., 1998a, astro-ph/9810200

Hobson M.P., Jones A.W., Lasenby A.N., Bouchet F.R., 1998b, MNRAS,

1300, 1

Hobson M. P., Barreiro R. B., Toffolatti L., Lasenby A. N., Sanz J. L.,

Jones A. W., Bouchet F. R., 1999, MNRAS, 306, 232

Jawerth B., Sweldens W., 1994, SIAM review, 36, 377

Mandolesi N. et al., 1998, Proposal submitted to ESA for the Planck Low

Frequency Instrument

Misiti M., Misiti Y., Oppenheim G., Poggi J.M., 1996, Matlab Wavelet

Toolbox User's Guide. The MathWorks Inc., Natick, MA

Ogden, R. T., 1997, Essential Wavelets for Statistical Applications and

Data Analysis, Birkhauser, Boston

Pando J., Valls-Gabaud D., Fang L., 1998, PRL, 81, 4568

Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P., 1994,

Numerical Recipes in Fortran, 2539Cambridge University Press,

Cambridge

Puget J. L. et al., 1998, Proposal submitted to ESA for the Planck High

Frequency Instrument

Sanz J. L., ArguÈeso F., CayoÂn L., MartõÂnez-GonzaÂlez E., Barreiro R. B.,

Toffolatti L., 1998, in Banday A. J., Sheth R. K., Da Costa L. N., eds,

Proc. MPA/ESO Cosmology Conf., Evolution of Large-Scale: From

Recombination to Garching. Enschede, Print Partners Ipskamp, p. 53

Slezak E., de Lapparent V., Bijaoui A., 1993, ApJ, 409, 517

Tegmark M., Efstathiou G., 1996, MNRAS, 281, 129

Tenorio L., Jaffe A. H., Hanany S., Lineweaver C. H., 1999, astro-ph/

9903206

This paper has been typeset from a TEX/LATEX file prepared by the author.

q 1999 RAS, MNRAS 309, 672±680

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/309/3/672/974364 by guest on 20 August 2022


