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Wavelets-based non-linear model for real-time daily flow

forecasting in Krishna River

R. Maheswaran and Rakesh Khosa
ABSTRACT
In this study, a multi-scale non-linear model based on coupling a discrete wavelet transform (DWT)

and the second-order Volterra model, i.e. the wavelet Volterra coupled (WVC) model, is applied for

daily inflow forecasting at Krishna Agraharam, Krishna River, India. The relative performance of the

WVC model was compared with regular artificial neural networks (ANN), wavelet-artificial neural

networks (WA-ANN) models and other baseline models such as auto-regressive moving average with

exogenous variables (ARMAX) for lead times of 1–5 days. The models were applied for the

forecasting of daily streamflow at Krishna Agraharam Station at Krishna River. The WVC performed

very well, especially when compared with the WA-ANN model for lead times of 4 and 5 days. The

results indicate that the WVC model is a promising alternative to the other traditional models for

short-term flow forecasting.
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INTRODUCTION
Reservoirs play a vital role in water resources management

by supporting demands for irrigation purposes, hydro-

power, mitigating potentially deleterious environmental

impacts of interventions in the natural water cycle, flood

mitigation and as a reasonable insurance against droughts.

Reliable forecasts of inflows into these reservoirs are an

essential prerequisite for an effective operating policy

development. Data-driven hydrological methods for fore-

casting are becoming increasingly popular (Adamowski &

Sun ) as an alternative to the traditional statistical

models that include multiple linear regression (MLR) and

autoregressive moving average (ARMA) type models.

More recently, artificial neural networks (ANNs) have

also been used for flow forecasting applications (Tokar &

Johnson ; Abrahart & See ; Rajurkar et al. ;

Boucher et al. ; Fernando & Shamseldin ; Prama-

nik & Panda ). In general, however, all these

approaches are restricted in their scope as these are suit-

able only for application to a stationary time series and

do not perform well when the underlying natural
generating systems are seen to be non-stationary (Anctil

& Tape ; Cannas et al. ). In such cases, and

when the underlying generating system shows a non-

linear behaviour, these traditional approaches often do

not deliver the required performance standards. As a com-

peting alternative, recent studies demonstrate that wavelet-

based approaches may provide a better and a more credible

platform for modelling such non-stationary and non-linear

systems; the resulting models are therefore expected to

demonstrate a much improved performance.

Recent research initiatives in the area of wavelet-based

modelling include studies by: (1) Kisi (), wherein use

of a wavelet-artificial neural network (WA-ANN) model

has been explored for flow forecasting in semi-arid water-

sheds with intermittent flow; (2) Partal (), who

developed a coupled WA-ANNmodel for monthly flow fore-

casting in Turkey; (3) Kisi (), for application of a WA-

ANN model for daily flow forecasting of intermittent

rivers; and (4) Wu et al. (), who developed a WA-

ANN model for 1–3 day forecasting.
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In general, these and similar studies have found that

WA-ANN-based models outperformed flow forecasting

models that are based on, and restricted to, just the ANN-

based approach. Similar findings were also reported by

Nourani et al. (), who proposed WA-ANN models for

rainfall–runoff modelling and forecasting. Adamowski &

Sun () used the coupled WA-ANN models for forecast-

ing the daily streamflows and, based on their study, have

shown that coupling these traditional models with wavelets

produced better results even up to a lead time of 5 days.

More recently, Nourani et al. () developed a wavelet-

based hybrid artificial intelligence (AI) model for rainfall-

runoff modelling.

As a downside however, these models have also been

criticized on various aspects, in particular the risk posed

by overtraining of the ANNmodel and the difficulties of par-

ameter estimation using heuristic methods. For example,

Kisi () comments that these models do not overcome

the disadvantages that are normally attributed to ANN-

based modelling approaches and similar sentiments were

also expressed by Zhang & Benveniste () who report

that, with the implementation of ANNs, the model still suf-

fers from a lack of efficient constructive methods, slow

convergence and difficulties encountered in determination

of the network structure and its parameters. Importantly,

restriction on their use arises from the fact that these

models are suitable only for systems whose underlying

response characteristics do not change with time. As an

alternative method, Maheswaran & Khosa (c) proposed

a multi-scale non-linear framework using the wavelet Vol-

terra coupled (WVC) approach for monthly streamflow

forecasting. The results from the study showed that the

WVC model performed better in terms of forecasting accu-

racy when compared with the baseline models. The model

is also more efficient in terms of parsimony and compu-

tational time.

In contrast with a monthly time series, modelling a

hydrological time series at daily time-steps presents higher-

level challenges. For one, the degree of smoothing that

results in a time series of hydrologic responses from aggrega-

tion (or, alternatively, integration) over a timescale of a

month is much higher as compared with the degree of

smoothing that accompanies integration over a short time-

step of a day. At these latter timescales, many of the
://iwaponline.com/jh/article-pdf/15/3/1022/387029/1022.pdf
individual components of the hydrologic cycle such as inter-

ception storage, depression storage and channel flow phase

as distinct from the overland flow phase are relatively more

significant in influencing the streamflow regime than at

timescales of aggregation of a month or higher. Due to the

relatively weak influence on the flow regime of these and

other individual components at monthly timescales, their

combined influence is therefore lumped together in the

form of one or more storage elements.

Further, a flow observation is made at a catchment’s

point of concentration and is clearly an aggregation of domi-

nant elemental contributions from different parts of the

catchment at different times. A longer temporal scale of inte-

gration also implies relatively larger spatial scale integration

when compared with a shorter temporal scale integration of

streamflow. A further consequence of the longer timescale

lumping, when working with monthly streamflows, is the

damping out of the manifestly non-linear nature that charac-

terizes various hydrologic processes of the natural water

cycle. It is evident that non-linear features would dominate

runoff generation when the process is observed or modelled

at the shorter timescale of a day. Similar behaviour was

explored by Wang et al. (), where the authors found

that in general the time series at daily timescales have

strong non-linearity as compared with the monthly time

series of the same. In addition, it is also expected that the

system property of inertia would require relatively longer

memory models at daily time-steps; at a monthly scale,

only a fewer lagged variables are sufficient in order to cap-

ture this feature.

Following Todini (), modelling at relatively shorter

time-steps necessitates use of the highly complex distributed

differential-type models as compared with the much simpler,

lumped integrated-type models that are deemed to be appro-

priate at longer timescales such as a month. It is therefore of

interest to further validate the proposed WVC model for

daily runoff forecasting at higher lead times.

The study presented seeks to address the issues: (1) test-

ing the coupled discrete wavelet Volterra model with a

Kalman-filter-based updating procedure for daily flows; (2)

forecasting at multiple lead times; and (3) comparison of

the results with other alternate models such as wavelet

neural networks, neural networks and wavelet linear

regression (WLR) models. The study also aims to investigate
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the relative advantages of direct versus iterative multi-step

forecasting in terms of forecasting accuracy.
STUDY AREA DESCRIPTION

This study seeks to develop a real-time daily flow forecasting

framework for the Krishna River that rises in the Western

Ghats region of the Indian State of Maharashtra at an

elevation of about 1,337 m. It courses in a generally south-

easterly direction for about 1,400 km before emptying into

the Bay of Bengal. Along its course, the river picks up con-

tributions from major tributaries such as Bhima and

Tungabadhra, and enters the State of Andhra Pradesh at

782 km. Along its course, it supports various projects such

as the Alamatti, Narayana, Nagarjuna Sagar, Srisailam,

Jurala and Prakasam dams. The schematic of the catchment

area and the gauging stations are shown in Figure 1 and the

geographic locations of some of the various sites of interest

are listed in Table 1. In this case study, flow forecasting

models are developed for inflows into the Jurala reservoir

and include contributions from Bhima Basin and the

upper Krishna Basin. The Jurala project is one of the

recent multipurpose projects developed across Krishna at

a site downstream of its confluence with Bhima. The pro-

posed forecast methodology utilizes feeds from upstream

sites, namely Yadgir (on the Bhima River) and Huvinhedigi

(on the Krishna River). The model is calibrated using the

observed data at Krishna Agraharam.
Figure 1 | Map showing the catchment area and the discharges sites.
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DATA USED

The data used include mean daily flows for the observation

sites at Yadgir, Huvinhedigi and Krishna Agraharam for a

period of 7 years from 1981 to 1987, shown in Figure 2.

The model calibration was performed using data corre-

sponding to the first 5 years while validation was based on

data for the last 2 years. The study was based on this limited

dataset as later observations on river flows at these sites

were not available. The daily basin-averaged rainfall data

were also utilized, and are plotted in Figure 2.
WAVELET ANALYSIS

Wavelet analysis has become an important milestone in

spectral analysis due to its multi-resolution and localization

capability both in time and frequency domain and has been

extensively applied in the area of time series analysis and

prediction. For a comprehensive discussion on the theory

of wavelets and its applications, refer to Burrus et al. ().

Wavelet decompositions at various scales (frequencies)

often reveal the underlying low- and high-frequency com-

ponents of the observed series and, importantly, the

wavelet-based approach also enables localization of these

frequencies in time. For practical applications (as in the

study of noise reduction models for communication systems

and image and signal compression), discrete wavelet trans-

form (DWT) is usually preferred.



Table 1 | Geographic locations of the discharge observation sites

Geographical location

Station No. Name River Latitude Longitude

1 Huvinhedigi Krishna 16 29 07 76 55 07

2 Yadgir Bhima 16 44 03 77 07 18

3 P.D. Jurala Project Krishna 16 15 00 77 51 00

4 K. Agraharam Krishna 16 15 00 77 51 00

Figure 2 | Runoff hydrograph observed at: (a) Yadgir; (b) Huvinhedigi; and (c) Krishna Agraharam.
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The DWT is an orthogonal function which can be

applied to a finite group of data. Functionally, it is very

much like the discrete Fourier transform, in that: (1) both

transforms are convolutions; (2) the transforming functions

are orthogonal; (3) a signal passed twice through the trans-

formation is unchanged; and (4) the input signal is

assumed to be a set of discrete-time samples. A point of

difference, however, is in the nature of the basis function;

in the case of a Fourier transform this is a sinusoid, whereas

the wavelet basis is a set of functions which are defined by a

localized wavelet function.

A typical discrete wavelet function can be represented:

ψ j,k(t) ¼ 2 j=2ψ(2jt� k) (1)

where ψ(t) is the mother wavelet and j and k are the trans-

lation and dilation indices.

The main advantage of DWT is that it retains only a

minimal set of wavelet coefficients that are required for

full recovery of the signal by employing a process known

as decimation. Decimation is carried out in such a way

that only half of the coefficients of the detailed component

are left at the current level and half of the coefficients of

the smooth version are recursively processed using high-

pass and low-pass filters for coarser resolution levels.

However, in the case of forecasting studies, the process

of decimation results in reduction in information (as the

number of wavelet coefficients is halved with each move

to a coarser level). As a consequence, there is less infor-

mation available to train the forecasting model at the

coarser level leading, reducing the overall prediction accu-

racy. The problem of decimation may be overcome by

introducing the stationary or à trous wavelet transform pro-

posed by Shensa (). The basic idea of the stationary

wavelet transform is to fill the resulting gaps using redun-

dant information obtained from the original series.

In this approach, the wavelet decomposition is derived

by passing the given time series through a low-pass filter;

the subsequent derivation of details and the smoothed ver-

sion then becomes possible. For example, consider the

original time series x(t) which may also be denoted c0 or

c0(t) ¼ x(t) (2)
om http://iwaponline.com/jh/article-pdf/15/3/1022/387029/1022.pdf
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Further smoother versions of x(t) may be derived from:

ci(t) ¼
X∞

l¼�∞

h(l)c j�1(tþ 2i�1l) (3)

In Equation (3), l takes the value 1 to j (level of

decomposition) and h is a low-pass filter with compact sup-

port. The length and characteristics of the low-pass filter will

depend on the type of wavelet used. The simplest wavelet is

the Haar wavelet with a low-pass filter specification given by

(1/2, 1/2). Similarly, the filter values for the B3 spline wave-

let is defined as (1/16, 1/4, 3/8, 1/4, 1/16). Using the

smoother versions of x(t) at level i and i–1, the detail com-

ponent of x(t) at level i is defined:

di(t) ¼ ci�1(t)� ci(t) (4)

The set {d1, d2….dp, cp} represents the additive wavelet

decompositions of data up to a resolution level of p. The

term cp in this set denotes the residual component, also

referred to as the approximation. Accordingly, for recon-

struction, the inverse transform is given by

x(t) ¼ cp(t)þ
Xp

i¼1

di(t) (5)

Unlike in classical DWT, decimation is avoided here,

resulting in components at different scales being the same

length.
Treatment of circular effect or boundary of wavelet

decomposition

The selection of the suitable wavelet and treatment of the

boundary for wavelet decomposition is based on the discus-

sion provided in Maheswaran & Khosa (b). The latter

issue assumes significance especially when models are

designed for forecasting applications.
STATISTICAL TESTING FOR MULTI-SCALE
DYNAMICS, NON-LINEARITY AND LONG MEMORY

The applicability of models for a given data series depends

on the characteristics of the time series; accordingly, it is
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necessary to investigate the properties of the time series in

terms of non-linearity, multi-scale non-stationarity and

long memory. The following sections provide an overview

of the methods used for the analysis followed by a descrip-

tion of the application of these tests for the given data.

Multi-scale analysis using wavelet transforms

Indirect examination for the presence of various stochastic

and scale attributes of the rainfall and runoff processes

was carried out by deriving wavelet scalograms for each of

the time series. An aim of this exercise is the derivation of

signature details such as frequency time localization and

dominant oscillations of the respective observation sets.

The study by Torrence & Compo () formulated signifi-

cance tests against reasonable background spectra, or an

appropriate null hypothesis which encouraged further appli-

cation of wavelet analysis to hydrologic studies. Examples

include studies of Karstic systems (Labat et al. ), charac-

terization of daily streamflow (Smith et al. ; Saco &

Kumar ), study of monthly inflows to a reservoir (Cou-

libaly et al. ), study of long range correlations in

discharge time series (Audit et al. ; Kantelhardt et al.

, ) and regionalization of daily streamflow in Aus-

tralia (Zoppou et al. ). More recently, Labat et al.

() investigated the temporal variability of annual dis-

charge series of different rivers and showed that

continuous wavelet analysis using Morlet wavelets could

identify the underlying periodicities with periods ranging

from inter-annual (5–8 years) to decadal (12–15 years), bi-

decadal (approximately 28 years) and 4–70-year oscillations.

In the present study, significance tests suggested by Torrence

& Compo () have been applied to obtain detailed

insights into the process under scrutiny.

Investigating for process non-linearity

Exploring and prospecting for different kinds of non-linear-

ity individually, which may be expected in typical hydrologic

processes, is generally intractable and perhaps conceptually

flawed. Therefore, it is generally recommended that investi-

gations for possible non-linear phenomena should evaluate

the overall ‘non-linear’ content rather than strive for an

objective discrimination between each of the hypothesized
://iwaponline.com/jh/article-pdf/15/3/1022/387029/1022.pdf
types. There are a wide variety of methods presently avail-

able to test for linearity (or non-linearity) and may be

divided into two broad categories: (1) portmanteau tests,

which test for departure from linear models without specify-

ing alternative models; and (2) tests designed for some

specific alternatives (Wang et al. ). Patterson &

Ashley () tested six portmanteau methods on eight syn-

thetically generated non-linear series of different types and

concluded that the BDS (Brock et al. ) test was better

and clearly stood out in terms of overall power against a var-

iety of alternatives. Kim et al. () demonstrated the

effectiveness of the BDS test when applying the procedure

to test for the presence of non-linearity in the residuals of

fitted models.

Under the overall objective of estimating the non-linear

content in the given time series, Wang et al. () have

shown that the presence of such non-stationary features as

a trend or a level change, or even the presence of periodic

features, may affect the estimation; they have therefore rec-

ommended that removal of these non-stationary features

should precede any study for non-linear content. This gener-

ally requires extraction of the linear structure using an

estimated linear filter, and then testing the standardized

residuals for non-linearity using the BDS test statistic. The

standard procedure for applying the BDS test is depicted

in Figure 3.

Test for long memory

The presence of long memory features indicates the influ-

ence of long past events on current states that the given

process is likely to attain. There are several methods avail-

able in the literature for estimating the presence of long

memory, and such a presence is chiefly evaluated in terms

of the Hurst exponent H (e.g. Beran ). Further discus-

sions on estimation of the Hurst exponent H have also

been presented by Rao & Bhattacharya () and Wang

et al. (). In the present study, the recommendations pro-

posed by the aforementioned investigators have been

followed to obtain estimates of the Hurst exponent H for

each of the four case studies. Essentially, this analysis

required pre-processing of the given time series of obser-

vations (log-transformation, deseasonalization and

detrending). Table 2 shows the estimated H exponents



Figure 3 | BDS test procedure.

Table 2 | BDS test results along with the p-values; Me: embedded dimension

Me¼ 2 Me¼ 3 Me¼ 4

Case study Series Statistic p-value Statistic p-value Statistic p-value

I Yadgir 30.41 0 30.09 0 29.31 0
Huvinhedigi 32.14 0 31.29 0 30.11 0
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obtained using two methods: (1) wavelet-based method; and

(2) rescale-range-based method. Table 2 also presents a com-

parison between these estimates obtained for the given

observed time series for both cases before and after pre-

processing.
APPLICATION TO CASE STUDIES

Figures 4(a) and 4(b) show the wavelet spectrum for the daily

basin mean rainfall and runoff observed at Yadgir station,
om http://iwaponline.com/jh/article-pdf/15/3/1022/387029/1022.pdf
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clearly revealing the dominant annual feature (seen as a

dark band). There is also evidence of sub-annual cycles

with periods of 128–256 days. The analysis of the wavelet

spectrum further reveals that high flows occur regularly in

a year, but the peak values and duration of high flows is

highly variable. Figures 5(a) and 5(b) show the wavelet spec-

trum for the daily mean rainfall and runoff at Huvinhedigi. It

can be seen that the intensity of the annual cycle

is decreasing with time, presumably an impact of develop-

mental schemes such the dams at Alamatti and Narayanpur

across the Krishna River upstream of Huvinhedigi.



Figure 4 | Normalized local wavelet power spectrum of: (a) rainfall; and (b) runoff observed at Yadgir using Morlet wavelet.

Figure 5 | Normalized local wavelet power spectrum of: (a) rainfall; and (b) runoff observed at Huvinhedigi using Morlet wavelet.
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Further, as shown in Table 3, BDS test results for the

daily streamflow time series also reveal that there is a stron-

ger non-linear content present in daily streamflow processes,

even after discounting for the effects of seasonal variance.

The estimates obtained for theHurst exponentH (Table 2)

are indeed interesting as these reveal the presence of strong

long memory features in the daily runoff time series observed

at Yadgir and Huvinhedigi. Similar findings have also been

reported for daily runoff by other investigators including
Table 3 | Estimation of H for different case studies

Hurst exponent bef
of time series

Case study Series Wavelet-based

I Yadgir 0.91
Huvinhedigi 0.89

://iwaponline.com/jh/article-pdf/15/3/1022/387029/1022.pdf
Lawrance&Kottegoda (), who also advocated use of frac-

tional models for these datasets. Conclusive inference about

the nature of the underlying generating process is however

possible only after a formal examination of the significance of

these estimates using prescribed statistical techniques.

Analysis of the results from the BDS test indicates the

presence of a strong non-linearity in the daily flows time

series, consistent with the general understanding of the pro-

cesses. Additionally, the multi-scale analysis and the Hurst
ore pre-processing Hurst exponent after pre-processing of
time series

R/S Wavelet-based R/S

0.85 0.84 0.771
0.87 0.82 0.72
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exponent estimation reveal the underlying long-term com-

ponent at both annual and sub-annual scales.
DESCRIPTION OF MODELS

Wavelet Volterra coupled

Figure 6 presents a general schematic of the structure of the

coupled forecast model design. As depicted in the figure, an

input signal Y¼ (y1,… yn–1) is decomposed to obtain wavelet

coefficients at different scales using the à trouswavelet trans-

form. The resulting wavelet decomposition at various levels

are then appropriately integrated using the second-order

multiple-input–single-output (MISO) Volterra formulation.

The Volterra series representation of a non-linear time-invar-

iant system with memory is based on a simple extension of

the Taylor series expansion for non-linear autonomous

causal systems with memory. (For more details, see the

appendix, available online at http://www.iwaponline.com/

jh/15/135.pdf).

To understand the formulation, let u1, u2 … uJ denote the

wavelet coefficients at each scale and let scaling coefficients be

denoted uJþ1, where J is the coarsest level of decomposition.

Thewavelet coefficients and scaling coefficients of the original

series are non-linearly convolved using the second-order Vol-

terra representation within a MISO framework. If J denotes

the level of decomposition, N the number of inputs, m the
Figure 6 | Wavelet Volterra coupled model.

om http://iwaponline.com/jh/article-pdf/15/3/1022/387029/1022.pdf
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memory length at each level and ξt the model noise including

modelling errors and the unobservable disturbances, themulti-

scale non-linear relationship may be written:

y tð Þ¼
XJþ1

n¼1

Xm

τ¼1

h(n)
1 τð Þun t�τð Þ

þ
XJþ1

n¼1

Xm

τ1¼1

Xm

τ2¼1

h(n)
2s τ1, τ2ð Þunðt�τ1Þun t�τ2ð Þ

þ
XJþ1

n1¼1

Xn1�1

n2¼1

Xm

τ1¼1

Xm

τ2¼1

h n1,n2ð Þ
2x τ1, τ2ð Þun1 t�τ1ð Þun2 t�τ2ð Þþξt

(6)

where the first-order kernels h(n)
1 describe the linear relation-

ship between the nth input un and the output signal y; the

second-order self-kernels h(n)
2s describe the second-order non-

linear relation between the nth input un and y; and the

second-order cross-kernels h(n1,n2)
2x describe the second-order

non-linear interactions between each unique pair of inputs

(un1 and un2) as they affect y.

Equation (8) can be simplified by combining the last two

terms to yield:

y tð Þ¼
XJþ1

n¼1

Xm

τ¼1

h nð Þ
1 τð Þun t� τð Þ

þ
XJþ1

n1¼1

XJþ1

n2¼1

Xm

τ1¼1

Xm

τ2¼1

h n1,n2ð Þ
2 τ1, τ2ð Þun1 t� τ1ð Þun2 t� τ2ð Þþξt

(7)

http://www.iwaponline.com/jh/15/135.pdf
http://www.iwaponline.com/jh/15/135.pdf
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It now remains to estimate kernels h1 and h2. Equation

(9) can be further simplified by considering each of the

lagged variables u1(t–1), u1(t–τ),… u2(t–1), u2(t–τ),… as sep-

arate variables d1(t), d2(t), d3(t),… dNl(t). Equation (9) can

be written:

y tð Þ ¼
XNl

l¼1

h1 lð Þdl tð Þ þ
XNl

l1¼l

XNl

l2¼l

h2 l1, l2ð Þdl1 tð Þdl2 tð Þ (8)

More clearly,

dl(t) ¼ xk(t) for 1 � k, l � J þ 1f
dl(t) ¼ xk(t� τ) for 1 � k � J þ 1 and J þ 1< l � Nlf

where τ (¼1,…m) is the lagged value; J is the level of

decomposition; and Nl is the total number of lagged

variables.

In Equation (10), h1 and h2 represent the Volterra ker-

nels to be estimated. It is seen that the number of

parameters to be estimated increases proportionately with

the number of inputs and/or the process memory increases

leading to an increased computational burden and a severely

compromised estimation. In order to handle these compu-

tational difficulties, Chen et al. () and later Wei et al.

() proposed the use of the orthogonal least-squares tech-

nique as a preferred estimation approach. This method is

better than the ordinary least-squares technique for handling

modelling situations where there is a possibility of multi-col-

linearity among vectors that constitute the coefficient matrix.

Further, as shown in Figure 6, the proposed formulation

is recursively updated in real time using the well-known

Kalman filter formulation. Here, the Volterra kernel of the

second-order Volterra model may be predicted, corrected

and updated using the Kalman filter. This recursive updating

increases the accuracy of the estimates and also reduces the

standard error involved in the estimates as new observations

become available. For further details of the model formu-

lation, see Maheswaran & Khosa (a, c).
Wavelet neural network

The process of WA-ANN model development begins with

the decomposition of the observed process Q(t) into DWT
://iwaponline.com/jh/article-pdf/15/3/1022/387029/1022.pdf
{D1(t),D2(t),…DJ(t), CJ(t)} by à trous algorithm at its various

resolution levels J. The modelling philosophy behind this

class of models requires use of the aforementioned scale-

wise decompositions D1(t), D2(t),… DJ(t), CJ(t) at time t as

inputs to the ANN component which is then trained appro-

priately to yield, as the network output, the future states of

the observed time series Q(tþ h) at t where h is the length

of lead time. The number of hidden layers and number of

hidden nodes within each hidden layer are determined by

trial and error. Further, in this method the weights (par-

ameters) are learned using any of the numerous network

learning algorithms that are available in the literature. As

explained above, the key feature of these models (also

referred to as WA-ANN models) is that the model under

discussion is a two-component framework. The first

component yields the various wavelet decompositions

while the second ANN-based component uses these

decompositions as input to yield forecasts on the future

states of the given process as observed at regular intervals

of time.

The choice of the most ‘appropriate’ network training

algorithm is usually resolved by means of a trial-and-error-

based judgement; there are diverse opinions on the use of

a specific network algorithm. For example, Wang et al.

() use the traditional back-propagation algorithm and

have endorsed the procedure in terms of its suitability for

training WA-ANN models. At the other end of this spectrum

is the position taken by Adamowski & Sun () and Ada-

mowski & Karapataki () who rate the Levenberg

algorithm as the best for these WA-ANN models. In another

study, Tiwari & Chatterjee () applied a bootstrap ANN

for training WA-ANN models as their algorithm of choice.

In the present study, WA-ANN models have been

implemented with various training algorithms and their per-

formance assessed through a comparative evaluation; only

the ‘best’ results are presented here for brevity. The input

variables for the ANN module of the benchmark WA-

ANNmodel are selected from the various wavelet decompo-

sitions derived at various scales. The selection of the most

significant among these is based on trials that evaluate the

relative strengths of individual cross-correlation functions

(CCF) between the different wavelet decomposition com-

ponents and the original process under scrutiny. The WA-

ANN model scheme is depicted by Figure 7.



Figure 7 | WA-ANN model for multivariate forecasting.

Figure 8 | Artificial neural network model.
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Artificial neural network

The innate ability of ANNs to ‘train’ and ‘learn’ the outputs

from a given input render them able to simulate large-scale

arbitrarily complex non-linear problems (Rumelhart et al.

). During the learning process, the network undergoes

a loop of calculation such that, for each pass, the network

proceeds through a specified sequence of inputs to calculate

the outputs and the associated errors. The network adjusts

its weight as each input vector is presented in a sequence

and the loop of calculations continues until the performance

goal is attained. The goal of network training is not only to

learn an exact representation of the training data itself, but

to build a statistical model of the processes that generate

such data. The training process involves adjustment of link

weights and the process continues until an acceptable net-

work performance is achieved across all training datasets

and a minimum error between the desired output and the

neural network output is achieved.

The most widely used neural network structure for

hydrological applications is the multilayer perceptron

(MLP) which is also capable of non-linear pattern
om http://iwaponline.com/jh/article-pdf/15/3/1022/387029/1022.pdf
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recognition and memory association as discussed by

Nayak et al. (). The MLPs have neurons organized in

layers and each neuron is connected only to neurons in adja-

cent layers. The architecture of a typical feed-forward

multilayer neural network is shown in Figure 8. Typically,

for forecasting applications the input vector consists of

(N–1) past observations of the time series while the output

vector is the forecast value of future state. Following pre-pro-

cessing of the data for standardization, all ANNs in this

study were trained using supervised training algorithms
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which minimized the mean squared error (MSE) objective

function. The ANN models were developed using the

Neural Networks Toolbox of MatLab version 7.6.0 (R2008a).
Table 4 | Correlation analysis of different wavelet components with observed flows at

Krishna Agraharam
Wavelet linear regression

A WLR model is obtained by combining DWT with linear

regression (LR). The wavelet regression (WR) model is a

LR model that uses sub-time series components derived

from DWT of the original observed process. The WR

model structure developed in the present study uses a pre-

defined number of the aforementioned sub-time series com-

ponent details as inputs to the LR component, and its output

is deemed to be the computed/simulated output process.

Evidently, the model development process consists of

finding a suitable wavelet function and an appropriate

number of decomposition levels, as well as their relative

effectiveness as a measure of the relative degree to which

each component would be influencing the original time

series. While there are no clear guidelines available in the lit-

erature for selecting the type of wavelets, Nourani et al.

() provide recommendations on the selection of the

optimal number of decomposition levels J. Nourani et al.

suggest that the optimal level of decomposition J may be

fixed according to:

J ¼ log2(N) (9)

The selection of components based on their relative

effectiveness has similarly been explored by Kisi ()

who suggests the use of a correlation coefficient, estimated

between each of the various wavelet decomposition com-

ponents and the given observed process, as the basis for

evaluating the relative significance of these individual

decomposition components.
Wavelet component of different time
series

Correlation between Dt–1 and
Qka,t

DQh,t–1 0.26

AQh,t–1 0.87

AQh,t–2 0.82

DQy,t–1 0.09

AQy,t–1 0.82

ARka,t–1 0.56
MODEL APPLICATION

Wavelet Volterra coupled

In this approach, the rainfall and runoff signals are

decomposed into wavelet and scaling components at
://iwaponline.com/jh/article-pdf/15/3/1022/387029/1022.pdf
different scales. The approximation and the detail com-

ponents represent the slow and fast components that

make up the integrated history of the time series of

observed flows. These components are combined

through the Volterra framework to forecast future

flows, followed by a Kalman-filter-based updating pro-

cedure that uses the newest (current) observation to

update the model for use at the next time-step for further

forecasts.

For the current study, the observed flows at Yadgir and

Huvinhedgi and representative weighted sub-basin rainfall

are the model input variables. For each of these time

series, the corresponding scale-specific decompositions are

derived using the Haar wavelet transform (selection of the

mother wavelet as per the guidelines given by Maheswaran

& Khosa b). The significant wavelet components are

selected based on the correlation between different com-

ponents and the observed flows at Krishna Agraharam

(see Table 4).

The results presented in Table 4 suggest that the

approximation components – namely AQh,t–1, AQy,t–1,

AQh,t–2 of the flow time series, ARka,t–1 of rainfall time

series and details component of the flow time series

DQh,t–1 – made a significant contribution to the overall

variability in observed flows at Krishna Agraharam. These

components were taken as the inputs for the Volterra fra-

mework and orthogonal least squares–error reduction

ratio (OLS-ERR) algorithm was used to find the best regres-

sors as per the schematic of Figure 9. Following

calibration, the parametric form of the proposed WVC

models for lead times of 1, 2 and 3 days are shown in



Figure 9 | Wavelet Volterra model for flow forecasting at Krishna Agraharam.
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Equations (12–14):

Qka,tþ1 ¼ 2:45A2Qh,t � 1:18A2Qh,t�1 þ 0:98A2Qy,t

þ 1:55D1Qh,t þ 0:69D1Qh,t�1 þ 0:0017A2Qh,tA2Qy,t

� 0:00012A2Qy,tA2Qh,t�1 � 0:0054A2Qy,tA1Rka,t

� 0:0458A1Rka,tD1Qy,t (10)

Qka,tþ2 ¼ 3:4A2Qh,t � 1:8A2Qh,t�1 þ 0:78A2Qy,t þ 1:1D1Qh,t

þ 0:67D1Qh,t�1 þ 0:0011A2Qh,tA2Qy,t

� 0:0002A2Qy,tA2Qh,t�1 � 0:054A2Qy,tA1Rka,t

� 0:058A1Rka,tD1Qy,t þ 0:04A1Rka,t�1D1Qy,t�1

þ 0:04A1Rka,t�1D1Rka,t�1 (11)

Qka,tþ2 ¼ 1:4A2Qh,t � 0:8A2Qh,t�1 þ 0:44A2Qy,t þ 0:15D1Qh,t

þ 0:17D1Qh,t�1 þ 0:0014A2Qh,t�1A2Qy,t�1

� 0:002A2Qy,tA2Qy,t�1 � 0:041A2Qy,tA1Rka,t

� 0:08A1Rka,tD1Qy,t þ 0:021A1Rka,t�1D1Qy,t�1

þ 0:012A1Rka,t�1D1Rka,t�1 (12)

The forecast results of the WVC model for lead times of

1–3 days are shown in Figures 10(a)–10(c). Examination of

these results shows that the WVC model closely picks up

the peak discharge values up to a lead time of 3 days. The

statistics of the model results are presented in the Results

and Discussion sections.

Neural network

For comparison, a feed-forward neural network model with

three hidden layers has been adopted in the study and the
om http://iwaponline.com/jh/article-pdf/15/3/1022/387029/1022.pdf
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number of hidden nodes was selected using a trial and

error approach. The Levenberg–Marquardt back propa-

gation (LMBP) approach has been adopted as the training

algorithm as it has been shown to be faster and finds

better optima for a variety of problems than the

other methods (Coulibaly & Baldwin ). In this study,

different input combinations were tested and the best

model configuration was selected. The best model in terms

of forecast accuracy was found to have a configuration of

(4, 3, and 1).
Wavelet neural network

As before, the observed rainfall and runoff time series are

decomposed into sets of wavelet coefficients by the à trous

algorithm at the resolution level J. Subsequently, an ANN

model is developed in which the significant wavelet

decomposition components at time t are used as inputs to

the ANN component to obtain forecasts Qka(tþ h) of the

future state of the observed output process at time (tþ h),

where h is the length of lead time. The number of hidden

layers and hidden nodes of each hidden layer are deter-

mined by trial and error, while the link weights

(parameters) for a selected ANN are determined using the

LMBP network algorithm.

In this study, it was found that two levels of decompo-

sition produced optimal results in comparison with the

higher levels of decomposition which were used as the

input variables for ANN models. For the WA-ANN

models, ANN networks consisting of an input layer with



Figure 10 | Comparison of forecasted versus observed flow using the WVC model (Scheme I) for: (a) 1-day-ahead; (b) 2-days-ahead; and (c) 3-days-ahead forecasting for the Krishna River

at Krishna Agraharam station (validation period).
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1–20 input neurons, one single hidden layer comprising six

neurons and one output layer consisting of one neuron

(representing the predicted mean daily flow) were devel-

oped. A total of six neurons in the hidden layer was seen

to be the optimum number for each ANN model, deter-

mined via trial and error.
Wavelet LR

The wavelet transforms of observed runoff at Yadgir and

Huvinhedigi along with observed rainfall over the
://iwaponline.com/jh/article-pdf/15/3/1022/387029/1022.pdf
intermediate catchment are linearly regressed to forecast

future flows at Krishna Agraharam. The forecasting equation

using the WLR model formulation under this scheme is

given as

Q̂ka,t ¼ 2:55D1Qh
t�1 � 1:42C2Qh

t�1 � 2:27D1Qy
t�1

� 1:08C2Qh
t�1 � 0:02C2Qh

t�2 þ 1:29C2Rt�1 (13)

where Q̂ka,t denotes the one-step-ahead flow forecast at

Krishna Agraharam; Di is the ith detail component; and

Ci is the ith level approximation component.
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ARMAX

Equation (14) describes the auto-regressive moving average

with exogenous variables (ARMAX) representation for the

inflow forecasting model where the terms qka, qh and qy rep-

resent the observed flows at Krishna Agraharam, Yadgir and

Huvinahedigi, respectively, rka denotes the average areal

rainfall over the intervening catchment between the

upstream and downstream stations and vt denotes the obser-

vation error:

Qka,t ¼ al,tQka,t�l þ . . .þ ak,tQy,t�k þ . . .þ a j,tQh,t�j

þ . . .þ ai,tRka,t�i þ vt ð14Þ

where i, j, k, l¼ 1, … m.
Table 5 | Result statistics for various lead times using direct multi-step models

Lead time (days) 1 2

NSC ANN 0.965 0.91
WLR 0.96 0.86
ARMAX 0.94 0.83
WA-ANN 0.971 0.96
WVC 0.9775 0.97

RMSE (m3 s–1) ANN 200.45 400.8
WLR 210.7 460.20
ARMAX 260.63 520.42
WA-ANN 193.56 224.45
WVC 182.67 217.56

Table 6 | Result statistics for various lead times using recursive multi-step models

Lead time (days) 1 2

NSC ANN 0.971 0.93
WLR 0.96 0.87
ARMAX 0.94 0.83
WA-ANN 0.971 0.963
WVC 0.9823 0.976

RMSE (m3 s–1) ANN 200.45 360.81
WLR 210.7 440.8
ARMAX 260.63 520.42
WA-ANN 193.56 214.87
WVC 182.67 206.76

om http://iwaponline.com/jh/article-pdf/15/3/1022/387029/1022.pdf
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RESULTS AND DISCUSSION

The forecast results of the models are compiled in Tables 5

and 6. The model results are compared in terms of the

Nash–Sutcliffe criteria (NSC, Nash & Sutcliffe ) and

the root-mean-square error (RMSE) values. Table 5 shows

the results for the direct multi-step-ahead models in which

a separate model is developed for each lead time, whereas

Table 6 shows the results for the recursive multi-step models.

For 1-day-ahead forecasting, the analysis of the results

reveals that the WVC model demonstrated superior per-

formance in comparison to the other models, yielding a

NSC¼ 0.9775. The WA-ANN and ANN model performed

similarly, resulting in NSC¼ 0.971 and 0.965, respectively.

WLR models perform better than the auto-regressive with

exogenous inputs (ARX) models in terms of NSC and
3 4 5 6

0.845 0.65 0.60 0.526
0.83 0.58 0.56 0.50
0.74 0.50 0.46 0.31
0.94 0.85 0.745 0.66
0.954 0.8713 0.75 0.68

523.24 700.24 740.26 830.23
513.20 754.98 810.56 872.76
630.20 919.29 966.20 1,023.5
280.09 460.14 650.12 721.56
270.45 440.78 630.45 700.98

3 4 5 6

0.87 0.65 0.59 0.53
0.84 0.58 0.56 0.50
0.74 0.50 0.46 0.31
0.948 0.86 0.76 0.67
0.96 0.890 0.78 0.70

439.22 700.20 743.60 828.29
511.56 753.98 800.56 870.76
630.20 916.29 969.20 1,030.25
270.65 440.91 630.19 700.08
250.32 400.12 609.97 679.9
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RMSE values. The WLR models produced results with a

NSC of 0.96 when compared with 0.94 yielded by the

ARX models.

In the case of multi-step forecasting, the recursive

approach performs better than the direct approach for all the

models up to a lead time of 3 days. Beyond that, the perform-

ance of both the approaches seems to be similar. Among the

different models, the ANN models perform better than the

WLR and ARX models. For example, for lead time of 3 days,

the RMSE of the forecasts using ANN model was found to

be 439.22; WLR and ARX models yielded results with

RMSE equal to 511.56 and 580.78 m3 s–1, respectively.
Figure 11 | Scatter plot of the results for (a, c, e) ANN and (b, d, f) WLR models at lead times

://iwaponline.com/jh/article-pdf/15/3/1022/387029/1022.pdf
Importantly, however, the results show that the pro-

posed WVC models yield better results than all other

models under investigation. The WVC model produced fore-

casts with NSC value¼ 0.89 for 4 days lead time, whereas

the WA-ANN model forecasts had only a value of 0.86.

Analysis of the direct multi-step model results reveals

that the wavelet-based non-linear models perform better

than the regular ANN and wavelet linear models. Further,

among the wavelet-based non-linear models, the WVC

model performs slightly better than the WA-ANN models

for all lead times. For example, the WVC model forecast

result had a NSC value¼ 0.871 for lead time of 4 days,
of 1, 2 and 4 days (from top). The solid line represents the x¼ y line.
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whereas the WA-ANN model yielded results with NSC

value¼ 0.85.

Overall, it can be seen that the coupled wavelet-Vol-

terra model provided more accurate forecasts than the

ARMAX- and ANN-based models. It can also be seen

that the WVC model performs better than the WA-ANN

model in all cases. In a comparison of the direct and
Figure 12 | Scatter plot of the results for (a, c, e) WA-ANN and (b, d, f) WVC models at lead ti

om http://iwaponline.com/jh/article-pdf/15/3/1022/387029/1022.pdf
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recursive multi-step forecasting methods, it can be seen

that the recursive multi-step method performs better than

the direct method.

Figure 11 is the plot of results of the direct multi-step

ANN and WLR models in the form of a scatter plot for

lead time of 1, 2 and 4 days. It can be seen that the results

are comparable for 1-day-ahead forecast; for higher lead
mes of 1, 2 and 4 days (from top). The solid line represents the x¼ y line.
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times, however, the WLRmodel performs poorly when com-

pared with the ANNmodels due to the higher degree of non-

linearity.

A similar comparison between the WVC and

WA-ANN models is shown in Figure 12. The investigation

of the scatter plot reveals that the WVC model performs

better in picking up the peak flow in comparison to

the WA-ANN models and, for a lead time of 4 days in

particular, it is observed that the WA-ANN model

underestimates the flow values in comparison with the

WVC models.

A comparison of results shows that the WVC and WA-

ANN models demonstrate comparable performances in

most test situations explored in this study but, overall, the

proposed WVC model is at least as good as the WA-ANN

model and, in some tests, actually yielded better results

than the latter approach.

With regards to the other models tested in the

study, results show that ANN models performed better

than the WLR and ARMAX models for all lead

times; this may be attributed to the relatively superior

capability of ANN models to capture non-linear features

of the given process, whose presence are revealed by

the BDS test results. However, it is also interesting to

note that the WLR model, although a linear model, per-

formed superior to the ARMAX and very close to the

ANN model. A reason for the better performance of

the wavelet-based model may be the separation of the

noise from other, but relatively well behaved, com-

ponents prior to modelling. Especially in the case of

streamflow measurements on a daily scale, noise com-

ponent of the overall observed process is relatively

higher and strong enough to mask the more important

underlying dynamics.

The other advantages offered by the proposed WVC

model may be summarized as follows:

1. WVC models are simple and versatile;

2. WVC models can be implemented in an adaptive mode

whereas WA-ANN models are inherently complex and

opaque to scrutiny; and

3. WVC models yield an analytic form of the forecasting

model, leading to a better insight into the underlying

generating process.
://iwaponline.com/jh/article-pdf/15/3/1022/387029/1022.pdf
CONCLUSIONS

The potential of WVC models for 1–5-days-ahead flow fore-

casting was investigated in this study for a site on the River

Krishna in India. The WVC models were developed by com-

bining wavelet transforms with the second-order Volterra

kernel-based framework.

The WVC models were compared with some of the

baseline models for 1–5-days-ahead flow forecasting. The

results showed that, for all lead times, the WVC models

provided more accurate results than the regular ANN and

WLR models. This may be attributed to the ability of the

former approach to provide a better scale-specific descrip-

tion of the original time series.

Also, the results obtained using the WA-ANN models

were comparable to WVC model results for some test cases.

Additionally, it is seen that the WVC models involve less

computational effort when compared with the WA-ANN

models; the proposed WVC model is therefore a good alterna-

tive to the WA-ANN models for flow forecasting.

In a comparison between the direct and recursive multi-

step forecasting methods, the latter performs better than the

former. In further research, the WVC model could be tested

for accuracy in forecasting other hydrological time series

such as sediment delivery rates in natural streams or water

quality parameters.
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